
Fusion of Telemetric and Visual Data from Road Scenes

with a Lexus Experimental Platform

Igor E. Paromtchik, Mathias Perrollaz, Christian Laugier

Abstract— Fusion of telemetric and visual data from traffic
scenes helps exploit synergies between different on-board sen-
sors, which monitor the environment around the ego-vehicle.
This paper outlines our approach to sensor data fusion,
detection and tracking of objects in a dynamic environment.
The approach uses a Bayesian Occupancy Filter to obtain a
spatio-temporal grid representation of the traffic scene. We have
implemented the approach on our experimental platform on a
Lexus car. The data is obtained in traffic scenes typical of urban
driving, with multiple road participants. The data fusion results
in a model of the dynamic environment of the ego-vehicle. The

model serves for the subsequent analysis and interpretation of
the traffic scene to enable collision risk estimation for improving
the safety of driving.

I. INTRODUCTION

Sensor fusion has been used successfully in automotive

applications [1], [2], [3], [4]. This paper focuses on data

fusion from telemetric sensors (lidars) and stereo-vision by

means of the Bayesian Occupancy Filter (BOF) [5], [6]. The

environment is represented by a grid [7], [8], and the BOF

provides to assign probabilities of cell occupancy and cell

velocity for each cell in the grid. The preprocessing of stereo

images results in a disparity map. The probabilistic models

of a lidar and a stereo camera are used.

The data fusion is performed in the BOF with the proba-

bilistic grids computed from the real data from the lidars

and stereo-vision. The clustering and tracking algorithm

identifies individual objects in the scene in front of the

ego-vehicle [9]. The data fusion, detection and tracking are

required for estimation and prediction of collision risk for

the ego-vehicle [10] and are integrated in our conceptual

framework for analysis of dynamic scenes [11].

II. BAYESIAN SENSOR FUSION

The Bayesian Occupancy Filter (BOF) is used for data

fusion from the lidars and stereo-vision. The BOF operates

with a four-dimensional grid representing the environment.

Each cell of the grid contains a probability distribution of

the cell occupancy and a probability distribution of the cell

velocity. The probabilistic models of a lidar and a stereo

camera are developed, in order to compute occupancy grids,

which are used as observations for the BOF.

A. Sensor Models

The lidar model is beam-based [8]. It includes four layers

of beams and assumes each beam to be independent. We
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build a probabilistic model for each beam layer indepen-

dently. The stereo camera is assumed in a “rectified” geomet-

rical configuration, that allows us to compute a disparity map,

which is equivalent to a partial three-dimensional represen-

tation of the scene. The disparity map computation is based

on the double correlation method [12], which has two major

advantages: a better matching over the road surface and

an instant separation between “road” and “obstacle” pixels,

without using any arbitrary threshold. The computation of

the occupancy grid is directly performed in the disparity

space associated with the disparity map, thus, preserving the

intrinsic precision of the stereo camera.

The partially occluded areas of the scene are monitored by

means of our visibility estimation approach. Consider a cell

c in the u-disparity plane. Let P (Cc) denote the confidence

of c being occupied, P (Vc) be the probability of c being

visible, and P (Rc) be the confidence of c containing the

road surface. The occupancy probability of cell c is

P (Oc) = [P (Vc) · P (Cc) · (1 − Pfp)
+P (Vc) · (1− P (Cc)) · Pfn

+(1− P (Vc)) · 0.5 ] · (1− P (Rc)),
(1)

where Pfp and Pfn are the false positive and false negative

probabilities of the stereo matching algorithm. Then, the u-

disparity occupancy grid is transformed into a Cartesian grid

for its use in the BOF. This probabilistic model of the stereo

camera is described in detail in [13].

B. Fusion and Filtering

At each time step, the probabilities of cell occupancy and

cell velocity are estimated by means of Bayesian inference

with the BOF [5], [6]. This is a recursive algorithm contain-

ing two steps: prediction and estimation (correction). The

prediction computes the a priori distribution, and the esti-

mation uses the prediction result and the current observations

from the sensors to compute the a posteriori distribution.

Let Zi = Zt
i denote an observation from a sensor i at

time t, and Z = [Z1 · · ·ZS ] be a set of observations from S

sensors. Let P (Oc Ac) denote the a priori probability for a

cell c, where P (Oc) is the occupancy probability and P (Ac)
is the antecedent (velocity) probability. In this context, the

prediction step propagates the probability distributions of cell

occupancy and cell velocity of each cell and obtains the

prediction P (Oc Ac). Let P (Oc Ac |Z) denote the a pos-

teriori probability obtained according to the observations.

