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Abstract—The article deals with the analysis and interpre-  an automated platooning system in the scope of the PATH
tation of dynamic scenes typical of urban driving. The key  program [1], or the automated parking systems at INRIA [2],
objective is to assess risks of collision for the ego-vehél We [3]. Recent promising results in more complex scenarios are

describe our concept and methods, which we have integrated .
and tested on our experimental platform on a Lexus car and a  the CityCars concept [4], the DARPA Urban Challenge [5],

driving simulator. The on-board sensors deliver visual, teemetric ~ [6], or the Google Cars [7].
and inertial data for environment monitoring. The sensor fusion Another approach to reduce driving accidents is to assist
uses our Bayesian Occupancy Filter for a spatio-temporal dd the driver in avoiding collisions, e.g. a parking assistaby

representation of the traffic scene. The underlying probaHistic . . . .
approach is capable of dealing with uncertainties when moding producing audible alarms to the human driver while the car

the environment as well as detecting and tracking dynamic approaches obstacles [8]. More advanced systems anécipat
objects. The collision risks are estimated as stochastic sables  the car motion on the parking lot and display the situation to

and are predicted for a short period ahead with the use of the driver during a human-driven parking [9]. Such warning
Hidden Markov Models and Gaussian processes. The software  giqnal5 along with the modification of velocity and steering

implementation takes advantage of our methods, which allovior le duri th ist the dri ¢ th
parallel computation. Our tests have proven the relevance rad angle auring the maneuvers assis € dniver to smoothly

feasibility of our approach for improving the safety of car driving. perform the maneuver while avoiding collisions. Other desi
allow for alerting the driver when drifting out of the traffene,

Index Terms—Intelligent vehicle, sensor fusion, probabilistc ~ OF Provide an adaptive cruise control function [10].
filter, collision risk, driver assistance. Assessing the risks of collision in real driving situatidas

a challenging problem. At present, the common measure of
collision risk is time-to-collision (TTC) [11]. It is caldated
by assuming all objects being detected, their positionagei
A. Automotive and technological context computed and their velocities remaining constant relatibe
Driving a car assumes some level of risk of collision in €go-vehicle. For a time horizon within a second on a straight
any traffic scenario. The modern technologies help mitifage  road, the TTC is used effectively in accident mitigationteyss
effects of accidents (e.g. seat belts, airbags, safetg,gaergy (€.g. pretension of seat belts) just before impact. However
absorbing frames) or reduce their likelihood (e.g. antklo becomes less efficient for the time horizon of a few seconds.
braking system, dynamic stability control). Concurrenthe Fig. 1 illustrates its limitation as the sole estimate ok.rif
exploitation of the synergies between mechatronics, drive  all of the cars are stopped at the intersection, as shown in
wire, perception, real-time data processing and commtioita Fig. 1-a, the TTC is calculated as infinite. Thus, a case of
facilitates the risk management by traffic participantsamiv  relatively high-risk (many accidents occur in intersestpis
zero-collision driving. The key problem is to correctly interpret estimated as very low-risk, i.e. this is a false negativee Th
the traffic scene by means of processing information from &ituation on a curved road in Fig. 1-b gives an example of the
variety of sensors. TTC calculated as very low, implying a very high risk. But
Improvement of driving safety remains a highly relevantbecause the most likely result is the both cars moving irrthei
topic, with significant accomplishments being reportednfr lanes, this case is a false positive, i.e. reporting very nigk
obstacle detection and driver warning to active resporae-le When in fact the risk is relatively low.
ing to modifying the driving parameters when a collision be- The above scenarios indicate that TTC alone is insufficient
comes imminent. Automated maneuvering represents a strorgs a risk indicator for managing complex situations. Thelroa
advantage over manual driving since it reduces the requiredontext (road shape, speed limit, intersection layout) etn
reaction time (in comparison to a human driver) to avoid col-add relevant information. Predicting the future actionsh@
lisions or mitigate their impact. Various successful audted  viors) of other traffic participants, like a car or a pedestri
maneuvers were reported, using world-first prototypes sisch in Fig. 1-a, can further improve estimation of collisionkris

I. INTRODUCTION



Collision Expected Due to TTC sensor fusion and uses models in order to estimate poten-
tial threats [34], [35], [36]. The information about the ca
geometry and the communication between the vehicles and
with the infrastructure provide to improve risk assessnjign,

[38]. In addition to the knowledge about an object detected a
a certain location at a specific time in the traffic scene, the
prediction of its likely future behavior leads to more adaigu
interpretation of its possible impact on the ego-vehiclg][1
[39], [40], [41].

Figure 1: Limitation of TTC as a risk measure: (a) under-
estimation of collision risk at intersection with stoppears;
(b) over-estimation of collision risk on a curved road.

