> next up previous contents index
: plProbTable : Discrete built-in kernels : plPoisson   目次   索引

plUniform

A plUniform on $\Omega$ is a kernel where the compute function is defined as follows:


$\displaystyle Compute(\omega) = Uniform(\omega)$     (3.12)


$\displaystyle Uniform(\omega)$ $\textstyle =$ $\displaystyle Card(\Omega)$ (3.13)

Example 8   Here we define a plUniform on $\Omega _o=\{[0,15]\}$.

図 3.8: A discrete uniform kernel on $\Omega _o=\{[0,15]\}$.
\begin{figure}\begin{center}
\psfig{figure=uniform.ps, width= 10cm}
\end{center}
\end{figure}

The construction of the kernel is given by

  plUniform Px(X);

The output of the plUniform example is the following:

X = {x} with x in [0,1,...,15]
P(x) =  1/16

Generating 5 random values
draw # 0 = { x=13 }
draw # 1 = { x=6 }
draw # 2 = { x=12 }
draw # 3 = { x=12 }
draw # 4 = { x=14 }

Generating 5 best values
best # 0 = { x=3 }
best # 1 = { x=5 }
best # 2 = { x=12 }
best # 3 = { x=4 }
best # 4 = { x=8 }

Examples of compute
compute({ x=0 } )= 0.0625
compute({ x=7 } )= 0.0625
compute({ x=3 } )= 0.0625
compute({ x=4 } )= 0.0625
compute({ x=15 } )= 0.0625



Juan-Manuel Ahuactzin 平成17年3月31日