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Abstract

The motion control problem 1is considered for
the nonholonomic systems with unknown dynamic
parameters. The proposed control algorithm is based
on a method of recursive aim inequalities which allows
us to solve the problem of the adaptive stabilization
in the presence of uniformly bounded disturbances
affecting the system. Unlike other works, the presented
algorithm of the parameters estimation is given in a
form of a differential equation instead of a discrete-
time algorithm.

1 Introduction

This paper addresses adaptive control of mechanical
systems with linear homogeneous constraints. Assume
that the system under consideration is defined on
the connected Riemannian n-dimensional real smooth
configuration manifold M with local coordinates
q=1(q1,--,qn)- Linear homogeneous constraints
are defined by a k-dimensional smooth regular
codistribution At = span{w;,...,wr} C T*M and
given in the local coordinates as

wilg)g=0, 7=1,...k, (1.1)

where w; are one-forms w;(g) € T; M which are locally
smooth differential. These constraints determine an
m-dimensional distribution A = span{g1,...,9m} C
TM, m =n—k given in every point of M as A(q) =
ker At (q).

The constraints (1.1) are called holonomic if the
distribution A is involutive, i.e. for any pair of vector
fields X,V € A — [X,Y] € A, where [, ] is
the Lie bracket. If this is the case, then by the
Frobenius theorem there exist the local coordinates
s = ($1,...,8n), such that the constraints (1.1) can
be rewritten as @Z =0,i=n—-%k+1,...,n and
one can eliminate the dependent coordinates g;, ¢ =

n—k+1,...,n.

The constraints (1.1) are called nonholonomic if the
distribution A is not involutive. In distinction to the
holonomic case, the number of the coordinates can not
be reduced. We shall say that the dynamic system
is completely nonholonomic [1] if the dimension of
involutive closure of A is equal to n. Note that in
the holonomic case, the dimension of the involutive
closure of A equals k. If this dimension is greater
than k and less then n (”partially nonholonomic case”),
then some constraints in (1.1) are integrable as above
and our consideration can be reduced to the completely
nonholonomic case.

A curve ¢q(t) : I — M, I C R on the configuration
manifold M is said to be admissible (or compatible with
the distribution A), if its tangent vector at each point
belongs to the corresponding distribution, i.e. ¢(t) € A
for all ¢ € 1. Locally, for any admissible curve ¢(t),
there can be found real functions u;(¢), i = 1,...,m
which satisfy the following equality:

q:Zgi(q)~'ui. (1.2)

This equation can be regarded as an equation that
describes a control system with the input functions
u', i = T,m. We shall refer to (1.2) as a kinematic
model of the nonholonomic motion. Applying the
Chow’s theorem [2], it can be shown that the
completely nonholonomic control system is strongly
accessible and, since the configuration manifold is

connected by assumption, controllable.

The d’Alambert’s principle of virtual displacements
allows us to derive the dynamic equations of the
unconstrained motion. A mechanical system which
is subject to the linear homogeneous constraints (1.1)
posses a quadratic (in the generalized velocities)
Lagrangian function L(q,q,0) [3]. Then, the Euler-
Lagrange equation takes the following form

M(q,0)§+C(q,4,0) = Q()A+G(q)(U +£(1)), (1.3)

where 6 is a constant r-vector of the dynamic
parameters, § € ©, ©@ C R" is a convex set, M(q, ) is



an (n x n) symmetric positive definite inertia matrix
with the property ||[M~1(q,0)] < o < oo; Q(q)
is a (k x n)-matrix with rows being the differential
one-forms, constituting the nonholonomic constraints
(1.1) and evaluated in ¢, ie. Q;;(q) = wi(g), i =
1, k, rank Q(¢) = k; similarly, G(q) is an (nxm)-matrix
with columns being the vector fields, constituting the
local basis of the distribution A and evaluated in ¢, i.e.
Gij(q) = ¢5(q), rank G(q) = m; U is an m-vector of the
external forces, £(t) € R™ is an external disturbance;
C(q,4,0) is an n-vector of Coriolis, centripetal and
gravity torques. We shall refer to (1.3) as a dynamic
model of the nonholonomic motion. The both equations
of the nonholonomic constraints (1.1) and the dynamic
equation (1.3) constitute the mathematical model of
the controlled motion of the nonholonomic system.
It consists of (n + k) equations with n generalized
coordinates ¢*,i = 1,...,n and k unknown Lagrangian
multipliers M, j =1,... k.