C. Problem statement and approach

This article focuses on the probabilistic modeling and ana-
lysis of dynamic traffic scenes by meanssefisor data fusion
Since these future behaviors can never be known exactly ifrom on-board sensors and continu@ssessment of collision
advance, their probabilistic prediction is required [12]. risk [42]. Among the relevant sensors for monitoring the local
environment, we use stereo-vision and lidars, mounted on-
board of the ego-vehicle [43]. The environment is represent
) . by a grid, and the fusion of sensor data is accomplished by
Much research has focused on directly modeling and demeans of the BOF [30], [31]. The BOF evaluates probabilities
tecting objects in the scene and various approaches hayg poth cel occupancy and cell velocity for each cell in
been proposed, depending on the sensor involved: telemetgryr.dimensional spatio-temporal grid. The monitorirfy o
like radar [13] or laser scanner [14], cooperative detectio yaffic scenes includes detection and tracking of objectthby
systems [15], or vision systems. Most monocular vision aprcTa [33]. The collision risks are considered as stochastic
proaches suppose recognition of specific objects, like-vehiaiaples. Hidden Markov Model (HMM) and Gaussian pro-
cles or pedestrians, using a model which is generally builbess (GP) are used to estimate and predict collision riskls an
through statistical learning [16]. Stereo-vision is paarly e jikely behaviors of multiple dynamic agents in road s=n
suitable for generic obstacle detection [17], [18] and obje  The ‘main contribution of this article is to present two
classification [19], because it provides a three-dimem8ion nain components of our conceptual framework: traffic scene
representation of the road scene. - modeling and collision risk assessment for the ego-vehide
The computational complexity has been a critical featurgjes| with uncertainties (e.g. possible noise on senso) dath
of stereo-vision, but recent algorithms, like [20], as wel  \yith the complexity of road scenes, these functionalitiegen
progress in Graphics Processing Unit (GPU) computing [21heen developed in our probabilistic framework PréBTThe
now allow for processing of stereo images in real time.corresponding methods are implemented into the softwate th
Advanced approaches combine stereo-vision and movement {qns on our experimental platform on a Lexus car and Toyota’s
make perception more robust [22]. It should also be notet thayjying simulator allowing for damage-free collision sitions.
most of the successful vehicles in the DARPA Urban Challenge The article is organized as follow: Section Il describes
used a three-dimensional laser scanner Velodyne to assist j,, approach to model and monitor the dynamic traffic en-
finding obstacles [23]. vironment, Section Ill explains the approach to collisidskr
Many approaches rely on sensor fusion to attain sufficienjssessment, Section IV discusses our experimental resuts

reliability for automotive applications, with some metisod gsection V lists conclusions and indicates our ongoing work.
being designed for particular sensors [24], [25], or offgri

a generic framework [26]. Most of them are at the object || QNLINE TRAFEIC SCENE MODELING& MONITORING

level and must therefore deal with the difficult task of data An overview of our environment-modeling module is shown
association. Rather than start with obstacle models, wario . Verview urenvi N9 uel w

approaches take advantage of a grid representation of tHa F'g.' 2. The inputs Fo this module are sensor data_._The
scene [27], [28], [29]. In order to work efficiently with oc- comblngd use of two lidars and st_ereo-V|S|0n_ helps mitigate
cupancy grids, we have previously developed a probabilistiuncertamty and allows for detection of partially occluded

. . . bjects. The output of the module is an estimation of the
framework with the Bayesian Occupancy Filter (BOF) [30 ,0 " X . .
[31], [32], which providgs filtering dF;ta f)L/Jsion a(nd ve)ilg[vc ] position, velocity and associated uncertainty of each viese

estimation capabilities while allowing for parallel contation. object, which are used as input to the risk assessment module

The Fast Clustering and Tracking Algorithm (FCTA) [33] is

then used to identify and track individual objects. The BOF i . .

designed with the intent of its implementation in hardwase a A Occupancy grid from lidar

a system-on-chip. Like other grid based approaches, the BOF An occupancy grid from lidar data is constructed using

framework performs sensor fusion at the cell level [30]. a beam-based probabilistic sensor model, similar to that de
Collision risk assessment employs the information fromscribed in [28], where each beam in a lidar detection frame

B. Sate of the art
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\ ) \ i, 1 2 (FCTE i resulting in two disparity images containing disparity el&
: y : from obstacles and the road surface.
) Occupancy grid r I . . .
Sensor s . n I The u-disparity representation
— U=a ) O —— The u-disparity (similar to v-disparity [17]) is computed b

) - projecting the disparity map along the columns with accumu-
lation, see an example in Fig. 3. If the disparity map proside
a representation of the scene in the disparity space, then th
u-disparity representation is equivalent to a bird-eyawie

is considered as independent from the other beams. Statibis space, as illustrated in Fig. 3-b. Vertical objectseapas
and dynamic entities of the environment are separated, bgortions of lines in this image, e.g. the rear of the vehicle.
using a local-SLAM based algorithm. Let denote the map,
Zyot = (20, ,z) be the sensor observations, wherés the
frame of observation at time stépU;; = (uy,---,u;) denote

the odometer data anxh; = (xo,--- ,%) be the vehicle states.
The objective of a full sequential SLAM algorithm is to
estimate the posteridP(m,% | Zot,U11,%0). Since we build

a map of a local area, which moves with the ego-vehicle, we
are not concerned with the precision of the vehicle’s global
states. Therefore, we use a maximum likelihood localiratio
and apply a log-odds filtering scheme to update the map. The
maximum likelihood state can be estimated for the locabrat
step as:

Figure 2: Architecture of the environment modeling module.

