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Starcraft: Broodwar
Starcraft (January 1998) + Broodwar (exp., November 1998)
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Pro gaming and competitions

eSports, sponsorship, tournaments’ dotations
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Starcraft in numbers

12 years of competitive play

200 to 300 actions per minute amongst pro gamers

10 millions licenses sold (4.5 in South Korea)

160 BPM: reached rates of pro gamers hearts

4.5+ millions licenses sold for Starcraft II
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Real-Time Strategy Game

(“shamelessly stolen with permission” from Ben Weber, UCSC)
The models and approaches presented here are also valid in
Total Annihilation, Age of Empires and Warcraft 2.
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Interest for RTS games

Chess / Go / Rock-paper-scissors

Real-time (1/24th second per micro-turn)

Machine learning ready (supervised, unsupervised,
reinforcement)

AI competitions
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Problems to tackle

Strategy: tech tree, army composition

Tactics: army positioning

Micro-management: units controllo
w
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Transmute incompleteness into uncertainty
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Incompleteness

Many low level moves
achieving the same
high level goal

Fog of war (limited
sight)

Partial knowledge of
opponent’s force (size
and composition)

=⇒ Uncertainty

Considering the units as
individual Bayesian
robots

Seen units (viewed
units filter)

Probabilistic inference,
machine learning from
replays
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A Bayesian program structure

BP


Desc.


Spec.(π)


Variables

Decomposition

Forms (Parametric or Program)

Identification (based on δ)

Question

P(Searched|Known)

=

∑
Free P(Searched, Free, Known)

P(Known)

=
1

Z
×

∑
Free

P(Searched, Free, Known)
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A Bayesian program example: the Kalman filter
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Variables:
S0, . . .St,O0, . . . ,Ot

Decomposition:
P(S0, . . . ,St,O0, . . .Ot)

= P(S0).P(O0|S0).Πt
i=1[P(Si|Si−1).P(Oi|Si)]

Parametric forms:
P(S0) = G(S0, µ, σ)

P(Si|Si−1) = G(Si,A.Si−1,Q)

P(Oi|Si) = G(Oi,H.Si,R)

Identification Learning from instances

Q
u
e
st

io
n

P(St|O0, . . . ,Ot)

11/65



Part 1: Micro-management
Part 2: Enemy strategy prediction

Machine learnings

from replays
(parameters of
predictive models)

reinforcement
(exploration of
parameters space
for the Bayesian
robots)

online (adapt to
particular
opponent)

12/65



Part 1: Micro-management
Part 2: Enemy strategy prediction

Model overview

Not a perfect (nor what-we-want-in-the-end) model, but the
actual, implemented, bot model.
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Part 1

Micro-management
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Problem
Model
Results

Micro-management in RTS games

Micro-management is the art of maximizing the efficiency of
your units:

Focus-fire enemy units to reduce their fire power,

Move away damaged units (“dancing”),

Allow damaged units to flee (collisions), best placements
w.r.t. wanted/best target possible.

Open question: for humans, another objective is to rank the
actions by importance (APM limit).
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Model
Results

Serious Stuff (real-time Chess)

24 game simulation FPS, fine grained discrete world (almost
continuous), branching factor out of control, uncertainty
about opponent’s movements.

⇒ “No” computable optimal solution.

Our take: units as independant Bayesian robots.
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Problem
Model
Results

Where are we?

Incomplete 
Data

Enemy Units 
filtered map

Infer Opening / 
(and then) TechTree

Enemy Tactics

Our TacticsUnits production Units Group

BayesianUnit
BayesianUnit
BayesianUnit
BayesianUnit

BayesianUnit
BayesianUnit
BayesianUnit
BayesianUnit

Production Manager
/ Planner / Optim.

Goals

Sensory inputs

Units Group

Here
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Model
Results

The Bayesian unit (1)

The workers are not controlled as (Bayesian) sensory motor
systems as their tasks are extremely simple.

Modal unit, can be simplified as HFSM:

Scout

Move (small / large group)

In position

Fight:
- Attack
- Fight-move } When not attacking
- Flee
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Problem
Model
Results

The Bayesian unit (2) [Firing]

FireFight Reload

Flee

Move
Scout

Move

Focus-firing heuristic (simplified): Fire on units that do the
most damages, have the less hit points, and take the most
damages from their attack type.