In the estimation (correction) step, P (Oc Ac |Z) is updated

by taking into account the observations Z yielded by the S

sensors.
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At the input of the filter, the occupancy grids provided by

the sensors are merged according to the following equation:

P (Z |Oc Ac) =

S∏

i=1

P (Zi |Oc Ac), (2)

and the a posteriori probability estimate is obtained as

P (Oc Ac |Z) =
P (Oc Ac) · P (Z |Oc Ac)

P (Z)
, (3)

where P (Z) is a uniform probability distribution. The prob-

ability of cell occupancy P (Oc |Z) and the probability of

cell velocity P (Ac |Z) are computed by marginalization

and are used for the next prediction step. Note that the

prediction step assumes a constant velocity of objects, and

an internal parameter of the BOF serves to take into account

the corresponding prediction error, when a constant velocity

assumption does not hold.

III. FAST CLUSTERING AND TRACKING

Our Fast Clustering and Tracking (FCT) algorithm serves

to retrieve an object level representation from the estimated

grids and to track the objects’ trajectories [9]. It operates at

an object representation level and contains three modules: a

clustering module, a data association module, and a tracking

and tracks management module.

The clustering module combines the probabilities of the

cell occupancy/velocity estimated by the BOF with the

prediction for each object being tracked by the tracker, i.e.

a region of interest (ROI). We then try to extract a cluster

in each ROI and associate it with the corresponding object.

There could be a variety of cluster extracting algorithms,

however, we have found that a simple neighborhood-based

algorithm provides satisfactory results: the eight-neighbor

cells are connected according to an occupancy threshold

and the velocity distribution is employed to distinguish the

objects that are close to each other but move at different

velocities. The output of this module leads to three possible

cases, as shown in Fig. 1: (i) no object is observed in the ROI,

(ii) unambiguous observation with one and only one cluster

extracted and implicitly associated with the given object, and

(iii) ambiguous observation, where the extracted cluster is

associated with multiple objects.

Fig. 1. The possible cases of clustering result: no object observed,
unambiguos observation, and ambiguous observation

The data association module aims to solve the problem of

ambiguous observation (multiple tracked objects, overlapped

ROIs) in the clustering module. Assume there are N objects

associated with a single cluster, where N is a number we

know exactly. The cause of the ambiguity is twofold: (i)

numerous objects are very close to each other and the

observed cluster is the union of observations generated by

N different objects, and (ii) N different objects correspond

to a single real object and the observations must be merged

into one.

We employ a re-clustering strategy to deal with the first

situation and a cluster merging strategy for the second one.

The re-clustering aims to divide the cluster into N sub-

clusters and associate them with the N objects, respectively.

Because the number N is known from the prediction step,

a K-means algorithm is applied [14].

The cluster merging is based on a probabilistic approach.

Whenever an ambiguous association Fij between two tracks

Ti and Tj is observed, a random variable Sij is updated

to indicate the probability of Ti and Tj being parts of

a single object. The probability values P (Fij | Sij) and

P (Fij | ¬Sij) are the algorithm parameters which are

constant with regard to i and j. Similarly, the probability

P (Sij |¬Fij) is updated when no ambiguity between Ti

and Tj is observed. Then, by thresholding the probability

P (Sij), the decision of merging the tracks Ti and Tj can

be made by calculating the Mahalanobis distance between

them. Now we arrive at a set of clusters which are associated

with the objects being tracked without ambiguity. Then, the

tracking and tracks management module uses a general tracks

management algorithm to create and delete the tracks, and

use a Kalman filter to update their states [15].

IV. EXPERIMENTAL RESULTS

A. The Lexus Platform

Our experimental plaform is built on a Lexus LS600h

car, shown in Fig. 2. The car is equipped with a TYZX

stereo camera [16] situated behind the windshield, two IBEO

Lux lidars [17] placed inside the frontal bumper, and an

Xsens IMU combined with GPS [18]. The on-board DELL

computer with an NVidia graphics processing unit (GPU) is

used for collecting and processing of the sensor data and

the risk assessment. The visual and telemetric data are used

concurrently for a preliminary qualitative evaluation.