X = arg r)r()axP(zt [Im, Xt) P(X¢ |%_1, W), Q) —

wherex denotes a state sample at tineThen, based on the : =
new state of the vehicle, the occupancy map is updated. Let I 1 d

I(my | Xot, Zoz) = l0g P(m; | Xot,Zo1) ) Figure 3: Computation of the occupancy grid in the u-didgari
P(—m | Xot,Zo1) plane: (a) left image from the stereo camera, (b) obstacle u-

denote the log-odds value of a cetlin m. The update formula disparity image, (c) road u-disparity image, (d) occupaggt
can be written as: in the u-disparity plane.

I(my [ Xot, Zox) = 1 (my [%,z) — 1 (my) +1(m | Xot-1,Z01-1), (3) Working in the u-disparity plane has three main advantages.
First, it allows us to make use of equally-spaced measuremen

wherel is the prior value, an ,Z ) is obtained from ; ) . i ;
(m) P m [, z) points, with constant pixel-wise uncertainty. By contrasov-

the beam-based inverse sensor model.

vehicle, the laser impacts generated from stationary tbjac
moving objects can be discriminated. For this purposejetas
are created from connected regions of the grid, and cluste
with a high average occupancy probability are classified a%
static. Additionally, while using a multi-layer laser soem,
only cells containing multiple laser impacts are consideas
occupied. This intends to remove laser hits on the road ceirfa

calculation is computationally efficient and allows for hiig
I%arallel processing. Third, it allows for optical diregt®to be
een as parallel during the calculation. In fact, a set of ray
elonging to the same vertical plane is represented by aroolu
in the u-disparity image. Consequently, it allows us to oders
the visible and occluded portions of the image directly,isim

to the common approaches used for range finders.

B. Occupancy grids from stereo-vision Occupancy grid in u-disparity

Our stereoscopic sensor is equipped with two cameras in a To benefit from the above advantages of the u-disparity rep-
“rectified” geometrical configuration, where the image jglan resentation, we compute the occupancy grid in the u-digpari



plane. This type of approach has been studied in [46], buprobability of occupancy, and white color corresponds tryve
our approach is novel in providing a probabilistic manageime low probability. This grid maintains strong informationcali
of the visible and occluded areas of the scene and in usinthe obstacles (they remain black lines), while a cell is gmpt
the information given by the road/obstacle pixel classifica  (white) in areas where the road was detected. Most areas
Here we give an overview of the approach, while its detailecbehind obstacles are unknown, meaning they are assigned a
description can be found in [47]. value of P(Ty) = 0.5 and are represented by gray color.

Let us denote a detection plane in Cartesian coordinates
as &, which is the support of the grid?” is chosen to be o )
parallel to the plane defined by the camera baseline and ttf@ccupancy grid in Cartesian space

optical axes. This configuration provides a direct invéetib  The Cartesian occupancy grid requires the calculation of
transformation between a cell = (u,d) in the u-disparity those pixels in the u-disparity grid, which affect a giveti oé
plane and a celK C 7. the Cartesian grid. Let us define the surfagél®) of a cellU

For building the grid, our objective is to obtain a probabili 35 the region of the u-disparity image delimited by the e
P(Oy) for a cellU being occupied by an obstacle in the u- [u—0.5,u+0.5] and[d —0.5,d+ 0.5[. Call S(U) C # the
disparity plane. This probability depends on the visigiMy,  image of $(U) in the detection plane”. To compute the
and the confidence of observatiddy, whereVy andCy are  gccupancy grid, the occupancy probability of ddllis simply
binary random variables (e.g. either it is visible or n6®)My)  attributed to the areax3U) of the detection plane. For short
and P(Cy) are calculated for a given cell, and the laws of gistances from the camera, several pixels can affect the sam
probability are used to obtain the full decompositioP¢Ou):  cell X ¢ 2 of the metric grid. The occupancy is estimated

= — S PM = VPG — )P Vi) — —o) (4 according to this set of data by usingrax estimator, which
(Ou) % M =V)P(CQ =0)P(Ou[Vu =vC =C). (4) ensures a conservative estimation of the occupancy pidgabi

The probability density functioP(Oy |[Vu, Cy) is obtained P(Ox) = max{P(Oy)|X € Sx(U) c #}. (7)

from P(My) andP(Cy) and the following boundary conditions:

P(Ou [y = 0,Cy) = 0.5, . The occupancy grid pre_sents strong _discr_etizatilon gffects

ue to the pixel-level sampling and the disparity estinratia
P(Ou[W =1,Gy =1)=1—Fep, (5) integer values. In order to obtain a smoother and more tiealis
P(Ou |Mu =1,Cy =0) =Py, o : - .
representation, an image-like filter, based on the coniariut

whereP=p andPB=y are respectively the probability of a false with a Gaussian kernel, is used. We compute a Gaussian kernel

positive or a false negative in the matching process. These afor each value in the occupancy grid, considering a constant

assumed to be constant and known empirically. Tuning thes@aussian kernel in the u-disparity plane. Thanks to the non-

parameters sets the confidence we have in the stereoscopignstant kernel size, details are preserved at short distan

data. While the range of occupancy values is reduced as thesdile smoothness is added at longer distances.