Inputs to our unit:
wanted/best target: best target w.r.t heuristic

immediate target: best target in firing range
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Problem
Model
Results

The Bayesian unit (3) [Moving/Fleeing]

Mode dependant influences,
as:

“statically” occupied
tiles

“dynamically” occupied
tiles

height

damage map (+
gradient)

pathfinder

...
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Fight-move example (1)

Variables:

Dir n values with n = #{possible directions},
Diri∈{possible directions} ∈ {T, F},
Obji ∈ {T, F}, direction of the objective (quantified)
Dami ∈ {no, low,med,high}, subjective potential field,
Ai&Ei ∈ {none, small,big}, allied & enemy units presence,
Occi ∈ {no, terrain,building}, “static” occupation

Decomposition:

P(Dir,Dir1:n,Obj1:n,Dam1:nRep1:n,Occ1:n)

= Πn
i=1 P(Diri|Dir) // Dir = i⇒ 1,Dir 6= i⇒ 0

.P(Obji|Diri)

.P(Dami|Diri)

.P(Ai|Diri).P(Ei|Diri

.P(Occi|Diri) 21/65
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Model
Results

Fight-move example (2)

Parameters:
They are hand-specified for the moment but should be learned
through task-specific maps and maximization (EA/GP, RL).
Questions:
Our pathfinder gives us Obj1:n, the damage map Dam1:n, the
size (or number) of other units in tile/direction i A/E1:n, etc.

P(Dir|Obj1:n,Dam1:n,A1:n,E1:n,Occ1:n)
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Problem
Model
Results

Fight-move example (3)

Video: a fight in AIIDE micro-tournament setup 2 (decisions
of movements taken by sampling on Dir):
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Model
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Bayesian flocking (simplified)

Variables:

Diri∈{possible directions} ∈ {T, F},
Obji ∈ {T, F},
Atti ∈ {too close, close, far, too far}, closeness to allied
units for the ith direction (for instance),

Parameters:
P(Atti|Diri) can be learned with maze-like maps and on the
objective to minimize the time-to-completion (will find the
optimal flocking distance/attraction-repulsion):
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Model
Results

Repulsion applied “in position”

(2 videos which can be found on youtube
http://www.youtube.com/snippyhollow#p/a/u/1/sMyF_PlDqFo

http://www.youtube.com/snippyhollow#p/a/u/2/mvv9kUntLHU )
Variables: Diri,Obji,Repi, but with different parameters for
P(Repi|Diri) (can be learned also), and a different objective:
the wanted unit position.
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AIIDE 2010 Tournament 1

7 participants

Could not take part (technical
problem)

FreSC (France, Epita team) won

Played against FreSC: draw! (0-3,
3-0, draw (host wins))
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Model
Results

Benchmarking the movements efficiency

We designed/implemented a bot without the movements
advantage to highlight the increase in value of our model: a
target selection heuristic only bot (focus-firing bot).

Big Populations Blunder: Collisions
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Simplest solution

Sample in the Dir distribution!

(Note that our AIIDE 2010 bot was using the “pick best” policy.)
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Problem
Model
Results

Recap. Table

OAI HOAI BAIPB BAIS
OAI (50%) 64% 9% 3%

HOAI 59% (50%) 11% 6%

BAIPB 93% 97% (50%) 3%
BAIS 93% 95% 76% (50%)

Win ratios over at least 200 battles of Original AI, Heuristic
Only AI, Bayesian AI Pick Best, Bayesian AI Sampling in two
mirror setups: 12 and 36 ranged units. Read line vs column
win %.
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Problem
Model
Results

A word on parameters

Parameters can be hand specified, so we can provide game
designers with a slider on a λ or µ parameter controlling the
distribution on the model’s probability tables. For instance,
P(Dmgi|Diri = T) controls the risk-taking/bravery/temerity of
the unit. Game designers can toy around with behaviours this
way.

In the framework of a competition, we can learn these
parameters to maximize the objective. Being it a
micro-management only or a complete game (objectives
differ a little: the higher tactic level can decide to sacrifice a
group on an objective).
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Problem
Model
Results

Next?

A lot of possible improvements/follow-ups:

Other sensory inputs (heights/tactical positions...),

Learning the tables (EA/GP/RL for big combinations) w.r.t.
situations,

Either a case-based approach for situation recognition or
situations recognition tables fusion,

Group controllability vs unit autonomy (≈ unit
recklessness/sacrifice).
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Problem
Model
Results

Part 2

Strategy Prediction
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Problem
Model
Results

Definition

Infer what the enemy opening1 is from partial observations
(because of the fog of war) to be able to deal with it, or
counter it if we can.

(Another problem is then to dynamically adapt our own
opening/strategy.)

1opening = first strategy = first units + first tactical move (as in Chess),
we will reserve the term strategy for army composition + long term tactical
goals)
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Model
Results

Examples of openings (cheeses)

All-in fast dark templars:
Produce 2 dark templars (permanently cloaked unit type) as
fast as possible to destroy the enemy while he can not detect
them. Attempt to finish the game with a very specific (and
weak when countered) unit deep in the tech path.

