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Foreword:

This internship report is intended to an university jury but, more than that, the author
considered to make it useful in another way: he would be very pleased if it could help
someone (anybody) new in the research domain of “hypothesis finding for systems biology
through logic-based methods”. The content is intended to fullfill the absolutely basic re-
quirements for entering the related research topics as well as giving the central references
and showing the thought process that lead to such a conclusion.
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1 Introduction

This internship is being done at the National Institute of Informatics (NII, Tokyo) under
the supervising of Katsumi Inoue (NII) and Taisuke Sato (Tokyo Institute of Technology).
The corresponding French advisor is Pierre Bessière (CNRS, Grenoble). The subject of
the internship deals with the hypothesis finding (knowledge discovery) process for sys-
tems biology through inductive logic programming. The goal is to enhance the modeling
of metabolic pathways of cells in order to obtain good predictive in silico models that will
take all the mutual interactions of metabolites into account. The interest is to give a
better understanding of the physiological state of the cell by improving the interpretation
of the interactions between metabolic and signaling networks. The application fields
range from biochemical engineering of proteins to the comprehension of cell aging (can-
cers) and drugs side effects prediction.

Systems biology is the discipline that studies biology at the molecular level by con-
sidering the cell as a complex system constituted of internal chemical interactions. The
behavior of such a biological system is predicted from the point of view of a complex sys-
tem involving time and non-linearity. The size and the non-linearity of the models of the
cell’s metabolisms forces us to predict some parameters that can’t be measured. Some
parameters can be measured in vitro but not in vivo and their values vary a lot because of
all the external interaction of in vivo experiences. Numerical data is obtained at different
levels: macroscopic, microscopic and molecular, and from different experiences. This leads
us to set a threshold level between precision and generality by applying discretization.

Inductive logic programming is a machine learning technique that we use on ex-
perimental (sometimes incomplete) data for hypothesis finding. It allows us to compute
either missing values (facts) or more general rules that explain some observations given
a background knowledge. Finding missing facts is called abduction, and building rules
(through generalization of clauses) is called induction. This techniques are very powerful
to deal with the amount of experimental data and the increase of background knowledge
in systems biology every year. Indeed, today’s advances in data acquisition and handling
technologies provides a wealth of new data that should lead to more predictive and com-
prehensive models. Besides, one can easily increment the background knowledge of a
given model by adding computed rules or abducibles to it.

Logical kinetic models of the glycolysis and pentose phosphate pathways of Es-
cherichia Coli and Saccharomyces Cerevisiae have been developped in order to study the
metabolic response of a biological system after the injection of a pulse of glucose. The
description of the internship’s work follows this pattern: we will first explain the basic
biological knowledge required to deal with metabolic pathways and explain the inductive
logic programming framework. Then, we will draw a state of the art showing the cur-
rent problems that scientists encounter. We will then explain our kinetic based approach
and justify its use and the need for discrete levels. We finish by discussing the imple-
mentation and the results of logical abduction of the concentrations of metabolites before
the dynamic transition. Before concluding, we will open on future works that are now
possible.
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2 Prerequisites and State of the Art

What makes the wealth and the complexity of a cell is on the one hand its numerous
genes, and on the other hand the degree of interactions between its different chemical
compounds (protein-protein, protein-ADN, protein-metabolite). It is therefore necessary
to make an analysis taking into account the totality of interactions. For instance, if the
databases concerning the Escherichia Coli increase each year with new results about the
discovery of new proteins and new behavior due to some expressed genes, the mathemati-
cal modeling of the prokaryote cells is always an open question which excite the scientific
community. Nowadays, bioinformatics represents the key field to explain the functionality
of lifescience. To analyze a biological system it is necessary to find out new mathematical
models allowing to explain the evolution of the system in a dynamic context [Kitano 02].
Many physical and biological phenomena may be represented on an analytical form using
a dynamical system. The majority of kinetic models in biology are described by coupled
differential equations and simulators are implemented with the appropriate methods to
solve these systems. However, for most nonlinear dynamical systems it is difficult to find
an analytical solution. The understanding of the phenomenon described by a complex
system is carried out by a qualitative study of its behaviour such as stability or forking.
The qualitative analysis based on perturbation method is a difficult task and is often
performed by decomposition in subsystems which are simulated numerically.

2.1 Molecular Biology: the Cell

Basically, there are two types of cells but both have to provide functions and to reproduce.
Both require a lot of intermediate steps that make use of energy and material.