parameters increase, the overall solution (relative wabi®@ne

cell compared to another) does not change significantly. ) )

Because of the separation of the disparity image into ob$- Bayesian Occupancy Filter (BOF)

stacle and road images, we can further improve the occupancy The BOF operates with a grid representing the environment.
grid by taking into account the road pixels. CR[y ) the total  Each cell of the grid contains a probability distribution of
occupancy probability for celU, considering both road and the cell occupancy and a probability distribution of theell
obstacle pixels, an®, the binary random variable meaning velocity. Given a set of observations, the BOF algorithm
that cellU only belongs to the road surface. We begin withypdates the estimates of the occupancy and velocity for each
the logical assertion that the cell is totally occupied ifist  cell in the grid. As it is shown in Fig. 4, the inference leads
occupied by an obstacle and not by the road surface: to a Bayesian filtering process. The BOF model is described
_ in detail in [30] and [31].
P(Tu) = P(Ou)(1-P(R)). © In this context, the prediction step propagates cell occu-

To computeP(Ry ), we consider both obstacle and road pixels.pancy and antecedent (velocity) distributions of each icell
This is because road pixels are often found at the base dhe grid and obtains the predictiod(O} AL) where P(OL)
obstacles, meaning thBtRy ) must remain low wheR(Oy)is  denotes the occupancy distribution aRgAl) denotes the
high. This formulation allows us to be more certain thatoegi antecedent (velocity) distribution of a cellat timet. In the
of the image where the road can be seen are not occupied. estimation stepP(OL Al) is updated by taking into account

The basic application of this algorithm is depicted in Fig. 3 the observation&!, i = 1,2,...,S yielded by the sensors at
The fronts of obstacles result in (mostly) straight blacke§i, as  time t: 13, P(Z [ALOL), where P(Z}|ALOL) is the model
shown in Fig. 3-b. The road u-disparity image (c), meanwhileof sensori, in order to obtain the a posteriori state estimate
shows much more detail where there is dense informatioP(OLAL|[Z!---Z%]). This allows us to compute by marginal-
on the road, such as the crosswalk. You can see that in theation P(OL|[Z}---Z§]) andP(AL|[Z] --- Z§]), which will be
occupancy grid in Fig. 3-d where black color represents higlused for prediction in the next iteration.



7t We employ a re-clustering strategy to the first situation and
~— - - - - - - —|-— - - ~ a cluster merging strategy to the second one. The re-cingter

| Prediction pm— \I step di\{ides the cIu_ster intdl su_b-clusters and associates

| P(O' AY) e | them with theNy objects, respectlvely. Because the number
[ X ¥ | Nk is known from the prediction step, we apply a K-means

| E el | based g_lg(_)rithm [48]. The cluster merging step is bas_ed_ ona
| PO.AIZ) | Bayesian | probabilistic approach. Whenever an ambiguous assorigfjo

\ Filtering , between two trackd; andT; is observed, a random variable

————————————— Sj is updated to indicate the probability f and T; to be

Figure 4: Bayesian filtering in the estimation of occupanuy a parts of a single object in the real world.
velocity distributions in the BOF grid. The probability value(Fij|Sj) and P(Fj|—S;j) are pa-
rameters of the algorithm which are constant with regard to
. . . and j. Similarly, the probabilityP'(Sj | -F;j) is updated when
D. Fast Clustering and Tracking Algorithm (FCTA) no ambiguity betweef; andT; is obJservéd. Then, by thresh-

The FCTA works at the level of object representation toplding the probabilityP!(Sj), the decision of merging the
track objects [33] and it can be roughly divided into threetracksT, and Tj can be made by calculating the Mahalanobis
modules: a clustering module, a data association moduteaan distance between them. Now we arrive at a set of clusters
tracking and tracks management module. The clustering modvhich are associated with the objects being tracked without
ule takes two inputs: the occupancy/velocity grids estdat ambiguity. Then, it is straightforward to apply a generatks
by the BOF, and the prediction of the tracker which providesmanagement algorithm to create and delete the tracks, and us
a region of interest (ROI) for each object being tracked. Weg Kalman filter to update their states [49].
then try to extract a cluster in each ROI and associate it with
the corresponding object. This ROl based approach is degign [1l. COLLISION RISK ESTIMATION

to improve the computational efficiency of the algorithm. Consider vehicle A and the ego-vehicle B traveling in the

There could be a variety of cluster extracting algorithms.game direction on the adjacent lanes, as shown in Fig. 6. The

however, we have found that a simple neighborhood-basegk f collision has to be estimated for vehicle B. From the
algorithm provides satisfactory result. The eight-neigyhdells driver's viewpoint, the road structure is described imiijic

are connected according to an occupancy threshold and adgjy ,,ch maneuvers as: move straight, turn left, tumn right or
tionally a threshold of the Mahalanobis distance between thchange a lane, which define a set of possible behaviors. Each

velocity distributions is employed to distinguish the @life popayior is represented as a probability distribution dher
that are close to each other but move at different velocities possible future realizations of the vehicle’s paths.

