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Abstract

The stabilization of the motion of a nonholonomic
vehicle is considered. The control system developed
has a two-level architecture. The lower control level
operates within the kinematic model of the vehicle to
stabilize its motion to a desired trajectory. The upper
control level uses the dynamic model of the vehicle and
stabilizes the feedback obtained on the lower control
level. The operation of the control system is studied
when unknown bounded disturbances affect the motion.
The adaptive motion control is proposed to deal with
uncertain dynamic parameters of the vehicle.

1 Introduction

The automatic steering of a nonholonomic vehicle
attracts a great deal of attention from the research
community [1]-[10]. The nonholonomic vehicle is a
system with a non-integrable velocity constraint. By
Brockett’s necessary stability conditions [3], such a
system is open-loop controllable, but it can not be sta-
bilized to a point by means of smooth time-invariant
state feedback. To stabilize such a system, time-
varying feedback laws are developed by Samson [4],
piece-wise continuous laws are considered by Canudas
de Wit and Sgrdalen [5], and discontinuous feedback
laws by Guldner and Utkin [6]. Murray and Sastry [7]
worked on steering a nonholonomic system between
arbitrary points by means of sinusoids. Path plan-
ning approaches are developed by Latombe [8] and

Laumond et al. [9] to generate feasible paths for non-
holonomic vehicles. The recent results on the kine-
matic and dynamic control of the vehicles are pre-
sented in [10]. The methods of adaptive control of the
autonomous vehicles are considered in [11]-[14].

Our paper deals with the adaptive stabilization of
the motion of a nonholonomic vehicle to a desired tra-
jectory when the dynamic parameters of the vehicle
are not known precisely and the vehicle’s dynamics
is subject to unmeasured bounded disturbances. The
adaptive control has been much studied for the manip-
ulators while the number of the control inputs equals
to the number of the outputs. These results cannot be
directly applied to control a nonholonomic vehicle be-
cause the number of the control inputs is less than the
number of the outputs. To overcome this problem,
we propose a two-level hierarchical control architec-
ture. On the lower control level, the kinematic model
of the vehicle is used, and the problem is to stabilize
the position and orientation of the vehicle to the de-
sired ones by means of a unique control input which
is the steering angle while the locomotion velocity is
a given function. On the upper control level, the dy-
namic model of the vehicle is used, and the problem is
to stabilize the locomotion velocity and the previously
obtained steering angle.

The paper is organized as follows. The kinematic
and dynamic models of a nonholonomic vehicle are
described in Section 2 where the problem of motion
stabilization is formulated. In Section 3, we describe
a method of motion control based on the kinematic
model. The motion control method based on the dy-



namic model of the vehicle is considered in Section 4
where the dynamic parameters of the vehicle are sup-
posed to be known. The proposed method ensures the
stabilization of the motion to a desired trajectory and
is robust with respect to unmeasured bounded distur-
bances. The adaptive control scheme is considered in
Section 5 where the dynamic parameters of the vehicle
are supposed to be uncertain. Using a recursive aim
inequalities method [15], an adaptation algorithm is
designed to estimate the dynamic parameters of the
vehicle. Although the asymptotically exact estima-
tion is not possible because of the unknown bounded
disturbances, the proposed adaptive control scheme
guarantees the motion stabilization with a given accu-
racy. The experimental results obtained are presented
in Section 6.

2 Formulation of the problem

The kinematics of a nonholonomic vehicle with the
front steering wheels is described by the equations

T = v cos,
Y = v sin1, (1)
=1 tang,

where, as shown in Fig. 1, z and y are the Carte-
sian coordinates of the midpoint of the rear wheel axle
(point B), 1 is the orientation angle of the vehicle, v is
the velocity of the point B, ¢ is the steering angle, and
[ is the wheel base (a distance between the points A
and B) [16]. When the inertia of the wheels is ne-
glected, the vehicle dynamics can be described by the
equation

A(g, ¢,0)q + b(g, ¢,0) = u(t) + w(?), (2)

where ¢ = col (v,¢), u = col(uy,us), uy is the en-
gine torque, us is the steering torque, 8 is the vec-
tor of dynamic parameters of the vehicle; A(q, ¢,0) is
the symmetrical and positively definite inertia matrix;
b(q, ®,0) represents the vector of centripetal, Corio-
lis, and friction forces; w(t) is the vector of external
disturbances. The disturbance is unknown, but it is
bounded by a known constant:

sup ||lw(t)|| < Cy, Cyw >0. (3)
t

The equation (2) is so called equation of dynamics in
quasicoordinates [16].

