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Abstract. Hybrid position/force control for robotic manipulators is considered. The control is
carried out in task coordinates. For the force control the non-linear variable structure controller is
presented and investigated. The controller maintains the system to reach and remain at the
switching hypersurfaces, consisting of internal coordinates of the force controller. The stability of
the system and the existing of the sliding mode are analyzed by means of the second Lyapunov
method. The developed non-linear force controller was implemented for the hybrid position/force
control of a PUMA 200 manipulator. The experimental setup and obtained results are described.
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1. INTRODUCTION

Traditional control systems for robotic
manipulators are being developed as the position
systems, where the command trajectories are given
as functions of time. To widen the application area
of manipulators and to increase their accuracy,
additional force control is needed. The approaches
for force control can be classified into two main
groups. One, the explicit force control,
differentiates strictly between position and force
control. An often used explicit approach, the hybrid
position/force control (Craig and Raibert, 1979;
Mason, 1981; Raibert and Craig, 1981; Volpe and
Khosla, 1992), regulates some components by help
of position feedback and the others - by force
feedback. Due to the task requirements, the hybrid
approach switches between force and position
control, which may result in stability problems
during the switching process. To avoid the
switching problems, implicit force control is often
used to change continuously from position control
to force control. A well investigated approach to
this class is impedance control (Mason, 1981;
Hogan, 1985; Kazerooni, 1989; Shimura et al.,
1991). The major disadvantage of this scheme is its
inability to track a reference contact force, because
the parameters of the environment are not known
exactly (Seraji and Colbaugh, 1993).

In this work we consider the hybrid position/force
control. This control scheme allows to compensate
or, at least, substantially decrease errors appearing
while the interactions of the manipulator with the
environment. In this case the manipulator receives
the property to produce the desired forces during its

motion along the prescribed, position controlled
trajectory. For hybrid control, a force sensor, built
at the wrist of the manipulator, must be used. This
sensor must be able to measure the contact
forces/torques during the motion. The hybrid
position/force control scheme is shown in Fig. 1.
Various control strategies for the explicit force
control were considered by Volpe and Khosla
(1992). In our paper we investigate the possibility
to develop a non-linear force controller, based on
the theory of the variable structure systems (VSS)
(Emelyanov, 1970; Young, 1978; Utkin, 1992), and
to carry out experiments with such a controller.

2. ARM/SENSOR MODEL

The dynamics of a robotic manipulator is described
by means of the Lagrange equation (Fu et al., 1987)

D(q)˙̇q + B(q, q̇) + G(q) + JT (q)f = τ, (1)

where q, q̇  and ˙̇q  are vectors of the joint
coordinates, velocities and accelerations
respectively,

D(q)  - inertia matrix of the
manipulator,

B(q, q̇)  - matrix of the Coriolis and
centrifugal torques,

G(q)  - vector of the gravitational
torques,

J(q) - Jacobian matrix of the
manipulator,
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Fig. 1. Hybrid position/force control scheme

f  - vector of the contact
forces/torques in the task space,

τ  - vector of the manipulator
torques  in  the  jo in t

coordinates.

The (6x1) - velocity vector of the manipulator in
the task space is found as

Ẋ = J(q)q̇. (2)

From (2) one can receive the (6x1) - acceleration
vector of the end point of the manipulator as

˙̇X = J(q)˙̇q + J̇(q)q̇. (3)

Since the desired forces/torques are given in the task
space of the manipulator, it is desirable that the
input position vector will be given in these
coordinates too. Then, using the Resolved
Acceleration Position Control (Luh et al., 1980),
the accelerations of the manipulator in the task
space should satisfy

˙̇X = ˙̇Xd + Kv (Ẋd − Ẋ) + Kp (Xd − X), (4)

where Xd  is desired position/orientation vector in
the task space, Kv = diag(Kv,1, ..., Kv,6 )  and
Kp = diag(Kp,1, ..., Kp,6 ) are diagonal matrices.
By means of the choice of coefficients Kv, j and Kp, j
it is possible to achieve the desirable dynamic
behaviour of the manipulator. Using expressions (2)
and (4), from (3) it follows:

˙̇q = −Kvq̇ + J−1(q)[ ˙̇Xd + KvẊd

     + Kp (Xd − X) − J̇(q)q̇].
(5)

On the base of expressions (1) and (5), using the
desired and measured values, the necessary input
torques for the each joint of the manipulator can be
calculated.

