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Abstract

The objective of these notes is to introduce a spline-interpolation to students in a course of robot
control systems. The Lagrange interpolation formula and polynomial spline-interpolation are con-
sidered. They are extended by the modified cubic spline-interpolation developped by the author.
The students obtain practical knowledge of polynomial spline-interpolation and its application for
robotics.

1 Introduction

The interpolation methods are developped to approximate functions given by their discrete val-
ues [1, 2]. Initially, the interpolation methods were based on rational fractions and polynomial
functions. The interpolation task is specified as follows. A function ¢(t),t € [T}, T], T1, To € R
is given by a set of n + 1 node points q(tx) = qx, T1h = to < t1 < ... <t, =Ty, k=0,1,...,n.
The objective is to compute a function Q(t), t € [T, 15| such that

Q(tk):qka kZOala"'an: (1)

i.e. a function Q(t) passes through the node points ¢(tx), &k = 0,1,...,n, as it is illustrated by
Fig. 1. Obviously, an infinite number of such functions can be obtained. However, a solution
becomes unique if a polynomial P,(t) of degree at most n € N is formed, as it is explained in
in section 1.1 on an example of a Lagrange interpolation formula (there are also interpolation
formulae of Newton, Gauss, Bessel, Everett and Stirling).

1.1 Lagrange interpolation formula

Let us consider one of the classical interpolation methods based on a Lagrange interpolation
formula. Let functions R;(t) be such that
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Figure 1: Graphical interpretation of interpolation

where i =0,1,...,n, k=0,1,...,n. The following functions satisfy to the condition (2):
Ri(t) =ci(t —to)(t —t1) ... (t —tiz1) (t — tin1) ... (t — tn). (3)
The equation (3) is rewritten for ¢ :=t¢; as
Ri(t;) =ci(ts —to) (ti —t1) - - (6 — tic1) (s — tig1) - - (& — tn) =1, (4)

and the coefficients ¢; of R;(t) are obtained from (4) as

1
C = : 5
(i —to) (i —th) e (G — i) - (i — 1) (5)
The function R;(t) is computed according to the following expression:
t—tg) (t—t1)... (T —tim1) (E—Tigq) ... (=1
Rz(t) — ( 0) ( 1) ( 1 1) ( Z+1) ( n) ' (6)
(tz — t()) (tz — tl) e (tz — ti—l) (t, — ti+1) e (ZL,z — tn)
The interpolation polynomial is given by a Lagrange interpolation formula:
n
Pa(t) =) ai Ri(t) (7)
i=0
and it provides to approximate a function ¢(¢) given by its discrete values ¢; = ¢(¢;), i = 0,1,...,n.

Example. Find an interpolation polynomial for a function ¢(t) given by its discrete values
00 = q(to) = q(1) =10, q1 = q(t1) = ¢(3) = 12, g2 = q(t2) = ¢(5) = 14.

The function ¢(t) is given by a set of 3 points, i.e. n = 2 in this case. Let a polynomial P;(t)
be formed according to the Lagrange interpolation formula (7):

(t—t1)(t —t9) (t—to)(t —to) (t—to)(t —t1)
(fo—t)(to —t2) " (b —to)(ts —t)  * (ta—to)(ts — t1)

Py(t) = qo (8)
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Substituting qo, g1, g2, to, t1 and t, into (8) it is obtained:

(t—3)(t—5) (t—1)(t—5) (t—1)(t—-3)
e T T I T T R R CR VG

Remark. As it follows from (6) and (7), degree of the Lagrange interpolation is defined by a
number of node points of the interpolated function. This results in an increase of computations
for a large number of node points. Also, a polynomial (7) depends strongly on values of all node
points such that a small displacement of one node point can lead to a substantial change of the
interpolation curve, i.e. the accuracy becomes low if there is a large number of node points. On the
other hand, interpolation polynomials of high degrees oscillate considerably between node points.
Other interpolation methods, namely various spline-interpolation methods have been developed.

=...=t+09.

1.2 Polynomial spline-interpolation

Definition. A polynomial function Q,,(t) of degree at most m € N
m .
Qum(t) = Pem(t) = aro + apit + apat® + ...+ apmt™ = D agit!, ¢ € [t trr ], (9)
=0

defined fort € [T1, Tr], Ti =to <t < ...<t, =Ty, T1, T, € R is called a spline-function if
PO (te1) = PO a(tesn),  i=0,1,...,m—1, k=0,1,...,n—1, (10)

where n + 1 denotes a number of node points.