2 Reduction of the dynamic model:
the Appel’s form

The Lagrange multipliers may be computed using the
classical method (see, e.g. [4]). Namely, by means
of differentiating the equations of the nonholonomic
constraints (1.1) along (1.3) and taking into account
the nonsingularuty of the matrices M and €, one
can solve the resulting equation for A as a function
of (¢,¢,u). Then, substituting in (1.3) results in
a dynamical equation of the reduced order on the
constrained state space

M ={(g,9) €T"M | Qg)¢ = 0}. (2.1

A more insightful matricidial formalism of this
procedure was proposed in [5, 6] for the holonomic
systems and in [7] for the nonholonomic systems. Tt
is based on an assumption that there exists a partition
of the configuration variables ¢ = (g1, ¢2) (dependent
and independent coordinates respectively), such that
the corresponding partition of the matrix Q(¢) =
[©1(q), Q22(q)], where Qa1(q) is a (k X k)-matrix, satisfies
the condition locally:

rank Qa(q) = k. (2.2)

This condition is restrictive in the case, if the global
stabilization is the control problem to be solved.
For example, the so called rolling and nonslipping
conditions of the nonholonomic motion on the plane
has the form ¢;sin(gs) — ¢gacos(gqs) = 0. One can
see, that there is no globally nonsingular minor of
the matrix Q(¢q) = [sin(¢s) cos(gs) 0] representing
the nonholonomic constraints. Such an obstruction
motivates elaboration of another method in order
to eliminate the Lagrange multipliers.  One can

implicitly obtain the Appel’s form of the dynamic
equations subjected to the nonholonomic constraints
(see [3] for the general consideration and [8, 9] for
the nonholonomic examples). Instead, we propose
a specific state transformation of the Euler-Lagrange
equations (1.3) into the Appel’s form.

Proposition 2.1 Consider a partition of the genera-
lized velocities vector ¢ = p = [p1,pa], where p1 €
R™, po € R*"™™. Then, the Fuler-Lagrange equation
(1.3) for a mechanical system subjected to the linear
nonholonomic constrainis (1.1) is

q=rp,
{ M(q)p+ C(q,p) = (A + G(q)(U +£(1)),
(2.3)
Qgp=0 (24)
may be transformed via the state transformation R :

[¢,p1,p2] — [q,u, D] into the reduced Appel’s dynamic
equation

q=G(q)u,
{ M(0)i+ Clw) =G +€@), D

which is given on the constrained space M in (q,u)-
coordinates (u € R"™F is a vector of the so called
quasi-velocities ). The transformation is defined by the

equation ( ;2 ) ) < fﬁl ) ’ (2.6)
where R(q) = [G(q), ' (q)].

In (2.5) _H(q) is a (n—k)x (n—k) symmetric positive
matriz, G(q) is a (n — k) x l-matriz and C(q,u) is a
(n — k)-vector given by

M(q) = G'(9M(0)G(q), G(9) = G'()G(a),

Clg) = G'(9) C(q, G(9)u) +

M(Q)g_f;(q, u, Py = 0)G(q)u.

Remark 2.2 The advantage of the approach pro-
posed is its suitability for the holonomic, partially
nonholonomic and completely nonholonomic cases.
It is a “Lagrange counterpart” of the elimination
algorithm presented in [10] and based on the
Hamiltonian formalism.

3 Stabilizing control

Let a smooth state transformation s = S(¢,¢) be
given and bijectively maps the configuration manifold
M onto R™. The control goal is to stabilize the
transformed state vector s, i.e.

s — 0, while ¢t — oo. (3.1)



This formulation includes stabilization to the desired
trajectory as a special case.

Using the transformation S(¢,¢), the equations (2.5)
can be represented in the following form:

§ = f(t,s) + G(t, s)u, (3.2)

where f(ts) = o(57(Ls), Glls) =
S.(t,S7(t,5))G(S71(t,5)), and S, is the tangent map
of the state transformation S(t, ¢q).

In order to construct a control law for the dynamic
system (2.5), let us suppose that the feedback which
guarantees the control aim (3.1) for the kinematic
subsystem is known. More precisely, we suppose that
there exists the kinematic feedback law v = «a(t, s), and
a quadratic Lyapunov function V(s) = s'Ps, P/ = P,
P > 0, such that on the solutions of the closed-loop
kinematic subsystem

§= f(t,s) + G(t,s)alt, s) (3.3)

the inequality V(s) < —&V (s) holds for some positive
Kk (see [11, 12, 13] for the nonholonomic examples).

Consider an error function e = u— «(t, s). Using (s, €)-
coordinates we can rewrite the equations (2.5) as

§=f(t,s)+ G(t,s)alt,s)) + G(t, s)e,
M(t,s,0)é + M(t,s,0)Da(t, s, €) (3.4)
+C’(t,5,e,€) =U+£&(1),

where
M(t,s,0) =G (S7(t, ) M(S™ (¢, ),0),
C(t,s,e,0) =G (S™U(t, s))T(S™L(t, 5), e + a(t, 5), ),

Da(t,s,e) = da/Ot + 0/ Ds 5.

