Main Page | Class Hierarchy | Alphabetical List | Class List | Directories | File List | Class Members

plLearnObject Class Reference

This is the base class of all learning objects. More...

#include <plLearn.h>

Inheritance diagram for plLearnObject:

Inheritance graph
[legend]
Collaboration diagram for plLearnObject:

Collaboration graph
[legend]
List of all members.

Public Member Functions

 plLearnObject (const plVariablesConjunction &variables)
 Constructor using a set of variables.
 plLearnObject ()
 Void default constructor.
virtual ~plLearnObject ()
 Dectructor.
unsigned int get_nsamples () const
 Returns the number of the points used in learning (i.e.
double get_total_weight () const
 Returns the sum of weights of the points used in learning (i.e.
virtual void reset ()=0
 Resets learning.
virtual void internal_addPoint (const plDataValues &point, double weight=1.0)=0
 Adds a point {point} with a given weight {weight} and updates statistics.
void addNewPoint (const plValues &point, double weight=1.0)
 Adds a point {point} with a given weight {weight} and updates statistics.
template<class arrayT>
void addNewPoint (arrayT *point, double weight=1.0)
 Adds a point {point} with a given weight {weight} and updates statistics.
template<class arrayT>
void addNewPoint (const vector< arrayT > &point, double weight=1.0)
 Adds a point {point} with a given weight {weight} and updates statistics.
template<class singleT>
void addNewPoint (singleT point, double weight=1.0)
 Adds a point {point} with a given weight {weight} and updates statistics.
const list< kplVariable * > & get_vars () const
 Returns the list of variables.
void set_known_range (const vector< bool > known_range)
 Sets, for each variable; a boolean that says if the range of the variable is known or not.
void addNewPointWithDef (const plValues &point, const vector< bool > &left_defined, double weight=1.0)
 Adds a point {point} with a given weight {weight} and updates statistics.
template<class arrayT>
void addNewPointWithDef (arrayT *point, const vector< bool > &left_defined, double weight=1.0)
 Adds a point {point} with a given weight {weight} and updates statistics.
template<class arrayT>
void addNewPointWithDef (const vector< arrayT > &point, const vector< bool > &left_defined, double weight=1.0)
 Adds a point {point} with a given weight {weight} and updates statistics.

Detailed Description

This is the base class of all learning objects.

Definition at line 31 of file plLearn.h.


Member Function Documentation

template<class singleT>
void plLearnObject::addNewPoint singleT  point,
double  weight = 1.0
[inline]
 

Adds a point {point} with a given weight {weight} and updates statistics.

{point} is a scalar value. ATTENTION: This method can be only used for one-dimensional distributions.

Definition at line 98 of file plLearn.h.

References internal_addPoint().

template<class arrayT>
void plLearnObject::addNewPoint const vector< arrayT > &  point,
double  weight = 1.0
[inline]
 

Adds a point {point} with a given weight {weight} and updates statistics.

{point} is represented as an STL vector.

Definition at line 87 of file plLearn.h.

References internal_addPoint().

template<class arrayT>
void plLearnObject::addNewPoint arrayT *  point,
double  weight = 1.0
[inline]
 

Adds a point {point} with a given weight {weight} and updates statistics.

{point} is represented as a C array.

Definition at line 76 of file plLearn.h.

References internal_addPoint().

void plLearnObject::addNewPoint const plValues point,
double  weight = 1.0
[inline]
 

Adds a point {point} with a given weight {weight} and updates statistics.

{point} is represented as a {plValues}.

Definition at line 68 of file plLearn.h.

References internal_addPoint().

template<class arrayT>
void plLearnObject::addNewPointWithDef const vector< arrayT > &  point,
const vector< bool > &  left_defined,
double  weight = 1.0
[inline]
 

Adds a point {point} with a given weight {weight} and updates statistics.

{point} is represented as an STL vector.

Definition at line 139 of file plLearn.h.

template<class arrayT>
void plLearnObject::addNewPointWithDef arrayT *  point,
const vector< bool > &  left_defined,
double  weight = 1.0
[inline]
 

Adds a point {point} with a given weight {weight} and updates statistics.

{point} is represented as a C array.

Definition at line 128 of file plLearn.h.

void plLearnObject::addNewPointWithDef const plValues point,
const vector< bool > &  left_defined,
double  weight = 1.0
[inline]
 

Adds a point {point} with a given weight {weight} and updates statistics.

{point} is represented as a {plValues}.

Definition at line 120 of file plLearn.h.

unsigned int plLearnObject::get_nsamples  )  const [inline]
 

Returns the number of the points used in learning (i.e.

added using the {internal_addPoint} method bellow).

Definition at line 50 of file plLearn.h.

double plLearnObject::get_total_weight  )  const [inline]
 

Returns the sum of weights of the points used in learning (i.e.

added using the {internal_addPoint} method bellow).

Definition at line 54 of file plLearn.h.

virtual void plLearnObject::internal_addPoint const plDataValues &  point,
double  weight = 1.0
[pure virtual]
 

Adds a point {point} with a given weight {weight} and updates statistics.

This virtual method has to be implemented by all derived classes. This is an internal method, do not use it directly. Use addNewPoint instead.

Implemented in plCndLearnObject< T >, plLearnDistribVector, plLearn1dNormal, plLearnKHistogram, plLearnNdNormal, and plLearnUnKHistogram.

Referenced by addNewPoint().

virtual void plLearnObject::reset  )  [pure virtual]
 

Resets learning.

This virtual method has to be implemented by all derived classes.

Implemented in plCndLearnObject< T >, plLearnDistribVector, plLearn1dNormal, plLearnKHistogram, plLearnNdNormal, and plLearnUnKHistogram.


The documentation for this class was generated from the following file:
Generated on Fri Apr 1 10:59:17 2005 for ProBT by  doxygen 1.4.1