3. VARIABLE STRUCTURE FORCE
CONTROLLER

Practically, the force controller development
shows that the integral control law and, perhaps,
some filtering algorithms are necessary in order to
receive the appropriate accuracy while the force
control. The presence of an integrator in the force
controller leads to a zero steady state error in the
case of a constant reference force (Ohto and Mayeda,
1991; Volpe and Khosla, 1992). The filtering
algorithms are necessary because of noise in the
force/torque measurements. While the force
controller development the mathematical models
of the manipulator, its environment and the force
sensor are necessary. As it is seen from expressions
(1) and (5), these models are very complex; e.g. the
full arm-sensor-environment dynamics is described
by the differential equations of the forth order
(Eppinger and Seering, 1986). It is obviously, that
the accurate models are very difficult to create as
well as to on-line implement.

Using the named above substantially necessary
parts, we develop the non-linear force controller,
based on the VSS theory. The known advantage of
such systems is the possibility of their successful
work without the accurate dynamic models of a
manipulator and its environment; only the borders
of the dynamic parameters must be known. In
accordance with the VSS theory the switching
hypersurfaces in the internal for the force
controller coordinates are formed. The control must
maintain the system to move to and, further, to stay
at the switching hypersurfaces. In this case there is a
sliding mode in the system, and the system is
described by the hypersurface equations. The
coefficients of these equations may be found so that
the desired dynamic properties of the whole system
are achieved.

Using the VSS theory the switching hypersurfaces
are formed in the (fe, j , ḟe, j ,ω j )  - coordinates of the
force controller as

h j = Ts, jḟe, j + fe, j − Ks, jω j , j = 1, ..., 6, (6)



where fe, j = fd, j − f j  is force/torque error, i.e. the
difference between the desired (reference) and the
real  contact  force/torque respectively,
ḟe, j = dfe, j dt , Ts,j = const , Ts,j > 0 , Ks,j = const ,
Ks,j > 0 , ω j = K i, j

−1Ẋf , j  is internal coordinate of the
force controller, K i,j = const, K i,j > 0  and Ẋf , j  is
derivative component of the output vector
Xf = (Xf ,1, ..., Xf ,6 )T  of the force controller.
Then, expression (6) may be written in the vector
form as

h = Tsḟe + fe − Ksω, (7)

where:

h = (h1,  ...,  h6 )T , Ts = diag(Ts,1, ..., Ts,6 ),

fe = (fe,1, ..., fe,6 )T , ḟe = (ḟe,1, ..., ḟe,6 )T ,

Ks = diag(Ks,1, ..., Ks,6 ) , ω = (ω1, ..., ω6 )T .

There are many applications where the manipulator
must produce desired contact forces/torques fd ,
given in the task space, when the manipulator moves
along the prescribed trajectory or when the position
of the gripper is given constant. In this paper we
consider the case when the desired position of the
manipulator as well as the desired forces/torques
are constant during contact with the environment.
One should note that the proposed force control
algorithm is only valid in case of contact of the
manipulator with the environment. This structure is
neither thought to work for all control conditions,
i.e. like impedance control (Hogan, 1985) nor valid
for impact control (Volpe and Khosla, 1991).