Let P be a smooth curve of a desired trajectory:
P ={ z4(s) | s € Ry} where z4(s) = col(z4(s),ya(s))
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Figure 1: Kinematics of a nonholonomic vehicle

is a smooth function and R, denotes a set of the
non-negative numbers. It is supposed that this
parametrization is nonsingular, |%z4(s)| # 0 for all
s € Ry and the first and second derivatives of z4(s)
are bounded: |4 z4(s)| < ") and |%zd(s)| <c?.

Let z = 2(t) = col(z,y) denote the vector of the
Cartesian coordinates of the point B of the vehicle,
and Z = Z(t) = col (X,Y) - the vector of coordinates
of the point A, as depicted in Fig. 1. The coordinates
X and Y can be expressed in terms of the coordinates
x, y and -

X =z+lcosy, Y =y+Isin. (4)

Let 4(s) denote the angle between the abscissae
axis and the tangent vector to the curve P at a point
z4(s). The curvature of P is assumed to be bounded

[ ba(s)] < Co 9

This constraint arises naturally, because the steer-
ing angle of a nonholonomic vehicle is physically lim-
ited: |¢| < Pmaz- From the kinematic equations (1)
it follows that the curvature of P must not exceed
Cy = Sin @pmqz/ l. The curve P describes the geome-
try of a desired motion, and the motion dynamics is
related to a desired locomotion velocity vq(s).

We shall say that the control aim is fulfilled if for
given constants €, > 0 and e, > 0 there exists a
smooth time parametrization s(¢t) of P such that the
inequalities

1Z(2) — za(s(D)|| < e, (6)



|v(t) —va(s(d))| < &, (7)

hold for all t € Ry. In other words, the control law
has to provide that the trajectory of the vehicle is
enclosed in ¢,-neighborhood of P and the velocity of
the vehicle belongs to &,-neighborhood of vg.

3 Motion control based on a kinematic
model

For the low-speed motion, the dynamics of the ve-
hicle can be neglected and the motion is described by
the equations (1) where the control inputs are the lo-
comotion velocity v and steering angle ¢. In order to
focus on providing the inequality (6), we assume that
the inequality (7) is satisfied and

v(t) = va(s(t))- (8)

The problem is to find a time parametrization s(t)
of P and a steering angle ¢(¢) which ensure (6).

Let the distance between the current position z(t)
of the vehicle and the desired position z4(s(t)) be given
by the function p (2(t), za(s(t))) = | za(s(t)) — z(¢) |I-
Let a time parametrization s(t) of P be chosen in such

a way that
p(2(t), za(s(t)) = L. (9)

Instead of solving this nonlinear algebraic equation on-
line, the following differential equation is used:

d
P TP =1)=0, 7, >0 (10)
which ensures that the function p (2(t), za(s(t))) expo-
nentially converges to (.

Let functions

w (2(t), za(s(t)) = arg (za(s(t)) — 2(t)) (1)

and

6 (2(8),9(2), 2a(s(t))) = w (2(2), za(s(2))) — ¥ (¢) (12)

represent direction and deviation angles respectively,
as shown in Fig. 1. By substituting the full deriva-
tive of p (2(t), za(s(t))) along the trajectory of the sys-
tem (1) into the reference equation (10), the following
differential equation is obtained:

. veosd —,(p—1) B
o |%zd(5)| cos(w — ¥gq)’ s(0) = 0. (13)

The equation (13) determines the desired time para-
metrization s(t) of P. The key idea of the control law

is to provide such a steering angle ¢ that the deviation
angle ¢ tends to zero. This condition together with the
equation (9) will ensure that the position Z(t) of the
point A of the vehicle will tend to the point z4(s(t))
of the desired trajectory.

In order the deviation angle § exponentially con-
verges to zero, the following reference equation is con-
sidered:

d
Eé-{-’ygé—O,

By substituting the full derivative of the deviation an-
gle 6 given by (12) into the equation (14), the control
law is derived as

vs > 0. (14)

¢ = ®(z,1,s,v) %S arctan UG ’Yév(¢ — w))’ (15)
where
w= %((%yd(s)é — v siny) cosw—

d ) . (16)

(457a(s)8 —v cosy) sinw).
Theorem 1 Suppose that the initial conditions sat-
isfy the inequalities

0 < p(2(0),24(0)) <1,
{ |%a(0) — w(z(do), 24(0)] < e. (17)

