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LINEAR CONTROLLER DESIGN FOR
AUTONOMOUS CAR STEERING

1 Introduction

The present report addresses the design of a linear controller for autonomous steering of
a non-holonomic vehicle along a guideline. If the lateral deviation of the vehicle from
the guidline and the guidline curvature are available from measurement, a method of
autonomous car steering was developed in our previous report [1]. However, this method
does not operate satisfactory in some cases because the lateral deviation rate can not be
set arbitrarily. The present report proposes to solve this problem by means of introducing
an additional feedback on the yaw rate of the vehicle. This allows us to set an arbitrary
decrease rate of the lateral deviation if there are no constraints of the steering angle. The
better performance is also achieved if there exist constraints of the steering angle.

The report is organized as follows. The classical single-track model of the steering
dynamics is described in section 2 where the control goal is formulated. In order to
indicate the drawbacks of our previous controller with a feedback on the lateral deviation,
this controller is described in section 3. A linear controller with an additional feedback
on the yaw rate is presented in section 4. The constraints of the steering angle and a
necessary condition for the existence of a linear controller for autonomous car steering
with the saturated steering angle is obtained in section 5. The theoretical results are
verified by on-going simulation. The main theoretical contribution of the present report is
described in section 6 where a general problem of the controller design with system output
regardless to external disturbances is considered. The controller design for autonomous
car steering is a very special case of a general problem of time-varying feedback control
of a plant considered in section 7. Conclusions are given in section 8.

2 Model of the vehicle’s dynamics and control prob-
lem statement
The classical single-track model of the car steering dynamics is used [2, 3]. This model

is obtained by lumping the two front wheels in the centerline of the vehicle, the same is
done with the rear wheels [2].



The following notations are used in the present report: ¥ — is a velocity vector at
the center of gravity (CG) of the vehicle, its magnitude is v > 0; 8 — is a sideslip angle
between the centerline of the vehicle and v; r — is a yaw rate; Ay — is an angle between
the centerline of the vehicle and a tangent to the guideline; y — is a lateral deviation of the
position sensor from the guideline; u — is a steering angle. A curvature of the guideline
at the nearest point to the vehicle’s position sensor is denoted by ¢ (according to the
notations of [2], while u and ¢ correspond to d; and p,.s in [2] respectively).

The following equation describes the vehicle dynamics while tracking a reference
path [2, 3]:

dz
o = Ax + Bu+ D¢, (2.1)
where z = [3,r, Ay, y|*, B = [b11,b2,0,0]", D =10,0, —v, 0],

a1 Qio 0 0
Qo1 Q92 0 0
0 1 00
v Iy v O

A=

?

a1 = — (¢ +¢p)/mu, ais = =1+ (¢, — cply) /mu?,

as = (coly — cflf)/j, agy = (¢ 12 + cflff)/jv,

bll :Cf/m’l), b21=Cflf/J.
The mass m and moment of inertia J of the vehicle are normalized by the road adhesion
factor , i.e. m=m/p, J = J/pu.

The lateral deviation y and the guidline curvature ¢ are supposed to be measured by
the sensors mounted onto the vehicle. The yaw rate r is measured by a gyroscope.

The steering angle u is limited: |u| < C,. The curvature ¢ of the guideline is also
bounded: |¢| < Cy. Values C, and C, must be coordinated in order to allow the vehicle
to follow the quideline. The detailed analysis of the relation between C, and Cy will be
given further.

Control problem statement. The steering system of the vehicle has to drive the
lateral deviation y to zero:

y(t) —» 0 while ¢t — oo (2.2)

for any ¢(t). The steering system operates with y(¢) and ¢(t) as its inputs. In the the
yaw rate is measured, r(¢) can also be used.

3 Design of a linear controller utilizing only lateral
deviation feedback

In order to design a controller for the goal (2.2), the dynamics equation (2.1) is transformed
into the operator form with the inputs u, ¢ and the output y:

s2A(s)y = n(s)u — v*A(s)9, (3.1)
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where s = d/dt is the differentiation operator.
Coefficients of polynomials A(X) = A2+ A A+ Ag, n()) = ngA2+niA+ng are defined
according to formulae [2]:

Al = —aj1 — G99, A0 = Q11022 — G21012,

Nng = b1v + barly, no = briag — boasy,
ny = bn(aglls — (1,22?)) + b21 (U(a12 -+ 1) — anls).

