Main Page | Class Hierarchy | Alphabetical List | Class List | Directories | File List | Class Members

plLearnUnKHistogram Class Reference

Class for learning histograms parametrical form for variables wich definition set is unknown. More...

#include <plLearnUnKHistogram.h>

Inheritance diagram for plLearnUnKHistogram:

Inheritance graph
[legend]
Collaboration diagram for plLearnUnKHistogram:

Collaboration graph
[legend]
List of all members.

Public Member Functions

 plLearnUnKHistogram (const plLearnUnKHistogram &plLUKH)
 The copy-constructor.
 plLearnUnKHistogram (const plVariablesConjunction &vars, map< plDataValues, plLearnFrequence > *const initial, bool copie=false)
 init is a pointer on an map of initial values of frequencies.
 plLearnUnKHistogram (const plVariablesConjunction &vars, const map< plDataValues, plLearnFrequence > &initial)
 An other way to specifie that the map must be copied.
void reset (void)
 Resets learning.
void internal_addPoint (const plDataValues &point, double weight=1.0)
 Adds a point {point} with a given weight {weight} and updates statistics.
virtual void get_boundaries (plValues &min_ref, plValues &max_ref) const
 Get the boundaries of each unknown definition set.
virtual void get_frequencies (map< plDataValues, plLearnFrequence > &map_ref) const
 Add the learn frequencies to the given map.
virtual void select_frequencies (vector< plLearnFrequence > &frequencies_ref, const vector< plValues > &selected_values) const
 The selected plValues are given in a vector, an empty vector is filled with the correspondant actual frequencies.
virtual const map< plDataValues,
plLearnFrequence > & 
get_map_histo (void) const
 Return a const reference on the map of learn frequencies.
virtual void get_plProbValue (map< plDataValues, plProbValue > &prob_map_ref) const
 If the given map is empty : return a map of plProbValues with the actual learn probabilities.
virtual void select_plProbValue (vector< plProbValue > &prob_ref, const vector< plValues > &selected_values) const
 The selected values are given in a vector of plVlaues and a vector of plProbValues of this range id filled with the actual learn probabilities.
virtual plProbValue * select_plProbValue (const vector< plValues > &selected_values) const
 The selected values are given in a vector of plVlaues and an array of plProbValues of this range with the actual learn probabilities is returned.
void get_frequencies (plLearnFrequence *frequencies) const
 It is supposed you know the length of the linear array of frequencies.
void get_frequencies (vector< plLearnFrequence > &frequencies_ref) const
 It is not i.e.
void get_frequencies (plLearnFrequence *frequencies, const plValues &min, const plValues &max) const
 The boundaries are given in min and max and a table for this range is filled with the actual frequencies.
virtual void get_plProbValue (vector< plProbValue > &prob_ref) const
 Fill a vector of plProbValues with the actual learn probabilities.
virtual void get_plProbValue (vector< plProbValue > &prob_ref, const plValues &min, const plValues &max) const
 The boundaries are given in min and max and a table for this range is filled with the actual probabilites.
virtual plProbValue * get_plProbValue (const plValues &min, const plValues &max) const
 The boundaries are given in min and max and an array of plProbValues of this range with the actual learn probabilities is returned.
void get_params (plValues &params) const
 Returns all learnt parameters of the object.
plKernel get_distribution (const void *parameters=NULL) const
 Returns the probability table corresponding to the learnt distribution.

Protected Member Functions

void get_boundaries (plDataValues &min_ref, plDataValues &max_ref) const
 Get the boundaries of each unknown definition set.

Detailed Description

Class for learning histograms parametrical form for variables wich definition set is unknown.

Definition at line 122 of file plLearnUnKHistogram.h.


Constructor & Destructor Documentation

plLearnUnKHistogram::plLearnUnKHistogram const plVariablesConjunction vars,
map< plDataValues, plLearnFrequence > *const   initial,
bool  copie = false
 

init is a pointer on an map of initial values of frequencies.

The map is copied when the flag is on true. If the flag copied is positionned on false the object access the map passed when the initialization. By default the map is not copied.


Member Function Documentation

virtual void plLearnUnKHistogram::get_boundaries plValues min_ref,
plValues max_ref
const [virtual]
 

Get the boundaries of each unknown definition set.

Useful for construct a C array of plLearnFrequence or plProbValue.

void plLearnUnKHistogram::get_boundaries plDataValues &  min_ref,
plDataValues &  max_ref
const [protected]
 

Get the boundaries of each unknown definition set.

Useful for construct a C array of plLearnFrequence or plProbValue.

void plLearnUnKHistogram::get_frequencies vector< plLearnFrequence > &  frequencies_ref  )  const
 

It is not i.e.

your vector of frequencies is always resized

void plLearnUnKHistogram::get_frequencies plLearnFrequence *  frequencies  )  const
 

It is supposed you know the length of the linear array of frequencies.

You can get it with the get_boundaries function.

void plLearnUnKHistogram::get_params plValues params  )  const [virtual]
 

Returns all learnt parameters of the object.

This virtual method has to be implemented in all derived classes.

Implements plNonCndLearnObject.

virtual plProbValue* plLearnUnKHistogram::get_plProbValue const plValues min,
const plValues max
const [virtual]
 

The boundaries are given in min and max and an array of plProbValues of this range with the actual learn probabilities is returned.

The result is normalized.

Reimplemented in plLearnUnKLaplace.

virtual void plLearnUnKHistogram::get_plProbValue vector< plProbValue > &  prob_ref  )  const [virtual]
 

Fill a vector of plProbValues with the actual learn probabilities.

The result is resized and normalized according to the known boundaries.

virtual void plLearnUnKHistogram::get_plProbValue map< plDataValues, plProbValue > &  prob_map_ref  )  const [virtual]
 

If the given map is empty : return a map of plProbValues with the actual learn probabilities.

The sum of the inserted plProbValues is normalized.

Reimplemented in plLearnUnKLaplace.

Referenced by get_distribution().

void plLearnUnKHistogram::internal_addPoint const plDataValues &  point,
double  weight = 1.0
[virtual]
 

Adds a point {point} with a given weight {weight} and updates statistics.

This virtual method has to be implemented by all derived classes. This is an internal method, do not use it directly. Use addNewPoint instead.

Implements plLearnObject.

void plLearnUnKHistogram::reset void   )  [virtual]
 

Resets learning.

This virtual method has to be implemented by all derived classes.

Implements plLearnObject.

virtual plProbValue* plLearnUnKHistogram::select_plProbValue const vector< plValues > &  selected_values  )  const [virtual]
 

The selected values are given in a vector of plVlaues and an array of plProbValues of this range with the actual learn probabilities is returned.

The result is normalized.

Reimplemented in plLearnUnKLaplace.

virtual void plLearnUnKHistogram::select_plProbValue vector< plProbValue > &  prob_ref,
const vector< plValues > &  selected_values
const [virtual]
 

The selected values are given in a vector of plVlaues and a vector of plProbValues of this range id filled with the actual learn probabilities.

The result is normalized.

Reimplemented in plLearnUnKLaplace.

Referenced by get_distribution().


The documentation for this class was generated from the following file:
Generated on Fri Apr 1 10:59:19 2005 for ProBT by  doxygen 1.4.1