All-in 2 gates zealots rush:
Produce only zealots (lowest tech Protoss military unit),
stream them once a critical attack mass (6+) is reached.
Attempt to finish the game before the opponent’s economy or
technological ROI kicked in.
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Problem
Model
Results

Where are we?

Incomplete 
Data

Enemy Units 
filtered map

Infer Opening / 
(and then) TechTree

Enemy Tactics

Our Tactics
Units production Units Group

BayesianUnit
BayesianUnit
BayesianUnit
BayesianUnit

Production Manager
/ Planner / Optim.

Goals

Here
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Problem
Model
Results

A word on the meta-game

Openings prior probabilities are influenced by maps and
previous games (meta-game) in the same match and/or
against the same opponent (pros tourneys: BO5+). We will
not consider it for the rest of this work. This is a huge
mistake2, as it is central to StarCraft gameplay balance, but
we play by the rules of current bots tournaments (BO1).

2it is very easy to adapt in our model: just put/change a prior
36/65
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Replays

Record all the actions of the player so that the game can be
deterministically re-simulated (random generators seeds are
serialized).

Supervised learning model:

Need for the replays to be annotated with openings.

Used Ben Weber (UCSC) dataset (annotated with tech
tree deployment order / rules) for comparisons purposes:
9316 games, between 500 and 1300 per match-up.

Can use other (more) replays (as we can automatically
annotated them).
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Replays openings labeling

replaysreplaysreplaysreplay replaysjoint
replays + 
multiple 

labels

replays + 
1 label / 

replay
score filteringEM 2 clusters

positive labeling 1 cluster vs others
different features for different labels

as many EM as labels

Semi-supervised labeling: manually extracted features +
clustering + annotation heuristic (“earliest happening” cluster
is labeled positively).
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Features selection

Features selected for each label (opening value) that we want
to put. From experts knowledge.
For instance:

what is important for the “fast dark templars” opening is
the time of the first production of a dark templar.

what is important for the “2 gates rush” opening are the
time of constructions of the first and second gate, and
the time of production of the first zealot.
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Clustering (1), PvT Fast DT opening

Tried many techniques, used Mclust (R) full EM (best results):
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Clustering (2), PvP Speed zealots opening
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Clustering (3), ZvP Fast mutas opening
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Bayesian Model

Building
s

Building
s

Building
s

Building
s

Observations

λ Time

Opening

BuildTree

LastOpening
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Variables

BuildTree ∈ [∅,building1,building2,building1 ∧
building2,buildtrees, . . . ]

N Observations: Oi∈J1...NK ∈ {0,1}, Ok is 1 (true)

Opening: Opt ∈ [opening1 . . . openingM]

LastOpening: Opt−1 ∈ [opening1 . . . openingM]

λ ∈ {0,1}: coherence variable (restraining BuildTree to
possible values with regard to OJ1...NK)

Time: T ∈ J1 . . . PK
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Problem
Model
Results

BuildTree variable by example

Pylon

Gateway

Core

StargateRobotics Adun

Forge

Cannon

BuildTree ∈ {∅, {Pylon}, {Pylon,Gateway}, {Pylon, Forge},

{Pylon,Gateway, Forge}, {Pylon,Gateway,Core}, . . . }
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Decomposition

P(T,BuildTree,O1 . . .ON,Opt,Opt−1, λ)

= P(Opt|Opt−1)

P(Opt−1)

P(BuildTree|Opt)

P(OJ1...NK)

P(λ|BuildTree,OJ1...NK)

P(T|BuildTree,Opt)
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Problem
Model
Results

Forms

P(Opt|Opt−1), a filter so that the previous inference
impacts the current one (functional Dirac)

P(BuildTree|Opt), histogram learned from replays

P(λ|BuildTree,OJ1...NK) restricts BuildTree values to the
ones that can co-exist with the observations

P(T|BuildTree,Opt) are discretized normal distributions.
There is one bell shape per (opening,buildTree) couple.
The parameters of these discrete Gaussian distributions
are learned from the labeled replays.
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Problem
Model
Results

A note on identification/learning

Learning of the P(T|BuildTree,Opt) bell shapes
parameters takes into account the uncertainty of the
couples (buildTree, opening) for which we have few
observations by starting with a high σ2.