A linear, quadratic or cubic splines are obtained from (9) for m = 1, m = 2 and m = 3
respectively. The spline can be described as a function which is composed of polynomials according
to a specified rule where a polynomial Py, (t) is formed for each interval [y, tx1 |-

Linear spline-functions. Let us consider a function

t—tg
hy

Q1(t) = ago + ara t € [th, tr ], (11)

where hy = tgy1 — 1k, k=0,1,...,n— 1 and the boundary conditions are:

Q1(tk) = i,
{ Q1 (tkt1) i Qk+1- (12)

The coefficients of a spline @1 (t) are obtained from the equations (11) and (12):

akO = qk, (13)
k1 = Qk+1 — k-

The equations (11) and (13) provide to calculate a linear spline-function for each interpolation
interval [#4, tg41], K =0,1,...,n— 1. A function Q:(t) is continuous for ¢ € [y, ¢, ], however, its
first derivative Q1(t) is piece-wise constant with discontinuity at node points.
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Quadratic spline-functions. A quadratic spline-function is

t—t t—tr\?
Qa(t) = ako + apa Pt g ( k) ;L€ [t bt ], (14)
I hy
where hy = tg4 1 —tg, k=0,1,...,n — 1 and the boundary conditions are:
QZ(tk) = {4k,
Q2 (k1) = Qrt1, (15)
Q2(tx) = G-

The conditions (15) ensure that a function Qo(t) takes the values g = q(tx), k¥ = 0,1,...,n of
the interpolated function ¢(t) at the node points, and that first derivative Q2(¢) is continuous.
The spline coefficients are obtained from (14) and (15):

ako = gk,
ak1 = hige, (16)
k2 = Qr+1 — Gk — hiq-

In order to calculate the spline-function at the subsequent interpolation intervals [that1, treo],
[tri2, tkrs], etc. the appropriations of a type ¢ := Q2(tx+1) are to be made while

: i +2ak2 2 (Qr1 — Q) — Pl

t = = 17
Q2(tk+1) I I (17)
Note that the second derivative QQ(t) is discontinuous at node points.
Cubic spline-functions. A cubic spline-function is
3 t—t\?
Qs(t) = ay; ( ) ;L€ [tk try1 ], (18)
3=0 hi
where hy = tg11 — tg, K =0,1,...,n — 1 and the boundary conditions are:
@3(te) = qr, Q3(tet1) = Grt1,
Q3 (k) = dx, (19)

Qs (tk) = G-

The conditions (19) ensure that a function Q3(t) takes the values ¢, = q(tx), k¥ = 0,1,...,n
of the interpolated function ¢(¢) at the node points, and that first and second derivatives Qs(t)
and Q3(t) respectively are continuous. The coefficients ar; of a cubic spline-function (18) are
derived from (18) and (19):

aro = 4k,
ak1 = hiqr,

. 20
ak2 = b3 Gr/2, (20)
k3 = Qo1 — Q6 — PpGr/2 — hide.



The first and second derivatives at ¢ = t;,, are:

: 3(qk+1 — qk)  Pwdp

Qs(trs1) = I -y 2 gy, (21)
. 6 - .. 6 q

Qa(trrr) = —(q’“; %) g4, I, (22)
k k

However, the cubic spline-function (18) and (19) has a “space delay” when interpolating a non-
monotonous function. This leads to oscillations of the spline between the node points and confines
an application area of this type of cubic spline-interpolation because of its low accuracy.

In order to eliminate this drawback, it is necessary to take into account not anly the adjacent
but also subsequent node points while forming the boundary conditions of the spline-function (18).
This allows to predict tendencies of the further behaviour of the interpolated function ¢(t) at the
node points and form the boundary conditions more adequately [3]. One should note that a
prediction depth may vary, but a “far” prediction is ineffective.

