#include <plLearnNdNormal.h>
Inheritance diagram for plLearnNdNormal:


Public Member Functions | |
| plLearnNdNormal (const plVariablesConjunction &vars) | |
| Constructor using a set of variables. | |
| plLearnNdNormal (const plVariablesConjunction &vars, const plFloatVector &init_mean, const plFloatMatrix &init_matrix, double init_weight=1.0) | |
| Constructor using a set of variables, an initial mean, initial covariance, and an initial weight . | |
| plLearnNdNormal () | |
| Void default constructor. | |
| virtual | ~plLearnNdNormal () |
| Dectructor. | |
| void | reset () |
| Resets learning. | |
| void | internal_addPoint (const plDataValues &point, double weight=1.0) |
| Adds a point {point} with a given weight {weight} and updates the mean and covariances statistics. | |
| void | getMean (plFloatVector &mean) const |
| Returns the mean vector in the output parameter {mean}.{mean} is assumed to have the correct size. | |
| plFloatVector | getMean () const |
| Returns the mean vector. | |
| void | getCovariance (plFloatMatrix &covariance) const |
| Returns the covariance matrix in the output parameter {covariance}. | |
| plFloatMatrix | getCovariance () const |
| Returns the covariance matrix. | |
| void | get_params (plValues ¶ms) const |
| Returns the {dim+dim^2} parameters of the dim-dimensional Normal distribution. | |
| void | get_actual_min_max (plFloatVector &min, plFloatVector &max) const |
| Returns min and max values. | |
| plKernel | get_distribution (const void *parameters=NULL) const |
| Returns the normal corresponding to the learnt distribution. | |
Definition at line 33 of file plLearnNdNormal.h.
|
|
Returns the {dim+dim^2} parameters of the dim-dimensional Normal distribution. The output parameter {params} will contain the {dim} values of the mean vector and the {dim^2} values of the covariance matrix. Implements plNonCndLearnObject. |
|
|
Returns the covariance matrix in the output parameter {covariance}. {covariance} is assumed to have the correct size. |
|
||||||||||||
|
Adds a point {point} with a given weight {weight} and updates the mean and covariances statistics. This is an internal method, do not use it directly. Use addNewPoint instead. Implements plLearnObject. |
1.4.1