If y and ¢ are measured, the controller was obtained in our previous report [1] in the
form

n(s)u — v*A(s)¢ = e(s)y, (3.2)

where e()\) = eaA?+e1 A+ is such that a polynomial f(A) = N2A(X) —e(N) = M+ f3A3+
foA2 + fid + fo is stable. The controller (3.2) cancels a ¢-dependent dynamics of y and
sets y to satisfy the equation f(s)y = 0. Therefore, y(t) tends to zero exponentially. The
characteristic polynomial of the closed-loop system (2.1), (3.2) is X (A) = f(A)n(A). Thus,
if n()\) is stable (system (2.1) is minimum-phase), then the controller (3.2) stabilizes the
system (2.1) for any continuous ¢(¢). According to [4], the last condition is also sufficient
for the system (2.1), (3.2) in order to achieve the goal (2.2) while utilizing y and ¢ only.

The coefficients fy, f1, fo are set by means of choosing the controller parameters ey, eq,
eo. In particular, fo = Ay — es, f1 = —e1, fo = —ep. According to the Hurwitz criterion,
the polynomial f(\) is stable if and only if

f1f2f3_f12_f3?f0>0 and f2>0, 7;:0:1’2,3' (33)

The set of triples ( fo, f1, f2) satisfying the inequalities (3.3) for a given value of f3 > 0
is not empty, e.g. a triple fo =1, fi = 1, fo = 2(1 + f2)/f3 belongs to this set. Another
example corresponds to fixed values of fo > 0 and f3 > 0. In this case, the coefficients f
and f; must satisfy the following inequalities: 0 < fi < fafs, 0 < fo < fi(fofs — f1)/[f2.

The decrease rate of the lateral deviation y depends on the root locus of f(\) which
can not be chosen arbitrarily (because the first two coefficients of f()) are already set
and they can not be changed). However, an additional feedback on the yaw rate (if it is
available from measurement) allows us to solve this problem.

4 Design of a linear controller with an additional
feedback on the yaw rate

The feedback on the yaw rate is introduced according to the formula
u=u+kr, (4.1)
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where u is a modified control input, and k, is the yaw rate feedback gain. The choice
of k, will be described further. By means of substituting (4.1) into (2.1) with the new
modified input # it is obtained:

‘é—f = Az + Bu + D¢, (4.2)

where
ai; a2+ kbyp 0

0
as1 Q29 + kT b21 0 0
0 1 00
v lg v 0

A=

Rewrite the last equation in the operator form with the inputs %, ¢ and the output y:
2 (A(8) — kp(bors + @)y = n(s)t — v*(A(8) — kp (b s + @) o, (4.3)

where o = ag1b1; — a11b91. Using the results of section 6 (see also [5]) we can describe the
whole family of the linear controllers which provide to achieve the control goal (2.2). We
consider the design of a controller similar to the controller (3.2):

n(s)d — v*(A(s) — k. (bars + a))g = e(s)y, (4.4)

where e()) is such that f(A) = A2(A()X) — & (by A + «)) — e()) is stable. The controller
(4.1), (4.4) ensures that the lateral deviation y satisfies the equation

f(s)y=0.

By means of an appropriate choice of k,, ey, e1, e, the coefficients of the polynomial
f()\) can be chosen arbitrarily. In particular, let f(\) = A + fzA3 + fod2 + fid + f; be
any desired polynomial. Parameters ey, e, es and k, corresponding to the polynomial
f(A) are defined according to the following formulae:

kr = (Al — f3)/b21, €y = AO - kr(l/ - fg, (45)

e1 =—f1, e =—fo (4-6)

Thus, the controller (4.1), (4.4) with the appropriately chosen parameters allows for an
arbitrary set of the decrease rate of the lateral deviation y.

One should note that the linear controllers (3.2) and (4.1), (4.4) do not take into
account the constraints on the steering angle.