2.1.1 Prokaryote and Eukaryote

There are many types of cells and they have many different functions, but we can ex-
tract some common metabolic pathways, when studying cells at a molecular scale. These
metabolic pathways represent the chemical reactions and transformation of cell’s compo-
nents. Their detailled study would require an entire book, so we will only give points that
were necessary to the comprehension of the presented problem. We have worked on mod-
els of Escherichia Coli and Saccharomyces Cerevisiae because they are representatives of
two big families of cells: respectively, the prokaryote and the eukaryote. Prokaryote cells
lack a nucleus (karyon) nor any other membrane-bound organelles (functional subunits).
On the contrary, eukaryote cells have inner membranes, as seen in Fig.1, that bounds the
nucleus and mitochondria for instance. Prokaryote cells are mainly constituting unicellu-
lar organism whereas eukaryote cells are usually 10 to 1000 times bigger (in volume) and
found in multicellular organisms. Both types of cells can be seen as chemical factories
filled with water and proteins delimited by the plasma membrane.

2.1.2 Energy

Inside the cell, the energy is carried by adenosine triphosphate (ATP: C10H16N5O13P3),
which stores avaible energy in chemical bonds with phosphoanhydride. The energy is re-
leased during the hydrolysis of ATP: when a high-energy phosphoanydride bond is broken,
by the addition of a water molecule, to form adenosine diphosphate (ADP). This energy
can be used for instance for muscle contraction or biosynthesis of proteins. Two common
way to produce energy that will be stored in ATP are:
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Eukaryote Prokaryote
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Figure 1: Cell types: left: eukaryote, right: prokaryote

• glycolysis: the degradation of glucose (C6H12O6 for instance) in carbon dioxide (CO2)
and water (H2O). The energy emitted by cutting chemical bonds is stored into ATP
and reduced nicotinamide adenine dinucleotide (NADH).

• photosynthesis: the conversion of carbon dioxide and water into organic compounds
(especially sugars) and oxygen (waste product) using solar energy. A part of the light
energy absorbed by chlorophylls is stored in ATP.

2.1.3 Material

The universal material of the cell are proteins, which are complex molecules made from
20 basic amino-acids, 8 of them cannot be synthetised by human cells. Proteins form the
internal skeleton and membrane of the cell. Other proteins can be (non-exhaustive list)
sensors, intracellular messages, extracellular signals, enzymes (catalysing chemical re-
actions), motors, control gene activity (transcription factors) and carry substances across
the plasma membrane. In a liver cell, protein accounts for approximately 20% of the
weight with an approximative 7.0 × 109 total number of protein molecules per liver cell.
The mean protein is 400 amino-acids long.

A big picture, as in figure 2, of the production of a given protein would be: a transcrip-
tion factor reads the DNA and find the beginning of the template of the wanted protein.
This template is copied into a single-stranded ribonucleic acid (RNA) wih the help of
the RNA polymerase enzyme (a). In eukaryotic cells, this RNA is shortened to form a
“messenger RNA” (mRNA) (b) that will migrate through the cell to a ribosome (c). The
ribosome is a protein-RNA complexe that will use the mRNA as input and precise plan to
assemble and link together amino acids to form the wanted polypeptide sequence (trans-
lation) (d), symbol of the expression of the gene. The new polypeptide then folds into a
functional three-dimensional protein molecule (post-translation) (e) and often even binds
a biochemical functional group (acetate, phosphate, lipids, carbohydrates, etc.) (f).

2.1.4 Metabolic Pathways

Molecular biologists search to model the cell by its biochemical interactions: protein-
protein, protein-ADN, protein-metabolite. These reactions account for the function, the
growth and the reproduction of the cell. For that purpose, they describe the chemical re-
actions occuring within the cell in a big graph connecting metabolites by annotated edges
representing the reactions and their characteristics (enzymes, implied genes, constants,
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Figure 2: Protein synthesis originates in the nucleus (blue) and finish in the cytoplasm
(beige). a: transcription ; b: post-transcription ; c: migration of the mRNA into the
cytoplasm ; d: translation ; e: post-translation / folding ; f: binding of an effector

etc.): these interconnected reactions are forming a metabolic pathway. The substrates
(reactants) of one reaction are the products of the previous one. All reactions are chemi-
cally reversible, but the thermodynamical conditions in the cell often favorise one direc-
tion. There are two types of metabolic pathways: catabolic ones, that break down input
molecules to store energy, and anabolic ones, that construct big molecules from smaller
units.