Then, for small enough € and Cy the solution of the
closed-loop system (1), (13), (15) exists, is defined for
all t > 0, satisfies the aim inequality (6) and

Jim {|Z(2) = za(s(8))]| = 0. (18)

4 Motion control based on a dynamic
model

In this section, the dynamic model (1), (2) of the
vehicle is considered. The peculiarity of this model is
the presence of an unmeasured bounded disturbance.
Our objective is to design a regulator which is robust
with respect to this disturbance. As it was shown in
the previous section, the control aim (6), (7) can be
achieved if the velocity v and steering angle ¢ are de-
fined by the equations (8) and (15) respectively. How-
ever, these variables can not be controlled directly
if the dynamic model of the vehicle is used, because
the control inputs are the engine torque and steering
torque and they affect the accelerations ¥ and ¢.

Consider the error functions ey (t) = v(t)—v4(t) and
ea(t) = ¢(t) —®(2(t),v¥(t), s(t),v(t)). These errors will
tend to zero if we ensure the fulfillment of the following
reference equations:

ée1+me =0,

. . 1
€2 + Y2€2 + v5e2 = 0, (19)



where 71,72, 75 are positive constants. Let us consider
a control law

u = A(q, 9,0)p(t) + b(g, ,0), (20)

where:

p = col (p1,p2),
p1 =0a — mer, (21)
p2 = @ (2(1),9(t), s(t),v(t)) — 1262 — 5 ea.

In the absence of the disturbance in (2), the con-
trol law (20) guarantees the fulfillment of the equa-
tions (19). Assuming that ® is a given function of
time, the problem of designing a regulator would be
solved by means of the Computed Torque Method [17].
However, in the considered case ® is not a given func-
tion of time but the feedback. It can be defined by the
equation (15). Thus, the equations (20), (21) define
the upper level of the two-level hierarchical control law
where the lower level involves the kinematic regulator.

Theorem 2 Suppose that the initial locomotion ve-
locity and steering rate satisfy the inequalities

[0(0) —va(0)] < C,
16(0)] < O

for some C, > 0, Cy > 0 respectively, and the initial
coordinates of the vehicle satisfy the inequalities (17).
Then, for any given €, and €, there exist small enough
¢ and Cy and large enough parameters v,,vs,Y1,72,75
such that the aim inequalities (6), (7) are fulfilled on
the solution of the closed—loop system (1), (2), (13),

(15), (20), (21).

(22)

5 Adaptive motion control

Theorem 2 claims that the uniformly bounded addi-
tive disturbances can be successfully parried by select-
ing sufficiently large gains in the control law. However,
in order to apply the control law (20), the vector of
the vehicle’s parameters 8 must be known. In practice,
the dynamic parameters of the vehicle are not known
precisely, and the external disturbances affect the mo-
tion. Hence, an estimation of § must be provided, and
a problem of the adaptive control arises.

It is known [18] that the equation (2) is linear in
terms of a suitably selected vector of the parame-
ters § € RV:

A(g,¢,6)d + b(g,9,0) =

S0+ Radd), )

where S(q,q,¢) is (2 x N)-matrix, R(q,§,¢) € R
The dimension N of the vector 6 depends on the num-
ber of uncertain parameters. For instance, mass or
moment of inertia of the vehicle and friction coeffi-
cients are usually uncertain and can vary during the
motion. Although the vector 6 is not known pre-
cisely, some bounds for variations of its components
are known. We suppose that the closed bounded con-
vex set ® C R" is given such that # € ©. The set ©
establishes a range for variations of the components
of 8. It is well known that the matrix A(q,¢,0) is
nonsingular for any physically realizable vector of 6.
We suppose that this property holds for any 8 € ©.

Denote 7 = 7(t) € RY an estimation vector for the
vector of the parameters §. Then, the equation (2)
can be rewritten as

Alg, ¢, 7(t))g + blg, ¢, 7(t)) = u(t) +n(t, 7(t), (24)
where the error function

n(t, 7(t)) = w(t)+
S(q(t), (1), o(®))(7(t) — 0).

The equation (24) has the same form as the equa-
tion (2), but now its left-hand side depends on the
known vector 7(t) instead of the unknown vector 6.
The error function 7(¢,7(t)) has the same role in (24)
as the disturbance w(¢) in (2). Hence, following the
analogy with (24), the control law is defined as

u= A(g, ¢,7) p(t) + b(g, $, 7). (26)

Now, an adaptation algorithm has to be defined, in
order to obtain 7(¢).

