Main Page | Class Hierarchy | Alphabetical List | Class List | Directories | File List | Class Members

plLearnNdNormal Class Reference

This class permits to learn multi-dimensional Normal (Gaussian) distributions. More...

#include <plLearnNdNormal.h>

Inheritance diagram for plLearnNdNormal:

Inheritance graph
[legend]
Collaboration diagram for plLearnNdNormal:

Collaboration graph
[legend]
List of all members.

Public Member Functions

 plLearnNdNormal (const plVariablesConjunction &vars)
 Constructor using a set of variables.
 plLearnNdNormal (const plVariablesConjunction &vars, const plFloatVector &init_mean, const plFloatMatrix &init_matrix, double init_weight=1.0)
 Constructor using a set of variables, an initial mean, initial covariance, and an initial weight .
 plLearnNdNormal ()
 Void default constructor.
virtual ~plLearnNdNormal ()
 Dectructor.
void reset ()
 Resets learning.
void internal_addPoint (const plDataValues &point, double weight=1.0)
 Adds a point {point} with a given weight {weight} and updates the mean and covariances statistics.
void getMean (plFloatVector &mean) const
 Returns the mean vector in the output parameter {mean}.{mean} is assumed to have the correct size.
plFloatVector getMean () const
 Returns the mean vector.
void getCovariance (plFloatMatrix &covariance) const
 Returns the covariance matrix in the output parameter {covariance}.
plFloatMatrix getCovariance () const
 Returns the covariance matrix.
void get_params (plValues &params) const
 Returns the {dim+dim^2} parameters of the dim-dimensional Normal distribution.
void get_actual_min_max (plFloatVector &min, plFloatVector &max) const
 Returns min and max values.
plKernel get_distribution (const void *parameters=NULL) const
 Returns the normal corresponding to the learnt distribution.

Detailed Description

This class permits to learn multi-dimensional Normal (Gaussian) distributions.

Definition at line 33 of file plLearnNdNormal.h.


Member Function Documentation

void plLearnNdNormal::get_params plValues params  )  const [virtual]
 

Returns the {dim+dim^2} parameters of the dim-dimensional Normal distribution.

The output parameter {params} will contain the {dim} values of the mean vector and the {dim^2} values of the covariance matrix.

Implements plNonCndLearnObject.

void plLearnNdNormal::getCovariance plFloatMatrix covariance  )  const
 

Returns the covariance matrix in the output parameter {covariance}.

{covariance} is assumed to have the correct size.

void plLearnNdNormal::internal_addPoint const plDataValues &  point,
double  weight = 1.0
[virtual]
 

Adds a point {point} with a given weight {weight} and updates the mean and covariances statistics.

This is an internal method, do not use it directly. Use addNewPoint instead.

Implements plLearnObject.


The documentation for this class was generated from the following file:
Generated on Fri Apr 1 10:59:16 2005 for ProBT by  doxygen 1.4.1