The output of this clustering module leads to three possible
cases, as shown in Fig. 5: (a) no observation, where thetobjec
is not observed in the ROI, (b) ambiguity free, where one

Proba = 0.3

. = al Intended Path of Vehicle B Gaussian Process (Lane Change)
and only one cluster is extracted and is implicitly asseclat
with the given object, and (c) ambiguity, where the extrdcte SR \
cluster is associated with multiple objects. The data aaSon (Risk Estimation for This Vehicle) s

module is designed to remove the ambiguity. INat be the @l

number of objects associated with a single cluster. Theesaus
of the ambiguity are further analyzed as twofold: (a) olgect
are too close to each other and the observed cluster is tha uni

of more than one observations generated\kydifferent real
objects, (b)Nk different objects correspond to a single object ‘_ '
in the real world and they should be merged into one. Vehicle A /
Predicted ROI for Object 1 [ Predicted ROI for Object 1| [ Predicted ROI for Object 1 Gaussian Process (Moving Straight)
/ ‘ /Cluster 2 ‘/Cluster 2
] .‘( “ Figure 6: Example of collision risk estimation by predictin
Cluster 1 Chuster 1 the path of vehicle A: sampling from the GPs for two possible
Yl \ behaviors “moving straight” and “lane change”.
Predicted ROI for Object 2| [ Predicted ROI for Object 2

N b . The GP samples for such behaviors as “lane change” and

_ ) _"moving straight” are depicted in Fig. 6, where the dottedt
Figure 5: Cases of the clustering result, ROIs are pred'Ctefjepresent the paths sampled from the GPs. The set of GPs

from the previous timestep to speed-up data association: (§or each feasible behavior and the probability of vehicle A
no observation, (b) no ambiguity, (c) ambiguous assogiatio gyecuting a certain behavior, give a probabilistic model of



............................................................

the evolution of vehicle A in the scene. In contrast to the #*" Upper Layer HMM
TTC's linearity assumption about the future paths, we eatalu {

the collision risk of the intended path of vehicle B against P @
all possible paths of vehicle A. The weights are assigned
according to the probabilistic model of the behaviors’ etioin i
of vehicle A, and the collision risk is a weighted sum of the
paths leading to a collision. D ees e

An overall architecture of our risk estimation module is ;

sketched in Fig. 7. It comprises three sub-modules, such as:
driving behavior recognition, driving behavior realizatj and TowerLayer Fiivgs T .
collision risk estimation [12], [50]. '

\
[l S
1} . H
i [ HMM Behavior 1 ]- iL@Q)
H i : 1
H 3 '
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(light indicators, etc.) - ' H Likelihood Vector L,
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Figure 8: Layered HMM where each lower layer HMM’s
observation likelihood is the upper layer HMM'’s observatio

P
) =
Probabilistic Evolution of Vehicle's Motion

E|qtr\|

N\

\

1

|
(=)
| Tracker

1 N objects
Behavior Realization 1

« Overtake (4 hidden states): lane change, accelerate (while
overtaking a car), lane change to return to the original
lane, resume a cruise speed.

Behavior Recognition

l N objects |

R —— | In order to infer the behaviors, we maintain a probability
g Coliision Risk | distribution over the behaviors represented by the hidtsEers
N E HESSER K of the upper layer HMM. The observations of cars (i.e. sensor

data) interact with the HMM in the lower layer and the

information is then propagated up to the upper layer. In the

Figure 7: Architecture of the risk assessment module. lower layer, there is a corresponding HMM for each higher
level behavior description. Each HMM in the lower layer,
indexed byh=1,... H, updates its current state by:

— |t | e

Estimated Risk Vector

A. Behavior recognition and modeling

The behavior recognition aims at estimating the probabilit P(Sn Quz) DP(Q | ) Z P(S-1n)P(Sn[S-1n). (8)
for a vehicle to perform one of its feasible behaviors. The S-1h
behaviors are high-level representations of road stractur where S, is the hidden state variable of HMM at timet,
which contain semantics. The probability distribution ove Q,, = {Q;,Q;_1,...,Q1 } andQ; are the observations at tire

behaviors is obtained by HMM. Our current model includesThen, the observation likelihood for each lower level HMM is
the following four behaviors: move straight, turn left, nur

right, and overtake. The algorithm assigns a label and a Lh(Q11) = g P(Sh Qu1)- 9)
probability measure to sequential data, i.e. observatimra h
the sensors. Examples of sensor values are: distance to lane o )
borders, signaling light status or a proximity to an intett. The observation likelihoods,(Q1) are the “observations”
The objective is to obtain the probability values over bétvsy 0T the upper layer HMM. The inference of the upper level
i.e. the behaviors are hidden variables. behaviors takes a similar form:

The behavior modeling contains two hierarchical layers, an
each layer consists of one or more HMMs. The upper layer P(Bt|Qu:) P(QlilB‘)&Z P(Br-1)P(Bt/Br-1) (10)
is a single HMM where its hidden states represent high-level -
behaviors, such as: move straight, turn left, turn rightg an - LBI(Q“)&Z P(Bi-1)P(Bt[Br-1), (11)
overtake. For each hidden state or behavior in the upper laye ot
HMM, there is a corresponding HMM in the lower layer which whereB, is the hidden state variable of the upper level HMM
represents the sequence of finer state transitions of aesinght timet, andP(B|B;_1) is the upper level behavior transition

behavior, as depicted in Fig. 8. matrix. In order to distinguish whether the change of thénhig
Define the following hidden state semantics in the lowerlevel behavior occurs after the completion of the low-level
layer HMMs for each behavior of the higher layer HMM: behavioral sequence, two transition matrices are uSegs
« Move straight (1 hidden state): move forward. corresponds to the high-level behavior transition when the