For the measured forces/torques, as it was shown by
Shimura et al. (1991), one can write

fm (s) =We (s)X(s), (8)

where fm = (fm,1, ..., fm,6 )T  is vector of the
force/torque measurements,
We (s) = diag(De,1s + Ke,1, ..., De,6s + Ke,6 ) , De, j
and Ke,j  are viscosity and spring coefficients
respectively. Since there is a noise in the force
measurements, one should use a filter, e.g. with the
transfer function of the first order

Wf (s) = diag(
1

Tf ,1s + 1
, ...,

1
Tf ,6s + 1

), (9)

as it is shown in Fig. 2. As the steady state error
must be null, an integrator is introduced. It is
described by the transfer function

Wi (s) = diag(
K i,1

s
, ...,

K i,6

s
). (10)

Then, the second filter with the transfer function

W(s) = diag(
1

T1s + 1
, ...,

1
T6s + 1

), (11)

is situated before the integrator. In this way, the
resulting control scheme with non-linear force
controller is presented in Fig. 2, where the parts of
the controller with denotations

Wh (s) = diag(Ts,1s + 1, ..., Ts,6s + 1) , (12)

F(h) = diag(uosign(h1),  ...,  uosign(h6 )),

uo = const,  uo > 0.
(13)

correspond with the idea of the sliding mode
control. In the case of the given fixed position of the
gripper in the Cartesian coordinates and the
Resolved Acceleration Position Control (Luh et al.,
1980), the transient processes relative to the task
coordinates are monotonous and are described by the
second order differential equation (4) (An et al.,
1988). The second Lyapunov method is applied to
analyze the existence of the sliding mode in the
system and its stability (Utkin, 1992). The
following Lyapunov function candidate is
considered

V = 1
2

hTh . (14)

In accordance with the second Lyapunov method the
system is stable when V ≥ 0  and V̇ ≤ 0 . Using (14),
one can receive

V̇ = hTḣ. (15)

From expression (7) one can write

ḣ = Ts
˙̇fe + ḟe − Ksω̇. (16)

Setting Ts, j = Tf , j , j = 1, ..., 6, from equation (16)
one can receive for the control scheme of Fig. 2:

ḣ = Tf
˙̇fd + ḟd − (De

˙̇X − KeẊ) − Ksω̇ . (17)

where

Tf = diag(Tf ,1, ..., Tf ,6 ) ,

De = diag(De,1, ..., De,6 ) ,

Ke = diag(Ke,1, ..., Ke,6 ) .

In the case of contact of the manipulator with the
environment the desired position/orientation vector
is set null (the desired contact was achieved). The
position/orientation error vector of the manipulator
in the task space is denoted as e = Xf − X .
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Fig. 2. Hybrid position/force control scheme with variable structure force controller

As it follows from equation (10) and Fig. 2,

ω = K i
−1Ẋf = K i

−1(ė + Ẋ). Setting T = Kv
−1,  where

T = diag(T1, ..., T6 )  and setting

Ke = (De + KsK i
−1)Kv (18)

by means of the choice of coefficients Ks,j ,
expression (17) can be rewritten as

ḣ = Tf
˙̇fd + ḟd − (De + KsK i

−1)z

− (De + KsK i
−1)Kpe − KsK i

−1˙̇e,
(19)

where

z = ˙̇Xf + KvẊf .

(20)

Since z = F(h), from (19) with the use of (4) it
follows for the constant desired forces/torques

ḣ = −(De + KsK i
−1)F(h)

+ (De˙̇e + Keė).
(21)

Further, it is also supposed that the following
conditions are provided:

uo >
|De, j˙̇e j + Ke, jė j |

De, j + Ks, jK i, j
−1 , j = 1, ..., 6 . (22)

In the case of the Resolved Acceleration Position
C o n t r o l  f o r  t h e  m a n i p u l a t o r  t h e
position/orientation, velocity and acceleration
errors aspire to zero, and De,j , Ke,j  are limited
(Shimura et al., 1991). In this way, conditions (22)
may be obviously provided. Then, the first
derivative of the Lyapunov function is

V̇ = −uo (
j

∑ De, j + Ks, jK i, j
−1)| h j |

+ (De, j˙̇e j + Ke, jė j )
j

∑ h j ≤ 0.
(23)

In accordance with the second Lyapunov method

expression (23) proves the existence of sliding
mode for the system and its stability.