Learning on human replays for bots opening recognition
does not work well. We had to impose a large minimal σ2

(more robustness at the detriment of precision).
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Question

P(Op|T = t,OJ1...NK = oJ1...NK, λ = 1)

∝ P(Op).P(oJ1...NK)

×
∑

BuildTree P(λ|BuildTree, oJ1...NK)

.P(BuildTree|Op).P(t|BuildTree,Op)

Note: P(BuildTree|Opening, Time)

would use the plan recognition model as a planning model.
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Evolution of predictions (1)

Ben’s labels
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Results

Evolution of predictions (2)

Our labels
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Low CPU and memory footprint

Race # Games Learning time Inference µ Inference σ2

T 1036 0.197844 0.0360234 0.00892601
T 567 0.110019 0.030129 0.00738386
P 1021 0.13513 0.0164457 0.00370478
P 542 0.056275 0.00940027 0.00188217
Z 1028 0.143851 0.0150968 0.00334057
Z 896 0.089014 0.00796715 0.00123551
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Problem
Model
Results

In game prediction

(Video: watch the right of the screen.)
http://www.youtube.com/watch?v=7ycEkK54lTg

Used it in BroodwarBotQ, free software (BSD 3-clauses):
http://github.com/SnippyHolloW/BroodwarBotQ
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Results

Evaluation metrics

the final prediction, opening that is predicted at the end
of the test.

the online twice (OT), counts the openings that have
emerged as most probable twice during a test (not due to
noise),

the online once > 3 (OO3), counts the openings that have
emerged as most probable openings after 3 minutes
(meaningful information).
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Recap. performance table

Weber and Mateas’ labels Our labels
5 minutes 10 minutes 5 minutes 10 minutes

match-up final OO3 final OT OO3 final OO3 final OT OO3
PvP 0.65 0.59 0.69 0.69 0.71 0.78 0.68 0.83 0.83 0.83
PvT 0.75 0.71 0.78 0.86 0.83 0.62 0.69 0.62 0.73 0.72
PvZ 0.73 0.66 0.8 0.86 0.8 0.61 0.62 0.66 0.66 0.69
TvP 0.69 0.76 0.6 0.75 0.77 0.50 0.54 0.5 0.6 0.69
TvT 0.57 0.65 0.5 0.55 0.62 0.72 0.77 0.68 0.89 0.84
TvZ 0.84 0.81 0.88 0.91 0.93 0.71 0.77 0.72 0.88 0.86
ZvP 0.63 0.64 0.87 0.82 0.89 0.39 0.52 0.35 0.6 0.57
ZvT 0.59 0.59 0.68 0.69 0.72 0.54 0.61 0.52 0.67 0.62
ZvZ 0.69 0.67 0.73 0.74 0.77 0.83 0.85 0.81 0.89 0.94

overall 0.68 0.68 0.73 0.76 0.78 0.63 0.67 0.63 0.75 0.75
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Tolerance to noise (1)

Zerg (versus Protoss) opening recognition with increasing
noise (15 missing attributes↔ 93.75% mission information).
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Model
Results

Tolerance to noise (2)

Protoss (versus Zerg) opening recognition with increasing
noise (15 missing attributes↔ 88.23% mission information).
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Results

Comparing results with existing works

Compared to previous work by Ben Weber [CIG 2009]:

Works with partial information (fog of war),

Resists quite well to noise,

Gives a distribution, not just a decision (that’s how high
level human player think).

Kudos to Ben, who was a nice enough pioneer to distribute his
dataset.
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Limitations

Dependant on the labeling: while I think ours is better
than Ben’s, it’s not systematically the case,

Can not deal with multiple-labels (Unknown label contains
some unexploited information),

Should use some other (sometimes more advanced, not
necessarily more numerous) features.
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Things that work

Strategy: tech tree, army composition

Tactics: army positioning

Micro-management: units controllo
w
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~1 sec

~30 sec

~3 min

Micro-management “in general” is quite efficient and
robust (could be more optimized and more controllable),

Opening/Strategy recognition/prediction gives good
enough results online.
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Possible Improvements

Direct possible improvements:

Micro-management optimization for particular
situations through learning (see Part 1),

Learning the parameters of the opening recognition
model from a bigger dataset,

Learning the parameters of the opening recognition
model from bot vs bot replays,

Add Openingt+1 and so the P(Openingt+1|Observationst)

question explicitly.
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Next? (1)

If we want a bot capable to compete at the highest level
against bots (for 1.0 RC1):

Most important: develop (with a release→benchmark
loop) the full model (!),

Add tactics (drops, run-by, contain...), and their counters,

Vary tactics from learned outcome (enemy defenses type
and position, UCT?),

Abuse the game engine more (drop trick...),

Deal with economy/tech/production and
scouting/defense/attack concurrencies for
resources/units (full model).
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Next? (2)

If we want a bot capable to adapt to “good” human play (for
v2.0):

Dynamic adaptation of the strategy/build order, for
instance through
P(BuildTreet+1|Observationst,BuildTreet) (see AIIDE 2011
for more informations),

Detect fake builds,

Detect fake tactical moves.
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Thanks

Thank you for your attention,

Questions ?
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