Main Page | Class Hierarchy | Alphabetical List | Class List | Directories | File List | Class Members

plLearnDistribVector Class Reference

This class permits to learn a set of conditional and non-conditional distributions in the same time. More...

#include <plLearn.h>

Inheritance diagram for plLearnDistribVector:

Inheritance graph
[legend]
Collaboration diagram for plLearnDistribVector:

Collaboration graph
[legend]
List of all members.

Public Member Functions

 plLearnDistribVector (const vector< plLearnObject * > &learn_objects, const plVariablesConjunction &vars, const vector< bool > &known_range)
 Constructs an objects to learn the vector {learn_objects} of learning objects (corresponding to a set of distributions).
 plLearnDistribVector (const vector< plLearnObject * > &learn_objects, const plVariablesConjunction &vars)
 The same as above the constructor, but {known_range} is assumed to be {true} as value for all variables.
virtual ~plLearnDistribVector ()
 Destructor.
void reset ()
 Resets all learning objects.
void internal_addPoint (const plDataValues &point, double weight=1.0)
 Adds a point {point} with a given weight {weight} and updates the statistics.
template<class filterArrayT>
void addFilterNewPoint (const plValues &point, filterArrayT filter, double weight=1.0)
 Adds a point {point} (represented as a {plValue}) with a given weight {weight} and updates the statistics.
template<class arrayT, class filterArrayT>
void addFilterNewPoint (arrayT *point, filterArrayT filter, double weight=1.0)
 Same as above, but {point} is represented as a C array.
template<class arrayT, class filterArrayT>
void addFilterNewPoint (const vector< arrayT > &point, filterArrayT filter, double weight=1.0)
 Same as above, but {point} is represented as an STL vector.
template<class singleT, class filterArrayT>
void addFilterNewPoint (singleT point, filterArrayT filter, double weight=1.0)
 Same as above, but {point} is a scalar value.
template<class filterArrayT>
void addFilterPoint (const plDataValues &point, filterArrayT distrib_to_update, double weight=1.0)
 Same as above, but {point} is represented as an {plDataValues}.

Detailed Description

This class permits to learn a set of conditional and non-conditional distributions in the same time.

Definition at line 357 of file plLearn.h.


Constructor & Destructor Documentation

plLearnDistribVector::plLearnDistribVector const vector< plLearnObject * > &  learn_objects,
const plVariablesConjunction vars,
const vector< bool > &  known_range
 

Constructs an objects to learn the vector {learn_objects} of learning objects (corresponding to a set of distributions).

{vars} is the set of variables on which learning is performed and {known_range} is a vector of boolean to say, for each variable, if its range is known or not.


Member Function Documentation

template<class singleT, class filterArrayT>
void plLearnDistribVector::addFilterNewPoint singleT  point,
filterArrayT  filter,
double  weight = 1.0
[inline]
 

Same as above, but {point} is a scalar value.

ATTENTION: this method can only be used for one-dimensional cases.

Definition at line 419 of file plLearn.h.

References addFilterPoint().

template<class filterArrayT>
void plLearnDistribVector::addFilterNewPoint const plValues point,
filterArrayT  filter,
double  weight = 1.0
[inline]
 

Adds a point {point} (represented as a {plValue}) with a given weight {weight} and updates the statistics.

{filter} is an array of boolean values to say, for each learning object, if it will be updated or not.

Definition at line 391 of file plLearn.h.

References addFilterPoint().


The documentation for this class was generated from the following file:
Generated on Fri Apr 1 10:59:11 2005 for ProBT by  doxygen 1.4.1