According to the recursive aim inequalities
method [15], the estimate 7(t) is constructed in such
a way that

(25)

I, ()l < Cp, Cp > Clu. (27)

An estimation procedure used is gradient with respect
to ||n(t,7(t))||> and includes the dead zone with a
threshold C;:

7(t) = =7 Pregy [h(n (& 7)) = Cy) -

28

(@09 1)), )
where Lk 0
, 11 x>0,

h(z) = { 0, otherwise, (29)

and Pr; [z] is a projection operator described below.
Denote 90 the boundary surface of the set ©, and
T,(0O) - the tangent space at a point 7 € 9O to
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Figure 2: The adaptive control scheme

the surface 0. The operator Pr; [z] provides the
orthogonal projection of the vector z on the tangent
space T,(00O) in the case when the point 7 belongs
to the boundary surface of the set ©® and the vector x
is directed outside of the set ©; otherwise, Pr., is the
identical operator. Thus, assuming that 7(0) € © the
algorithm (28) guarantees the inclusion 7(t) € © for
all £ > 0. The error function 7(¢, 7(t)) in the estima-
tion procedure (28) can be evaluated as

n(t, 7(t)) = Alg, ¢, 7())d + bg, ¢, 7(t)) — u(t), (30)

where all the variables are available from measure-
ments. Now, we can state the following theorem anal-
ogous to the Theorem 2.

Theorem 3 Suppose that the initial locomotion wve-
locity and steering rate satisfy the inequalities (22) and
the initial coordinates of the vehicle satisfy the inequal-
ities (17) with small enough € and 7(0) € ©. Then,
for any given €, and €, there exist small enough € and
Cy and large enough parameters vs, Vs, V1, V2, V5, V=
such that the aim inequalities (6), (7) are fulfilled on
the solution of the closed-loop system (1), (2), (13),

(15), (20), (26).

The proposed adaptive control scheme is shown in
Fig. 2. The inner loop involves: Kinematic Control Al-
gorithm (KCA), Dynamic Control Algorithm (DCA)
and Parameters Estimation Algorithm (PEA). The
essence of these blocks is given by the equations
(15), (26) and (28) respectively. The kinematic
equations (1) (block KE) and dynamic equations (2)
(block DE) form the plant model.

Note, that considered in [18] controller for a rigid
link manipulator (holonomic system) has a similar in-
ner loop structure. Our control scheme differs from

this type of a classic controller because of the kine-
matic control law of the feedback form with respect to
the coordinates of the vehicle.

6 Experiments

The experiments have been performed on an auto-
matic car designed on the base of a LIGIER electric
car shown in Fig. 3. This vehicle can either be manu-
ally driven as a car, or move autonomously [19, 20]. To
allow autonomous motions, the car is equiped with a
control unit based on a Motorola VME162-CPU board
and a transputer net. The sensor unit of the car con-
sists of ultrasonic range sensors (Polaroid 9000) and a
linear CCD-camera. The steering wheel servo-system
is equiped with a direct current motor and an optical
encoder to measure the steering angle. The locomo-
tion servo-system of the vehicle is equiped with an
asynchronous motor and two optical encoders at the
rear wheels to provide data on the locomotion velocity.

Figure 3: A LIGIER electric car

An operation of the developed controller is illus-
trated by Fig. 4 where the desired path is given as the
(z,y)-points obtained by discretization of the func-

tions "
Zq(s) = s,
{ y;i(s) = 1.0 — cos 5/3.0. (31)

The vehicle starts at (0, 0), speeds up to 1 m/s and
follows the desired path given by (31).

7 Conclusion

Three consequently complicated problems of the
motion stabilization of a nonholonomic vehicle to a de-
sired trajectory were considered. The control scheme
developed has a two-level architecture and is based on
the kinematic and dynamic models of the vehicle. On
the first level, the kinematic model is used and the
control law stabilizes the motion of the vehicle to the
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Figure 4: An example of the path following

desired trajectory. On the second level, the dynamic
model is used and the control law stabilizes the first
level feedback. The robustness of the motion control
with respect to the bounded unmeasured disturbances
was investigated. The adaptive control scheme was
proposed to stabilize the motion while the uncertain
dynamic parameters of the vehicle.

The proposed algorithm stabilizes the motion to a
desired trajectory given analitically. This approach
can also be applied to control the autonomous vehicle
in an automatic convoy where the autonomous vehicle
has to follow the leading vehicle in a prescribed dis-
tance. In this case, the relative coordinates of a target
point of the leading vehicle are used as the desired co-
ordinates x4, yq-
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