2 Cubic Spline-Interpolation with Prediction of
First Derivative

The objective is to compute a spline-function @,,(t) of degree at most m € N, t € [Ty, Ty,

Ti, T> € R such that this function passes through the given node points q(tx) = g, 71 = to <

th < ... <t, <Ty, k=0,1,...,n. The function @Q,,(¢) and its first derivative Qm(t) must

be continuous. The initial and final conditions are: Q,(T1) = qo, Qm(T1) = 0, Qum(Ty) = ¢n,
The general form of a polynomial spline-function is

n t—tp\?
Qm(t) = a, ( I ) ;€ [tr, trga ], (23)
§=0
where hy = tx11 — 1, K =0,1,...,n. The general continuity requirement for the derivatives until
order m — 1 inclusively at the node points is expressed as
QU(t) =¢9(ty), i=0,1,....,m—1. (24)

Note that Q,,(t) and its derivatives until degree m — 1 inclusively are continuous between the
node points because of the degree m of the polynomial (23).

A continuous spline-function and its first derivative is obtained for m = 3 in (23). The
continuity requirement (24) rewritten for ¢ = 0 and ¢ = 1 gives the boundary conditions which
provide to compute the coefficients ay; of (23):

{ @s(te) = gk, Qs(tet1) = qrs1,
Qs(tk) = Gk, Q3(trt1) = Grs1-

However, ¢xi1, K = 0,1,...,n — 1 in (25) is unknown; its estimation by means of prediction is
explained in section 2.1.

(25)



2.1 Prediction of first derivative

Let us substitute t — t; by ¢ and consider ¢ € [0, hy ] instead of ¢ € [y, tx41] in (23). Let
a prediction of ¢x 1, £ = 0,1,...,n — 2 be performed by means of a second-order polynomial

function ;
26
ZCJ (hk+hk+1> ’ (26)

where ¢t € [0, hy + hgs1]. This polynomlal is computed for the node points g, gx+1 and gxo,
k=0,1,...,n—2, while hy and hy,; are the time periods corresponding to intervals [0, A | and
[ hi, hg + hgy1] respectively.

The coefficients of QQy(t) (26) are obtained as:

¢ = 4k,
hy+hgi1)?
o = Ut (g, —g) - ity ez =40, 0
2

The first derivative of (26) is: , i
:  ¢j t -
Q) =Y 2 ( ) : (28)

521 P+ P \ e + P
and an estimate of ¢x.1, Kk =0,1,...,n — 1 is obtained as
. Piy1 — hy hy
hy) = ———F — @) + — ). 29
Q2(hx) hihrn (Grs1 — ar) hors (i + ) (Gr+2 — ar) (29)

2.2 Cubic spline-function with prediction of first derivative

A cubic spline-function is obtained from (23) for m = 3. Let ¢t —t; and ay; in (23) are substituted
by t and b; respectively:

3 t J
t):Z@(—) . telo, hy. (30)
=0 \hw
The coefficients b;, 7 = 0,1, 2,3 are obtained from the boundary conditions:
{ Q3(0) = Gk Qs(hk) = Qk+1, (31)
Q3(0) = Gr, Qs(hx) = Grt1,

where ¢y is estimated by means of the equation (29) as:

Qe+1 N QZ(hk)- (32)
Then, the coefficients of a cubic spline (30) are:
(Do =

b1 = hg G,
h (33)

hi+2h j
by = TR (i) — qp) — P o g (Gk+2 = ax) = 2 b G

hi1
2

h :
ety (k2 = k) + e G

hgt1

ba = __hgthga
[ 73 hit1

(Qk+1 — Qi) +
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In order to compute a spline-function (30) at the subsequent intervals [hgi1, hgio], & =
0,1,...,n — 2, the corresponding appropriations must be made after its computation for the
intervals [ hg, hgy1], £ =0,1,...,n— 1. This allows to repeat the computations independently on
a number of the node points.

3 Cubic Spline-Interpolation to a Virtual Running Point

Let us consider a cubic polynomial

3 .
NI
z(t) =) a; (T) , 0<t<T, (34)
§=0
where a; are real coefficients and 7" > 0 is an interpolation period. Let the boundary conditions
be
z(0) = x9, z(T) = 7,
{ #(0) = g0, #(T) = ir (35)

and Azr = 27 — 0.

Key idea. Let us study the case, when for ¢ > 0 the coeflicients a; are recomputed with a
sampling period T* such that Ty, < T* < T while Ty, > 0 and T, T, 7, Axy are constant. Let
the appropriations zg := z(kT*), o := ©(kT*), 1 := x(kT*) + Azp, k =1,2,... ensure the
continuity of x(¢) and %(¢) at the boundary between subsequent (k — 1) and k& computations [4].