« Turn left or turn right (3 hidden states): Decelerate before lower level behavioral sequence is completed, otherwise th
a turn, execute a turn, and resume a cruise speed. transition matrixT ng_fina IS USed. The upper level behavior



transition matrix depends on the lower level states: Lane Turning Left

PBB-1)= 3 P(Ss_1)PBSe B1) (12)

S,B[,l GP samples
for a lane turning left

Lane middle

where§ g, , is the state at timé of the lower level HMM,
corresponding to the previous behavigpr 1, and by definition:

Ttinal, if §,_, is a final state,

Thot—final Otherwise. (13)

P(EIS 6,8 1)~ {
The probability distributions over high-level behaviors
P(B:|Q11) are maintained iteratively, and the layered HMM

is updated according to Algorithm 1. Figure 9: Deformed GP model example for a lane turning left.

Input: Current observatio Note that the definition of risk can take a variety of forms,
Output: P(Bt | Qu1) depending on how the risk output is going to be used. A risk
foreach Lower layer HMM h do scalar value might be sufficient for a crash warning system,
UpdateP(S h Q11) (EQn. 8); or an application might require the risk values against each
Calculate log-likelihood-n(Q11) (Egn. 9); vehicle in the traffic scene.
end The risk calculation is performed by first sampling of the
Update upper layer HMMP(B|Q1+) (Eqn. 11). paths from the GP. The fraction of the samples in collision
gives the risk of collision, which corresponds to the bebavi
Algorithm 1: Layered HMM Updates. represented by the GP. A general risk value is obtained by

marginalizing over behaviors based on the probability dis-
tribution over behaviors obtained from the layered HMM.
B. Driving behavior realization It is possible to calculate risk of taking a certain path, a
certain behavior, or a general risk value of a certain vehicl

A behavior is an abstract representation of the VEh'Cleagainst another vehicle. The flexibility of this estimatin

motion. Driving behavior realization is modeled as GP, i.e.Olue to HMMs in identifying behaviors and the use of GPs
a probabilistic representation of the possible evolutiotihe for behavior realization, while taking into account the doa

vehicle motion for a given behavior [51]. This model allows geometry and topology. Intuitively, the result of our risk

us to obtain the probability distribution over the physical estimation can be explained as “collision risk for a few set

realization of the vehicle motion by assuming a usual dgvin ahead”. A systematic framework for evaluation of different
represented by GP, i.e. lane following without drifting tao types of collision risk can be found in [12]

off to the lane sides. On a straight road, this isaaonical GP
with the mean corresponding to the lane middle.

To deal with variations of lane curvature or such behaviors
as “turn left” or “turn right’, we propose an adaptation The relevance and feasibility of the two main functionasti
procedure, where the canonical GP serves as a basis ahéve been evaluated experimentally. For environment mod-
it is deformed according to the road geometry. The deforeling, early experiments have been performed on real urban
mation method is based on the Least Squares Conformalata obtained with our experimental vehicle. The collisisk
Map (LSCM) [52]. Its advantage is a compact and flexibleassessment has been evaluated on a driving simulator, and
representation of the road geometry. The canonical GP capehavior estimation has also been tested during a highway
be calculated once and then can be reused for differerttriving.
lane configurations, thus, resulting in a better computatio
efficiency. An example is shown in Fig. 9 for a curved road. p Experimental setup

IV. EXPERIMENTAL RESULTS

o ) Our experimental platform is a Lexus LS600h car shown

C. Estimation of risk in Fig. 10. The vehicle is equipped with a variety of sensors

A complete probabilistic model of the possible futureincluding two IBEO Lux lidars placed toward the edges of
motion of the vehicle is given by the probability distritarti  the front bumper, a TYZX stereo camera situated behind the
over behaviors from driving behavioecognition and driving  windshield, and an Xsens MTi-G inertial sensor with GPS.
behaviorrealization. The layered HMM approach assigns a Extrinsic calibration of these sensors is done manually for
probability distribution over behaviors at each time ins&, ~ this work. Note that, thanks to the grid-based approach and
and a GP gives the probability distribution over the physicaconsidering the resolution of the grid, a slight calibraterror
realization for each behavior. Because the behavioralsgosa has very little impact on the final results.
are propagated from the layered HMM down to the physical The stereo camera baseline is @8, with a field of view
level, it is now possible to assign semantics to risk valuesof 62°. Camera resolution is 512x320 pixels with a focal



correctly detected and tracked. An advantage of the BOF over
other occupancy grid approaches is illustrated by Fig. 1P
estimated velocity of the white vehicle and of the bicyclaige
very different (here the bicycle is faster), they are cdiyec
detected as two different objects, even if they are veryeclos
(adjacent cells in the grid).

