plNormal on
| (3.5) |
| (3.6) |
plNormal example for an unidimensional
normal distribution. Particularly we set
The unidimensional plNormal kernel can be constructed by the
line code below
plNormal Px(X,0.0,0.81);
One output of the unidimensional plNormal program example shows
as follows:
X = {x} with x in [-3..3]
P(x) = plNormal(x,0,0.81)
Generating 5 random values
draw # 0 = { x=0.90094 }
draw # 1 = { x=-0.279712 }
draw # 2 = { x=0.492526 }
draw # 3 = { x=0.519215 }
draw # 4 = { x=-0.576787 }
Generating 5 best values
best # 0 = { x=0 }
best # 1 = { x=0 }
best # 2 = { x=0 }
best # 3 = { x=0 }
best # 4 = { x=0 }
Examples of compute
compute({ x=0 } )= 0.492521
compute({ x=-3 } )= 0.000517279
compute({ x=2.999 } )= 0.000519649
compute({ x=3 } )= 0
Observe that the value generated by best is the same at each
iteration. Unlike an uniform distribution, the best value in a
plNormal kernel is unique3.1. Now observe that the function
compute returns
for { x=3 }. In effect, this value
does not belongs to
. The resulting graph
is shown by Figure 3.4.
plNormal example for a multivariative
normal kernels. Particularly we set
The construction of the multivariate plNormal kernel is given
by
// Filling the parameters of the plNormal
float matrix[4] = {0.81, 0.51,
0.51, 0.577};
plFloatMatrix Sigma(2,matrix);
plFloatVector mean(2);
mean[0] = 0.0;
mean[1] = -1.0;
plNormal Pxy(X^Y,mean,Sigma);
One output of the multivariative plNormal shows as follow:
X = {x} with x in [-3..3]
Y = {y} with y in [-2..0]
P(x y) = plNormal(x y)
Generating 5 random values
draw # 0 = { x=1.64951 y=-0.230909 }
draw # 1 = { x=0.916421 y=-0.145651 }
draw # 2 = { x=-0.359675 y=-0.77395 }
draw # 3 = { x=-0.978673 y=-1.72212 }
draw # 4 = { x=-0.445786 y=-0.112194 }
Generating 5 best values
best # 0 = { x=0 y=-1 }
best # 1 = { x=0 y=-1 }
best # 2 = { x=0 y=-1 }
best # 3 = { x=0 y=-1 }
best # 4 = { x=0 y=-1 }
Examples of compute
compute({ x=3 y=0 } )= 0
compute({ x=0 y=0 } )= 0
compute({ x=0 y=-0.0001 } )= 0.0751932
compute({ x=0 y=-1 } )= 0.29093
compute({ x=-2 y=-1 } )= 0.00615357