The objective is to obtain a smooth function z(t) by interpolating from z(k7%*), k =0,1,2,...
to a given r, when
|zqg — z(KT*) | > | Az |, (36)

and ensure, that for a given x4 the following condition holds for n > k:
| g — z(nT™)| < g, (37)
where ¢ > 0 is a small constant, as well as
|E(8)| < Zmas, (38)

where ., > 0 is a given constant.
The recomputation of the coefficients a; terms in the proximity of the given z,:

|za — x(kT™) | < | Az, |, (39)

where Az, = Axs(Lg, Tmez) and | Azg | > | Azy|.

A name wvirtual running point can be used to indicate that each k-th interpolation step is
performed to a virtual point situated at a distance Axr and this point is shifted with a sampling
period T* in the direction of z,4, as it is illustrated by Fig. 2.

First derivative. When the coefficients a; are recomputed with the sampling period 7™, one

can derive from (34) and (35):
k—1

E(kT*) =bF g +c(1+ ) b), (40)

=1
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Figure 2: A virtual running point

where
b=1—47+372

A
c=6(1—T)T—$T—3(2—T)T:bT

and 7 = Z°. Because 0 < b < 1, according to [2]:

C

ey
ML =1

Let us denote Azp

v = T
Then, according to (41), (42) and (43), the following equation is obtained:

1-7r)v—3(2—7)i
lim s(k7) = SL =0 =32 =T dr
k—o0 4—-3T1

(45)

Because zr is an auxiliary constant in such computations, one can choose 7 = 0 and rewrite

(45) as
o 6(1—7)
*x\
dim (%) = =50

Hence, if v is computed as

4—-37

V= ——— Zg,
6(1—7)

the condition (37) is satisfied according to (46).

(46)

(47)



Second derivative. For an instant ¢ = KT™, 27 = 0 and recomputation of the coefficients a;
with the sampling period T*, one can obtain from (34), (35), (44) and (47):

F(kT) =

(4—-37)2q (4—37’

= A Ga— 4:b(kT*)) . (48)

1—7

From the equation (48) it follows, that a value of Z(¢) depends on a deviation between %4 and
#(t). Taking into account (37), one can conclude that this deviation has its extremal value at the
moment when a new 4 is given, i.e. in the beginning of the interpolation step. According to (48),
for given &4 and @(kT™), there can always be found such Azz # 0 that

| (KT*)] < Fma (49)

where Z,,,; > 0 is a given constant.

Recurrent equations. When the coefficients a; are recomputed with a sampling period T,
the equation (34) can be rewritten as

3 t— kT*\’
z(t) = ay, < - ) ; (50)
=0
where ¢t € [kT*, (k+1)T*], k=0,1,2,... and the coefficients are:
axo = x(kT*),
agy = ¢(kT*) T, (51)

a2 = 3 A$T — :cTT — QIE(kT*) T,
ags = —2 Azp + ip T + &(KT*) T.

The features of the developed motion generation are:
e z(t) and Z(t) are continuous,

e i(t) tends to a given value 4 and the speed of the convergence depends on the value of
AﬁET,

e i(t) is limited and tends to zero while %(¢) tends to Z,.

These features allow one to apply the method to various robotic tasks where trajectory generation
in real time is needed to control the motion of the mobile robots in a dynamic environment (e.g.
collision avoidance or tracking an object).

Simulation example. Let us compare the motion generation based on (34), (35) with the
approach based on (50), (51). An example of the motion generation based on (34), (35) is shown
in Fig. 3, where the boundary conditions are: o = £9 = ©r = 0 and 7 = 5 m. The maximal
velocity is set to 0.15 m/s.

The proposed approach to the motion generation based on (50), (51) and recomputation of
the spline coefficients with a sampling period T* is illustrated by Fig. 4 with the same boundary
conditions. The desired value of the velocity was ©4 = 0.15 m/s and Az = 0.15 m. As it is seen
from Fig. 4, the proposed method ensures a near trapezoidal profile of i(¢) that allows the total
time to be shortened in comparison with the case of Fig. 3.
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Figure 3: An example of motion generation without recomputation of the coefficients, where
1-z(t)in m, 2 - 2(t) in 10 m/s and 3 - &(t) in 0.1 m/s?

6 T T T T T T

0 5 10 15 20 25 30 35
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Figure 4: An example of motion generation with recomputation of the coefficients, where 1 - x(t)

in m, 2 - 2(t) in 10 m/s and 3 - Z(t) in m/s?
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