5 Constraints analysis

As it was mentioned above, the constraint on the steering angle magnitude must be
coordinated with the maximum value of the guideline curvature. To determine the upper
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bound of the curvature from a given constraint on u, let us consider the motion along
a guideline with a constant curvature ¢ = @.o,se- Let some linear controller stabilize
the system so that after a transient period y ~y ~..yY ~ 0 and u ~ const. Thus, it
follows from (3.1) that nou = v?A¢Peons: and |u| = [v2Ag/n0||Peonst] < Cy. In order the
last inequality be satisfied, the curvature @const must be less then Cy, = Cy|ng/v?A,].
Hence, the necessary condition for a linear controller to stabilize the system (2.1) with
the saturation of the steering angle |u| < C, for any continuous ¢(t) is

|¢| < Cy = Cuulno/v2A|. (5.1)

However, the condition (5.1) is not satisfied in the case of the motion along a curve of
a small radius. The radius of the guideline must be greater than C,, . A problem arises if
we wish to find a domain in the parameter space such that the control goal (2.2) is fulfilled
for the considered nonlinear system with the saturation-line nonlinearity. The solution
can be obtained by using our results described in [6, 7] (we omit here this analysis). Our
results described in [8] are used for the case of a variable velocity of the vehicle.

6 General problem of the controller design with a
system output regardless to external disturbances

Consider a general system “plant”—“controller”:
A(s)y(t) = B(s)u(t) + F(s)e(t), (6.1)

C(s)y(t) = D(s)u(t) + G(s)e(1), (6.2)

where u(t) € R™ is the control input, y(t) € R™ is the system output, and ¢(t) €
R* denotes the external disturbance, A, B,C, D, F,G are real matrix polynomials of the
corresponding dimensions, detA # 0, detB # 0, deg A > deg B, deg A > deg F' (deg A
denotes a degree of the matrix polynomial A), 0 < ¢ < 0o, s = d/dt. Let us introduce the
characteristic polynomial of the system (6.1), (6.2) as

(1]

A(\) —B(\) ] . (6.3)

) = [ —c(y) DO

The controller (6.2) is called stabilizing if Z()) is a Hurwitz matrix polynomial (i.e.
det=Z()\) is Hurwitz) and detD(X) # 0. The controller (6.2) is called I-universal (i.e.
universal by the property of invariance) if it is stabilizing and |y(¢)| — 0 while t — 400 for
any ¢(t) and for any solution of (6.1), (6.2). It is simple to prove that the I-universality is
equivalent to the stability while the condition W, (A) = 0 holds, where W, () is a transfer
function from ¢ to y.

We suppose that the plant (6.1) is given. The problem is to design an I-universal
controller and describe a set of all I-universal controllers.



The design of a controller for autonomous car steering considered in the previous sec-
tions is a very special case of this general problem solved in [4] for a stable and minimum-
phase plant. Now, we consider the case of a minimum-phase plant without a supposition
that it is stable (i.e. a polynomial detA()) may be unstable). Remark that the plant (4.3)
is unstable in the problem of autonomous car steering (except of the special case described
in our previous report [1]).

Two controllers (6.2) with the coefficients [Cy, Dy, G1] and [Cy, Dy, Gs] are called
H-equivalent (Hurwitz equivalent) if there exist matrix polynomials H;(A\) and Ha(A)
such that H;'[C1, D1, G1] = H;'[Cs, Dy, Gy).

We apply the following result [5].

Lemma 1. Suppose that (6.1) is the minimum-phase plant (that is B()\) is a Hurwitz
matriz polynomial).

1) Let R(\) be the Hurwitz (m x m)-matriz polynomial, r(\) be an arbitrary (m x m)-
matriz polynomial, det r(\) Z 0. The controller (6.2) with the coefficients

C(s) =r(s)A(s) — R(s), D(s) =r(s)B(s) (6.4)

is stabilizing and for this controller det Z(\) = detB(\)det R(\).

2) Any other stabilizing controller (6.2) is H-equivalent to the controller with the
coefficients (6.4) for some r and R of the mentioned form. It is possible to choose
R(\) = p(N) I, where p(\) is a scalar Hurwitz polynomial.

Corollary. If A(A) = XA, + ...+ Ay, detA, # 0 in (6.1), then for any positive
integer N there exists a stabilizing controller with the coefficients (6.4) such that deg D >
degC' + N.

If K > degA —degB + N — 1 and R is an arbitrary Hurwitz matrix polynomial
such that deg R = K + ¢, then there exists a matrix polynomial r such that degr = K,
deg(rA — R) < g — 1 and it is defined uniquely. Hence, the following condition holds:
deg D —degC > K +degB—(g—1) > N.

The statement 1) of Lemma 1 can be verified directly by using the Schur’s Lemma.
The statement 2) can be proved similarly to the proof of theorem 1 in [4].