Theorem 3.1 Assume that the external disturbance
&(t) =0 and the vector of the dynamic parameters 6
is known. Then, the control system (3.4) is globally
exponentially stabilizable by the feedback

Ut, s, e) = B(t,s,e,0) def
A;Igt, s,0)(Da(t, s, e) — ye — G'(t, s)Ps) (3.5)

+C(t,s,e,0)

where v > 0 is a parameter.

4 Adaptive control

Let us consider a case of the unknown vector 6 and
assume that the unmeasured disturbance ¢ is bounded
and satisfies the inequality

€@ < Ce, (4.1)

where C¢ is given.  Consider a prediction error

function n(t, s, e, é,0, é) = A;I(t,s, é)(e + Da(t, s, e)) +

C(t,s,e, é) — U, where 0 is an on-line estimate of 4. Tt
is assumed that # € ©. Then, equations (3.4) can be
represented in the following form:

$ = f(t,s)+ G(t,s)a(t, s)) + G(t, s)e,
(t,s,0)é + M(t,s,0)Da(t, s, e) + C(t, s, e, 0)
U+t s,eé0, @)

=

(4.2)

There are two differences between the equations (3.4)
and (4.2). The latter includes the estimate § instead
of the unknown vector # as well as the measured error
function 7 instead of the unmeasured disturbance &(t).
Now, we can use the equations (4.2) in order to control
the system under consideration. The problem is to
construct the estimate § which makes the prediction
error function n small in some sence. This problem
is solved by means of a method of the recursive aim
inequalities [14]. This method usually deals with the
discrete time systems. It was also applied to the
continuous time systems [16] where the estimation
procedure was realized as a discrete time algorithm.
In distinction to the approach of [16], we describe the
estimation procedure by a differential equation.

To formulate the adaptation algorithm, let us note that
the function 7 is linear with respect to the vector 6.
It is known, that the left side of the Euler-Lagrange
equations (1.3) is linear for an appropriately chosen
vector of the dynamical parameters  [5]. The reduced
Euler-Lagrange equations in the Appell’s form (3.4)
inherit this property:

{ M(t,5,0)(é+ Dot s,e)) + Clts,6,0) (4 59

= Yo(t,s,e) +Y(t,s,¢,¢€)0.
Thus, the function 5 reads as 5(t, s, e, €, 0, é) =&+
Y(t,s,e,€)(0 — 0). To simplify further notations, we
denote n(t,0) = n(t, s, e, €,0,0).

Let 6 and C; > C: be some positive constants.
Determine a law to update the parameters in the form
of a differential equation given on a set of the admissible
dynamic parameters ©

0= _6h(||77(ta é)” - Cﬂ)Pf’@(é) [Y/(ta 5,6, é)n(ta é) )
(4.4)
with some initial state §; = é(to) € ©\00. In (4.4)
h(-) is a scalar function

0, a<0,
h(o‘):{ 1, a>0,

and Pae(é) is an operator of the orthogonal projection
of the vector field Q(-) € TR" on the boundary 00

of ©. Such an operator assigns to a vector field



Q(~,@), § € 9O of the differential equation (4.4) its
orthogonal projection on the tangent space to 0O
through a point 0 € 90O if the vector field Q(-,0)
is directed outside of the set ©. It is supposed to
be identical for all § belonging to the interior of ©.
Since the parameters updating law is given as the
differential equation with a discontinous right side, we
shall understand the solution of (4.4) in the Filippov’s
sence [15]. The presented algorithm of updating the
parameters involves the dead zone which freezes the
parameters in the case if the error function satisfies
the inequality ||n(t, é(t))” < Cy.

Theorem 4.1 Let the external disturbance &(t) be
continuous and satisfy the inequality (4.1). Then, for
any 0 € © and any continuous conirol input U(t) the
prediction error function n(t, é) satisfies the inequality

[ Hnte 01 - oy e e < L=
(4.5)

on the solution of the system (3.4), (4.4) for an
arbitrary T < oo that belongs to the interval where the
solution of this system exists.

To complete the formulation of the adaptive control
algorithm, we define the control law by replacing the
unknown vector @ in (3.5) by its estimate 6:

U =p(t,s,e,0). (4.6)

Theorem 4.2 (Adaptive stabilization) For any
E >0 and € > 0, there exist parameters v and 6, such
that any solution of the closed-loop system (3.4), (4.4),
(4.6) with an initial state satisfying |s(0)| + |e(0)| < E
satisfies the inequality

Is(@)] + [e(t)| < e (4.7)
for all safficiently large t.

5 Conclusion

The adaptive control algorithm is proposed for the
reference trajectory stabilization of nonholonomic
systems. It has been proved that the proposed control
scheme ensures the motion stabilization with any given
precision.
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