Figure 10: Lexus LS600h car equipped with two IBEO Lux
lidars, a TYZX stereo camera, and an Xsens MTi-G inertial
sensor with GPS.

length of 410 pixels. Each lidar provides four layers of up to
200 impacts with a sampling period of 26s. The angular
range is 100, and the angular resolution is 0.5The on-
board computer is equipped with 8GB of RAM, an Intel Xeon
3.4 GHz processor and an NVIDIA GeForce GTX 480 for
GPU. The observed region is 40 long by 40m wide, with

a maximum height of 2n. Cell size of the occupancy grids is
0.2x0.2m. For stereo-vision, the correlation window measures
11pixelsin width and 2Jixels in height.

b

Figure 12: Example of the objects detected using BOF and

B. Occupancy grid mapping FCTA: (a) cars and a pedestrian, (b) cars, a bicycle and a bus.

Fig. 11 shows examples of occupancy grid mapping with
the proposed approach. The arrows indicate the pedestian, p. computation time

car, and the bicycle, which appear in the camera images and . . ,
. ..~ Two critical stages of the algorithm have been implemented
the occupancy grids. Because the accuracy of stereo-vision

tends to become poor at large distance, the corresponding gron GPU: the BOF and the stereo processing, including match-

: ing and occupancy grid computation. FCTA has not, since it

h?‘s been attenyated beyond @Qand the system is tuned_ t_o has been shown in [31] and [33] that its computational cost

give more confidence to the lidars than to the stereo-vision, : .

can be neglected, compared with the computational cost of

%he BOF. The BOF being designed to be highly parallelizable,
nit runs on GPU in 20ms, without specific optimization.
a@oncerning stereo-vision, the matching process is pedrim
8 ms and the occupancy grid computation in @& This level

of performance is reached thanks to the u-disparity approac

¥vhich allows for highly parallel computation on GPU.

that the vehicles overtaking the ego-vehicle (they are eehs
in the camera images) are correctly mapped on the resulti
BOF grid. Moreover, the sensor fusion as well as the Bayesi
estimation provide to filter out the laser impacts with thado
surface, e.g. right lidar in Fig. 11. Note that a large nundfer
dynamic objects in the traffic scenes may lead to a failure o
object-based fusion because of a large number of assm:iati%l Collision risk i

hypotheses. The grid-based approach allows us to avoid thé ) ) o ) )
object association problem for sensor fusion. The simulation of crash situations in performed a virtual

environment. This environment is a 3D geometric model of a
) ) ) road network, where each vehicle is driven by a human driver.
C. Object detection and tracking The simulator was developed by Toyota Motor Europe (TME).
The object level representation is obtained from the BOFEach human driver controls his or her virtual vehicle by
by clustering the occupancy and velocity grids by means ofneans of a steering wheel, the acceleration and brake pedals
the FCTA. Examples of detections in typical urban scene®Recording a scenario with multiple vehicles, which are einiv
are shown in Fig. 12. The output of FCTA being a set ofconcurrently, requires a large number of human drivers. An
ellipses in the detection plane, the ROIs in the images aralternative is to generate the scenario iteratively, witie o
obtained by using a ground plane hypothesis. The height diuman-driven vehicle at a time and “adding” human drivers
ROI is set empirically to 1.8m, and the width is double iteratively, with a replay of the previously recorded human
of the lateral standard deviation of the detected object. Aslriven vehicles. The resulting virtual environment allougsto
it is shown in Fig. 12-a, both vehicles and a pedestrian arsimulate crash situations safely.



Left camera image Left lidar Right lidar Stereo-vision Détsion with the BO
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Figure 11: Examples of occupancy grid mapping in typicalanrlraffic scenes, from left to right: left image from the ster
pair, an occupancy grid from the left lidar, an occupancy drom the right lidar, an occupancy grid from stereo-visian
occupancy grid estimated by data fusion with the BOF, andohatility scale.

The layered HMM evaluates the behavior of every vehicle The speed warning about a potential danger of frontal colli-
in the scene for different time horizons, except the egdeleh  sion is available in most commercial systems. Addition&dly
The training data are obtained by collecting sequences fahis functionality, our algorithm evaluates risk at ineg8ons,

a series of human-driven cases, where each driver uses there the linearity assumption about the vehicle motionldiou
steering wheel as an interface to the virtual environmettief result in underestimated values of risk. The combination of
simulator. The driving sequences are annotated manually biye behavior estimation by the layered HMM and the use of
means of an annotation tool of ProBayes. Then, the annotatestmantics (e.g. turn right or move straight) at the geometri
data are used to train the layered HMM. level allows us to obtain the appropriate risk values.