Let us summarize the main result of this section (this result is proved in [5]).

Theorem 1. 1) Let (6.2) be the stabilizing controller. It will be the I-universal con-
troller if and only if the matriz DA\)B(A)"'F(\) is a polynomial and
G(\) = D(N)B(\)LF()).

2) Let B()) be the Hurwitz matriz polynomial, R(\) be an arbitrary Hurwitz (m x m)-
matriz polynomial, () be an arbitrary (m X m)-matriz polynomial, detr(X) £ 0. The
controller (6.2) with the coefficients

C(s) =r(s)A(s) — R(s), D(s)=r(s)B(s), G(s)=r(s)F(s) (6.5)

is the I-universal controller. For this controller R(s)y(t) = 0 and W, (\) = —B(A\)7'F()),
where Wy () is a transfer function from ¢ to u. Any other I-universal controller is H-
equivalent to the controller with the coefficients (6.5) for some R and r of the mentioned
form. It is possible to choose R = p(\)I,,, where p(\) is a scalar Hurwitz polynomial.
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One should note that the transfer function W,(\) does not depend on the choice of
the I-universal controller.

If we design a controller which does not rely on the measurement of external distur-
bance, then G(s) =0 in (6.2). Using theorem 1 we obtain the following.

Corollary. If there is no measurement of external disturbance, then the absolute
invariance is impossible: the I-universal controller with G(s) = 0 does not exist.

In this statement, the external disturbance ¢(t) is an arbitrary function. If ¢ belongs
to some class M of functions, then it is possible to design a controller which does not rely
on the measurement of ¢ and the output does not depend on ¢ € M. If, for example, M
is a class of piece-linear functions, then the controller (6.2) with the coefficients (6.5) has
the mentioned property if G(\) = A2Gy()) and deg D(s) > deg G(s).

7 Synthesis of a controller for a time-varying model
of an autonomous vehicle

The Ackermann’s model (2.1) of an autonomous vehicle is considered [2, 3]. However,
the velocity is supposed to be a time-varying piece-linear function. The vehicle performs
an autonomous tracking of a guideline. The deviation y of the vehicle’s CG from the
guidline is measured during the motion (the whole path is unknown beforehand). The
autonomous car steering is achieved by a controller which drives y to zero.

The vehicle is described by a fourth-order equation, and y is one of its phase coor-
dinates. Only two of these coordinates can be measured directly. The controller design
for autonomous car steering involves two parts: (1) — a compensator synthesis for the
first three coordinates in order to provide their estimations, (2) — a design of a stabilizing
controller for y. The estimation and control problems are solved by means of similarity
transformations.

Let us focus on the design of the stabilizing controller while assuming that estimations
of the unmeasured coordinates are known. Since the considered system is time varying, we
apply a transformation Z(t) = T'(t)z(t) where a matrix 7 is obtained from the following
conditions: the transformed system’s matrix has a Frobenius form with the last functional
line, the control allocation vector of the transformed system is the last singular orth e,.
The matrices

7.1

A(t) =T)AM)T1(t) + dfl—f)T—l(t) =
are obtained according to the procedure described in [8]. The stabilization of this system
in a Frobenius form is performed. The admissible ranges of the feedback vector of the
transformed system are found from a square equation. The coefficients of this equation
are functions of the velocity v and its derivatives (the higher derivatives can be neglected
due to the physical properties of the system). Thus, for each pair of the values (v,a),

where v denotes a velocity and a — an acceleration, the upper and lower boundaries of the
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feedback vector of the transformed system are evaluated. Then, a table of the feedback
coefficients of the transformed system and the similarity transformation matrices for the
appropriate ranges of v and a are computed.

The stabilizing controller constructed by means of this procedure provides the feedback
in the Luenberger’s estimator of the unmeasured coordinates and it stabilizes the vehicle’s
motion along the guidline.

The operation of the stabilizing controller developed was verified by simulation in
Simulink and Matlab. The stationary and time-varying modes were simulated. The
stationary mode was tested on two maneuvers performed at a constant velocity: (1) —
motion along a circular guidline (zero initial conditions) and (2) — tracking a straigt line
(non-zero initial conditions). The time-varying mode was tested on a turning maneuver
performed at a constant velocity during the turn. The simulation results have shown that
the proposed controller stabilizes the motion when the vehicle’s parameters are stationary
and time-varying within the known bounds. The results of this section are presented in
details in [8, 9, 10].