Fig. 2. Our experimental platform on a Lexus car, with a TYZX stereo
camera behind the windshield and two IBEO Lux lidars inside the frontal
bumper
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The TYZX stereo camera has a baseline of 22 cm, a res-

olution of 512x320 pixels, and a focal length of 410 pixels.

The IBEO Lux lidar provides four layers of up to 200 impacts

at a sampling period of 20 ms. The maximum lidar detection

range is about 200 m, the angular range is 100◦, and the

angular resolution is 0.5◦. We use two lidars to monitor the

area in front of the car. The observed region is 40 m in

length and 40 m in width, a maximum height is 2 m, and

the cell size of the grid is 0.2x0.2 m.

The user interface is based on the Qt library and it provides

access to several parameters of the system, e.g. filtering,

disparity computation, BOF. The Hugr middleware [19]

allows recording and synchronizing of the data from different

sensors as well as replay capability.

Note that the data fusion with the BOF requires calibration

of the extrinsic parameters of the sensors in the common

coordinate system. Thanks to the BOF and a grid resolution

with a cell size of 0.2x0.2 m, a slight calibration error has

little impact on the final grid after data fusion. The following

parameters are set for the occupancy grid computation from

stereo-vision: Pfp = 0.01 and Pfn = 0.05.

B. Occupancy Grids and Sensor Data Fusion

We discuss our concept on an example of the data obtained

with our Lexus platform on urban roads with multiple traffic

participants. Fig. 3-a shows an image of such a traffic

scene, when approaching a crossroad. The BOF is used to

merge the data from the on-board sensors, which monitor the

environment: two lidars (Fig. 3-b and Fig. 3-c) and the stereo

camera (Fig. 3-d). This results in a grid representation of the

local environment in front of the car. The grid is shown in

Fig. 3-e, where the black color indicates the occupied areas,

the white color corresponds to the unoccupied space, and

different levels of the grey intensity represent the occupancy

probability of other areas. The occupancy grid in the u-

disparity plane, corresponding to the data in Fig. 3-d is

shown in Fig. 3-f. The yellow rectangles in Fig. 3-a show

the objects, which are correctly detected and tracked: a bus,

a bicycle, cars, and the infrastructure elements.

One of the advantages of using the BOF for a grid repre-

sentation in comparison with the static grid-based approaches

is the estimation of velocities of cells in the BOF. Since the

velocity estimation is taken into account in the clustering

stage, it results in distinguishing between two objects, which

move close to each other at different velocities, e.g. a bicycle

and a car in the left half of Fig. 4-a are separated correctly

into two different clusters.

A limitation of our current implementation is concerned

with a constant velocity assumption, that does not hold

during a sharp turn. This assumption can lead to over-

segmentation of objects, e.g. the cells corresponding to the

front of the car in Fig. 4 have an estimated velocity which

differs from that of the rear of the car. Nevertheless, a

solution is to increase the frequency of data processing, e.g.

by means of implementing the BOF in hardware as a system-

on-chip (SOC), or to estimate the motion of the ego-vehicle

by means of its proprioceptive sensors.

a

b c

d e

f

Fig. 3. Approaching a crossroad: (a) a traffic scene image, where the
rectangles indicate the detected and tracked objects, (b) a grid representation
from the left lidar (lower scanning layer), (c) a grid representation from the
right lidar (lower scanning layer), (d) a grid representation from stereo-
vision, (e) a grid representation after data fusion, (f) an occupancy grid in
the u-disparity plane
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a b c d e

Fig. 4. Entering a crossroad: (a) a traffic scene image, where the rectangles indicate the detected and tracked objects, (b) a grid representation from
a left lidar, (c) a grid representation from a right lidar, (d) a grid representation from stereo-vision, (e) a grid representation after data fusion

Fig. 5 gives an example of telemetric data obtained with

the two on-board lidars, where the laser impacts are plotted

onto the camera images (red dots correspond to the left lidar,

and the green dots correspond to the right one). There are

four scanning layers in the vertical direction for each lidar.

The laser impacts with the road are filtered out thanks to the

fusion of the multiple layers, as seen in Fig. 6-e. The lidars

have overlapping viewfields, that provides to detect correctly

the distant objects, e.g. two pedestrians in Fig. 6.