4. EXPERIMENTAL RESULTS

The developed variable structure force controller
was implemented on the PUMA 200 manipulator
system, used in the project KAMRO - Karlsruhe
Autonomous Mobile Robot (Damm et al., 1993).
To achieve a high environmental stiffness, a metal
cone was fixed to the end-effector of the
manipulator and a metal contact plane was used. The
experimental setup is presented in Fig. 3.

Fig. 3. Experimental setup

The control system is implemented on a VMEbus-
based multiprocessor system. In its current state it
consists of the following components:
• one 68040-CPU board for the Cartesian control

and trajectory calculation of the manipulator,
• two 68000-CPU boards, each controlling three

joints of the PUMA 200 robot,
• one sensor interface board for the interfacing to

the force/torque sensor and gripper,
• one memory board for the communication and

synchronisation of the CPU boards,



• one 68020-CPU board for the communication via
Ethernet and BITBUS.

The sampling time of the force controller is mainly
determined by the time requirements of the
force/torque measurement and the computational
demands, so that the Cartesian cycles take more time
than cycles of the underlaying position controller.
Because of the effect of the sampling period on
tracking performance (Tarn et al., 1993), both
sampling times were individually minimised. To
avoid the problems of asynchronous control, the
force control period was chosen 10.6 ms, six times
longer than the position control period.

One important requirement for force control is the
fixed time delay of the measurement. The measuring
time is determined by the force pre-processing unit
and assumed to be constant. Hence, the delay depends
on the moment of triggering. A constant time delay
is guaranteed by accessing the hardware system
clock of the joint controller to trigger the force
measurement. Another demand is that the force
values must be independent from the current
manipulator motion. Therefore, a simplified
dynamic model of the sensor with a flanged gripper
is used. This model considers the actual orientation
of the tool centre point relative to the gravitation
vector, and the actual acceleration of the tool centre
point.

The experiments were carried out when the vertical
force of 3 N was preliminary given at the desired
position of the environment. Then, the force was
increased to 6 N in the vertical direction. The forces
for the horizontal directions were given null. For
the developed non-linear force controller an
acceptable transient process was achieved by tuning
experimentally the parameters of the switching
hypersurfaces. The obtained experimental results
are presented in Fig. 4.
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Fig. 4. Transient process for the force controller with
discontinuous control

These results show that the control system is stable
when the developed variable structure force
controller was used for the hybrid position/force
control. The parameters of the force controller were
chosen to receive the fast transient process. For the
case of Fig. 4 the transient period is about 2.1 s.

The possibility to decrease the "chattering"
occurring during the sliding mode, because of the
switching, i.e. discontinuous control, was
investigated too. The discontinuous control with
sign(hj) functions was replaced by applying the
continuous control, formed with the help of the
function considered by Harashima et al. (1986):

cont(h j ) = h j / (|h j |+δ j ), (24)

where δ j = const , δ j > 0 . Further, the following
controls were applied:

z j =|fe,j |cont(h j ). (25)

This control algorithm was studied experimentally.
The obtained results are presented in Fig. 5. As it is
seen, this allowed to improve the accuracy of the
system and its quickness - the transient process is
about 1.4 s.
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Fig. 5. Transient process for the force controller with
continuous control

5. CONCLUSION

For the hybrid position/force control for robotic
manipulators the development of variable structure
force controller was investigated. The substantially
necessary parts (integrator and filters) and the non-
linear control algorithm were used to form the
structure of the force controller. The stability of
the developed non-linear force controller was
analyzed by means of the second Lyapunov method.



It allowed to find the appropriate parameters of the
controller to provide its stability. The final
parameters were found by means of the experiments,
when the developed non-linear force controller was
implemented for the hybrid position/force control
of the PUMA 200 manipulator. The obtained
experimental results showed that the developed
force controller allows to receive fast and accurate
operation of the system.
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