#include <plLearnUnKLaplace.h>
Inheritance diagram for plLearnUnKLaplace:
Public Member Functions | |
plLearnUnKLaplace (const plLearnUnKLaplace &plLUKH) | |
The copy-constructor. | |
plLearnUnKLaplace (const plVariablesConjunction &vars, map< plDataValues, plLearnFrequence > *const initial, bool copie=false) | |
init is a pointer on an map of initial values of frequencies. | |
plLearnUnKLaplace (const plVariablesConjunction &vars, const map< plDataValues, plLearnFrequence > &initial) | |
An other way to specifie that the map must be copied. | |
void | get_plProbValue (map< plDataValues, plProbValue > &prob_map_ref) const |
If the given map is empty : return a map of plProbValues with the actual learn probabilities. | |
void | get_plProbValue (map< plDataValues, plProbValue > &prob_map_ref, plLearnClassesTotal cardinality) const |
If the given map is empty : return a map of plProbValues with the actual learn probabilities. | |
void | get_plProbValue (map< plDataValues, plProbValue > &prob_map_ref, plLearnClassesTotal cardinality, double alpha) const |
If the given map is empty : return a map of plProbValues with the actual learn probabilities. | |
void | select_plProbValue (vector< plProbValue > &prob_ref, const vector< plValues > &selected_values) const |
The selected values are given in a vector of plVlaues and a vector of plProbValues of this range id filled with the actual learn probabilities. | |
plProbValue * | select_plProbValue (const vector< plValues > &selected_values) const |
The selected values are given in a vector of plVlaues and an array of plProbValues of this range with the actual learn probabilities is returned. | |
void | select_plProbValue (vector< plProbValue > &prob_ref, const vector< plValues > &selected_values, double alpha) const |
The selected values are given in a vector of plVlaues and a vector of plProbValues of this range id filled with the actual learn probabilities. | |
plProbValue * | select_plProbValue (const vector< plValues > &selected_values, double alpha) const |
The selected values are given in a vector of plVlaues and an array of plProbValues of this range with the actual learn probabilities is returned. | |
void | get_plProbValue (vector< plProbValue > &prob_ref, const plValues &min, const plValues &max) const |
The boundaries are given in min and max and a table for this range is filled with the actual probabilites. | |
void | get_plProbValue (vector< plProbValue > &prob_ref, const plValues &min, const plValues &max, double alpha) const |
The boundaries are given in min and max and a table for this range is filled with the actual probabilites for the Lidstone form : p(i) = ( alpha+freq(i) ) / (alpha*cardinality+_total_weight) . | |
plProbValue * | get_plProbValue (const plValues &min, const plValues &max) const |
The boundaries are given in min and max and an array of plProbValues of this range with the actual learn probabilities is returned. | |
plProbValue * | get_plProbValue (const plValues &min, const plValues &max, double alpha) const |
The boundaries are given in min and max and an array of plProbValues of this range with the actual learn probabilities is returned. | |
plKernel | get_distribution (const void *parameters=NULL) const |
Returns the probability table corresponding to the learnt distribution. |
Definition at line 53 of file plLearnUnKLaplace.h.
|
init is a pointer on an map of initial values of frequencies. The map is copied when the flag is on true. If the flag copied is positionned on false the object access the map passed when the initialization. By default the map is not copied. |
|
The boundaries are given in min and max and an array of plProbValues of this range with the actual learn probabilities is returned. The result is normalized. The distribution is of the Lidstone form : p(i) = ( alpha+freq(i) ) / (alpha*cardinality+_total_weight) |
|
The boundaries are given in min and max and an array of plProbValues of this range with the actual learn probabilities is returned. The result is normalized. Reimplemented from plLearnUnKHistogram. |
|
If the given map is empty : return a map of plProbValues with the actual learn probabilities. The sum of the inserted plProbValues is not normalized. It misses : cardinality-histo.size() points with proba : (cardinality-histo.size())/(cardinality+_total_weight). The cardinality must be given. The parameter alpha allow you to fit the weight of the data : the parametrical form is : p(i) = ( alpha+freq(i) ) / (alpha*cardinality+_total_weight) It is the Lidstone Low |
|
If the given map is empty : return a map of plProbValues with the actual learn probabilities. The sum of the inserted plProbValues is not normalized. It misses : cardinality-histo.size() points with proba : (cardinality-histo.size())/(cardinality+_total_weight). The cardinality is given. |
|
If the given map is empty : return a map of plProbValues with the actual learn probabilities. The sum of the inserted plProbValues is normalized. The cardinality is exactly the size of the map histo. Reimplemented from plLearnUnKHistogram. Referenced by get_distribution(). |
|
The selected values are given in a vector of plVlaues and an array of plProbValues of this range with the actual learn probabilities is returned. The result is normalized. |
|
The selected values are given in a vector of plVlaues and a vector of plProbValues of this range id filled with the actual learn probabilities. The result is normalized. |
|
The selected values are given in a vector of plVlaues and an array of plProbValues of this range with the actual learn probabilities is returned. The result is normalized. Reimplemented from plLearnUnKHistogram. |
|
The selected values are given in a vector of plVlaues and a vector of plProbValues of this range id filled with the actual learn probabilities. The result is normalized. Reimplemented from plLearnUnKHistogram. Referenced by get_distribution(). |