Fig. 5. An example of the multi-layer telemetric data represented by laser
impacts (colored dots) from the two on-board lidars

Note that the height of the rectangles in Fig. 3-a and

Fig. 4-a is set empirically to 1.8 m for the visualization

purpose. The constant height can become a problem to

visualize tall objects, e.g. a bus in the scene, or in the case of

small objects. The width of rectangles equals twice the lateral

standard deviation σxx of the objects positions obtained from

the FCT algorithm. This provides a correct visualization of

the width of frontal objects, while it is not currently adapted

to visualize non-frontal objects, e.g. the bus in Fig. 7-a.

A motorcycle and a bicycle behind the bus are correctly

detected and separated because of the velocity estimation,

as seen in Fig. 7-e.

Various objects are present in the traffic scene in Fig. 8,

where the bus is detected and is separated into two objects

because the lidars’ data is affected by laser impacts with the

rear wheels of the bus, and the stereo-vision does not provide

sufficient accuracy at such a large distance. Note that the

accuracy of lidars remains constant over the distance, while

the accuracy of stereo-vision becomes poor at long range

(i.e. telemetric data is given more confidence relative to the

visual information in this case). One can observe that two

pedestrians, crossing the street in Fig. 8, are detected as a

single object because they walk together at the same speed.

Fig. 9 shows another advantage of data fusion, that is due

to a broad viewfield provided by the two lidars. While the

truck in the right side of the scene is hardly visible for the

stereo camera, it is still detected from the lidars data, as seen

in the grid representation after data fusion in Fig. 9-e.

The above results also show that the effect of stereo-

vision is significantly lower than that of the lidars on the

resulting occupancy grid. This is due to a perception range

constraint because of a small baseline of the stereo camera.

Nevertheless, the stereo-vision remains valuable because

of its potential for objects recognition, classification, and

visual tracking. The accuracy of stereo-vision is sufficiently

high at distances upto 10 m to enable detection of objects.

Additionally, stereo-vision is an inexpensive alternative to

multi-layer lidars for production cars.

C. Computation time

Two critical stages of the sensor fusion have been imple-

mented on GPU: the BOF and the stereo image processing,

including matching and occupancy grid computation. In com-

parison to the high computational cost of the BOF, the cost of

the FCT algorithm can be neglected [6], [9]. The BOF being

designed to be highly parallelizable, it runs on GPU NVidia

GeForce GTX 480 in 20 ms, without specific optimization.

The complete processing chain for a lidar (including the BOF

and the FCT algorithm) is capable of running at 20 Hz. The

implementation of our stereo image processing on the GPU

allows us to perform the matching process in 6 ms and the

occupancy grid computation in 0.1 ms.
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a b c d e

Fig. 6. Advancing at a crossroad: (a) a traffic scene image, where the rectangles indicate the detected and tracked objects, (b) a grid representation from
a left lidar (lower scanning layer), (c) a grid representation from a right lidar (lower scanning layer), (d) a grid representation from stereo-vision, (e) a
grid representation after data fusion

a b c d e

Fig. 7. Leaving a crossroad: (a) a traffic scene image, where the rectangles indicate the detected and tracked objects, (b) a grid representation from a
left lidar (lower scanning layer), (c) a grid representation from a right lidar (lower scanning layer), (d) a grid representation from stereo-vision, (e) a grid
representation after data fusion

a b c d e

Fig. 8. Moving on a straight road: (a) a traffic scene image, where the rectangles indicate the detected and tracked objects, (b) a grid representation from
a left lidar (lower scanning layer), (c) a grid representation from a right lidar (lower scanning layer), (d) a grid representation from stereo-vision, (e) a
grid representation after data fusion

a b c d e

Fig. 9. Waiting at a pedestrian crossing: (a) a traffic scene image, where the rectangles indicate the detected and tracked objects, (b) a grid representation
from a left lidar (lower scanning layer), (c) a grid representation from a right lidar (lower scanning layer), (d) a grid representation from stereo-vision,
(e) a grid representation after data fusion
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V. CONCLUSION

We discussed our approach to sensor fusion of telemetric

and visual data with the BOF for a grid representation of

the traffic environment for the ego-vehicle. The approach

was implemented and tested on our experimental platform on

a Lexus car. The experiments were conducted in scenarios

typical of urban driving, with multiple road participants.

The examples of data fusion were discussed to explain the

advantages and indicate potential pitfalls. The experimental

results proved the feasibility and relevance of our approach.

The probabilistic approach to sensor fusion and environment

modeling is part of our conceptual framework, which serves

to estimate and predict collision risks for the ego-vehicle.

The experimental platform will be used to create a database

to allow for benchmarking, quantitative evaluation and com-

parison of alternative approaches.
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