8 Conclusion

The problem of autonomous car steering along a guideline and its generalization were
considered. The previously designed controller (that relies on the lateral deviation feed-
back y only) does not provide an arbitrary decrease rate of the lateral deviation y. The
operation of the controller was improved by means of introducing an additional feedback
on the yaw rate r and using our new theoretical results described in section 6. The lateral
deviation satisfies the equation f(s)y = 0, where the roots of the polynomial f(\) can be
chosen arbitrarily by means of the appropriate choice of the controller’s parameters. The
effectiveness of the new controller has been verified by means of simulation in Simulink
and Matlab. The controller ensures the accurate tracking of the guidline in various ma-
neuvers while the vehicle’s parameters are within a known range. The necessary condition
for existence of a linear controller is obtained in the scope of the problem of autonomous
car steering with the saturated steering angle.

The similar general problems of the controller design with the system output regardless
to external disturbances are considered. Our main research results are published in [7, 10],
they will also be presented in [5, 8, 9, 11, 12, 13]. The final results of this project will be
described in our paper [14].

References
[1] Universal Controllers for Motion Control of Nonholonomic Vehicles, Research Re-
port on Project No. 98-01, French-Russian Institute named after A. M. Lyapunov,
June 1999 (in Russian/English).

10



2]

3]

4]

[5]

[6]

7]

8]

9]

[10]

[11]

[12]

[13]

[14]

J. Ackermann, J. Guldner, W. Sienel, R. Steinhauser, V. I. Utkin, Linear and Nonlin-
ear Controller Design for Robust Automatic Steering, IEEE Transactions on Control
and Systems Technology, Vol. 3, No. 1, 1995.

J. Ackermann, A. Bartlett, D. Kaesbauer, W. Sienel, R. Steinhauser, Robust Control
Systems with Uncertain Physical Parameters. Springer Verlag London, 1993.

V. A. Yakubovich, Universal Regulators in Invariance and Tracking Problems, Dok-
lady Math., Vol. 52, No. 1, 1995, pp. 151-154 (in Russian).

V. A. Yakubovich, Design of Stabilizing Controllers with System Output Regardless
to External Disturbance, Doklady RAN (to appear in Russian).

V. A. Yakubovich, K. Furuta, S. Nakaura, Tracking Domains for Unstable Plants with
Saturating-Like Actuators, Asian Journal of Control, Vol. 1, No 4, 1999, pp. 229-244.

V. A. Yakubovich, Necessity in Quadratic Criterion for Absolute Stability, Int. J. of
Robust and Nonlinear Control, Vol. 10, 2000, pp. 889-907.

I. E. Zuber, Terminal Control of Time-Varying and Nonlinear Systems, Vestnik SPbU,
2001 (to appear in Russian).

I. E. Zuber, Terminal Control for Nonlinear Systems, To appear in the Proc. of
the Fifth IFAC Symposium on Nonlinear Control Systems, St. Petersburg, Russia,
July 4-6, 2001.

I. E. Zuber, K. Y. Petrova, Design of Regulators for Nonstationary Model of an
Autonomous Vehicle, Differential’nye Uravneniya i Processy Upravlenija (Electronic
Journal hitp://www.neva.ru/journal), No. 4, 2000.

V. A. Yakubovich, Quadratic Criterion for Absolute Stability of Nonlinear Periodic
Systems and Related Topics, To appear in the Proc. of the Fifth IFAC Symposium
on Nonlinear Control Systems, St. Petersburg, Russia, July 4-6, 2001.

V. A. Yakubovich, The Method Lur’e in Control Theory and its Development, To
appear in the Proc. of the Fifth IFAC Symposium on Nonlinear Control Systems,
St. Petersburg, Russia, July 4-6, 2001.

R. M. Luchin, Linear Controller Design for Robust Automatic Steering, To appear in
the Proc. of the Fifth IFAC Symposium on Nonlinear Control Systems, St. Petersburg,
Russia, July 4-6, 2001.

R. M. Luchin, I. E. Paromtchik, A. V. Pavlov, V. A. Yakubovich, C. Laugier, Design
of Stabilizing Controllers with System Output Regardless to External Disturbance
and its Application to Autonomous Car Steering (to be submitted).

11