The TME simulator provides a 3D road view for the driver  The training data for the layered HMM were collected with
and a 2D view of the road network, as shown in Fig. 13. Theen human drivers who were asked to show different driving
collision risk is calculated for a yellow vehicle, while eth behaviors. The data is split by the uniform distributionoint
vehicles are shown by red rectangles (relevant area isdirgsid the training data and the test data (30% of the samples). The
large yellow circle). The right-hand traffic rule is assum€&de  behavior recognition is trained on the training data and is
trail behind the yellow vehicle in 2D view indicates the risk evaluated against the test data.
levels estimated previously. At each instant, the profiasl Fig. 14 summarizes the recognition performance of the
of the possible behaviors of the nearest neighbor (red ghic layered HMM. The results are presented as a confusion matrix
are estimated by the layered HMM and are displayed by thevhere the columns correspond to the true class and the rows
vertical white bars. The speed of the yellow vehicle is showrcorrespond to the estimated class. The diagonal values of
in 3D view, where the right-side vertical bar shows the riskthe confusion matrix give the correctly predicted classijlevh
encoding by color from “low” (green) to “high” (red). The non-diagonal values show the percentage of mislabellimg fo
left-side vertical bar in 3D view indicates the current ngltue  each class. The highest recognition rate is for “move dtitéig
for the yellow vehicle. behavior (91.9%) as well as “turn right” or “turn left” ones
(82.5% and 81.1%, respectively). The “overtake” behavas h
a relatively low recognition rate of 61.6%. Intuitively,ish
lower rate can be explained by a composite structure of the
overtaking maneuver because it consists of such behawors a
accelerating, lane changing, returning to the origina¢Jeand
resuming a cruise speed. Consequently, it also takes longer
than a three-second period (current prediction horizon) to
complete an overtaking maneuver.

The approach to risk assessment is illustrated by Fig. 15,
where the probability of collision is estimated for a period
of three seconds ahead of each collision for ten different
traffic scenarios. The rapid increase in the probability of

i ] ] collision and its certainty are observed when the collision
Figure 13: Virtual environment of the TME simulator. instant approaches.




the information about the presence of other vehicles on the

Confusion Matrix (filter mode) adjacent lanes. In order to obtain the observation varsainle
100%r . - 1 a global reference frame, a particle filter is used for |atadj
90% the vehicle on the highway map obtained from the Geographic

80%r 1 Information System. The particle filter allows us to estienite

position and direction of the vehicle at each time instamt tan
employ the observations from stereo-vision (lanes detejti
GPS and vehicle odometry. A similar approach is used for
the training phase, when the acquired data is divided ir¢o th
training and evaluation sets annotated manually to inditize
20% current behavior for each time instance of the data acquired
1o An example of the behavior estimation on a highway
is shown in Fig. 16. The positions of the tracked vehicles

70%
60% B

50% b

Recognition rate

40%F- 1

30% b

0%

straight overtaking Turning left turning righ i X
S o8 32 130 135 are projected onto the image plane and are represented by
2.4 . 1.1 2. .- . . . .
o 4 >3 39 555 the rectangles. The probability distribution of the estiada

behaviors is shown by the height of the color bars above the
Figure 14: Performance summary of the behaviors recognitiovehicles, e.g. the “lane change to the right” behavior of the
with layered HMM. vehicle on the middle lane and the “move straight” behavior o

the two vehicles on the left lane are evaluated correctlgs€h

results illustrate the validity of the proposed approach fo

12 behavior estimation. The different probability decomfiosi
of the observation variables, the selection of the obsknvat
1 gt : : variables and the reactivity of the behavior estimation are
< 1] W topics of our ongoing work to generalize the approach.
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Figure 15: Example of collision risk assessment for ten huma §
driven scenarios and a three-second prediction horizon.

F. Behavior estimation on a highway

The first phase is to gather sensor data when driving on
highway to estimate behaviors of other vehicles. The experi
ments have been conducted jointly by the TME and ProBayesigure 16: Example of behavior estimation on a highway where
on a different vehicle. The data acquisition was performedy vehicle on the middle lane performs a lane change to the
for four scenarios on a highway, with each scenario lastingight.
for ten minutes approximately and the sensor data (stereo
camera images, vehicle odometry, and GPS information)gbein
recorded. The behaviors to be estimated are: move straight,
lane change to the left, and a lane change to the right. V. CONCLUSION

The detection of vehicles is performed by clustering of We proposed a conceptual framework to analyze and inter-
the disparity points obtained from the stereo camera mauntepret the dynamic traffic scenes by means of sensor fusion with
behind the windshield. The clustering is performed in thethe BOF and risk evaluation for the ego-vehicle. Our concept
image areas, which are indicated by the image based detectidiffers from other approaches due to its underlying prolisbi
using support vector machines. The positions of vehicles artic methods and its computational efficiency because of the
tracked on the road plane by means of the BOF. parallel implementation of data processing from steresiowi

The observation variables for behavior recognition inelud and lidars. The experimental platform was built on a Lexus ca
the vehicle’s speed, the distances to the lane borders, awdth embedded sensors and the dedicated software modules.



This system is capable of monitoring its local environment[16]
detecting and tracking static and dynamic objects in redfi¢r
scenarios. The analysis and interpretation of traffic sceely

on evaluation of driving behaviors as stochastic varialbbes
estimate and predict collision risks for the ego-vehicle do
short period ahead, in order to alert the driver and help aver
the safety of car driving. The experiments and simulatioreha
shown promising results. The discussed conceptual framewo
will be extended to deal with complex traffic scenarios, drel t
experimental system will be used to create a database tw allo
for benchmarking, quantitative evaluation and comparisith
alternative approaches.
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