You can see an example of a metabolic pathway in appendix: Fig.24 from the Kyoto
Encyclopedia of Genes and Genomes (KEGG) [Kanehisa & Goto 00, Kanehisa et al. 08].
This is the glycolysis pathway: glucose (C6H12O6) enters the cell and is phosphorylated
by ATP to glucose 6-phosphate (G6P) in order not to be able to leave the cell. The “goal”
of the pathway is then to produce pyruvate (C3H4O−3 ) from this G6P and store the energy
released when cutting bounds into ATP and NADH. This pathway can run in reverse to
produce G6P for storage: in this case, it is called glucogenesis. Metabolic pathways are
often regulated by inhibitions of some of the enzymes or by internal cycles (as the Krebs
cycle, that is denoted as citrate cycle in Fig.24). Such metabolic pathways are specialised
for each cell with some specific reactions and different protein syntheses.

Metabolic engineering tries to produce metabolites such as amino acids, vitamins, or-
ganic acids, etc. from biochemical synthesis. It is crucial to understand (to be able to con-
trol) the flux distribution, regulation phenomena and control properties of the interesting
metabolism [Doncescu et al. 07]. As intracellular fluxes cannot be measured, they are
computed by solving a set of linear equations consisting of the mass balances equations
of the intracellular metabolites. S[m metabolites × n reactions] being the stoichiometric
matrix of the metabolic network, v = (v1, v2, . . . , vn) the unknown fluxes of the n reactions,
C = (C1, C2, . . . , Cm) the concentration of the m metabolites and r the accumulation rate
of metabolites, we have:

S.v =
dC

dt
= r (2.1)

In metabolic engineering, the system is considered to be able to reach steady states: when
the input flux is equal to the ouput one, so when r = 0. It is then possible to compute
v. Therefore, determining the structure of a metabolic network and its steady states is
the first step towards the biosynthesis of molecules of interest and it is needed to build a
kinetic model for in silico analysis of the metabolism.
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2.2 Inductive Logic Programming

This (sub)section is mainly based on the Machine Learning 2004 paper from Katsumi
Inoue: Induction as Consequence Finding [Inoue 04]. This is only boiled down to the es-
sentials to have an overview of how are constructed the hypotheses in the following parts.

2.2.1 Vocabulary, Notations & Definitions

A clause is a disjunction of literals: C = {A1, . . . , Am,¬B1, . . . ,¬Bn}, with atomic Ai, Bi,
can also be noted C = {B1 ∧ · · · ∧ Bn ⊃ A1 ∨ · · · ∨ Am}. The empty clause is noted �. A
positive (negative) clause is a clause whose disjuncts are all positive (negative) litterals. A
negative clause can also be named an integrity constraint. A Horn clause is a definite (only
one positive litteral) or negative clause. Ex: C ′ = {¬B1, . . . ,¬Bn, A} = {B1∧ · · ·∧Bn ⇒ A}
is Horn (otherwise, it’s non-Horn). A unit clause is a clause of length 1, only 1 litteral. A
conjunctive normal form (CNF) is a conjunction of clauses, and a disjunctive normal form
(DNF) is a disjunction of conjunctions of literals. A clausal theory Σ is a finite set (CNF)
of clauses. If a clausal theory contains only Horn clauses, it is a Horn program, otherwise,
the clausal theory is said to be full (with non-Horn clauses). A clause C subsumes a clause
D if and only if (iff) there is a substitution θ such that Cθ ⊆ D. C is then told to be more
general than D. C properly subsumes D iff C subsumes D but D does not subsume C.
µΣ denotes the set of clauses in a clausal theory Σ that are not properly subsumed by
any other clause in Σ (µ stands for “minimal subsumption”). For a clausal theory Σ, a
consequence of Σ is a clause entailed by Σ. The set of all consequences of Σ is noted Th(Σ).
Completeness refers to the ability to prove any formula that is true. Consistency refers
to the impossibility to prove both P and ¬P at the same time. A production field is a pair
[L, Cond], where L is a set of literals closed under instanciation, and Cond is a condition
to be satisfied. For instance P = [p( , , )+, length ≤ 1 and term depth ≤ 1] could be used
to set the abductive bias by asking for the hypotheses to follow that form, where p( , , )+

is the set of all positive literal whose predicate symbol is p and takes 3 arguments, and
satisfy this conditions. A production field P is stable if, for any two clauses C and D such
that C ⊆ D, D ∈ P only if C ∈ P.

2.2.2 Overview

Both induction and abduction are part of the inductive logic programming (ILP) frame-
work [Mooney 97]. Their goals (see Fig.3) are to seek hypotheses that (2.2) account for
given observations or examples while (2.3) staying consistent with the background. Given
a background theory B and positive examples E (both are clausal theories), the task of
induction and abduction is to find an hypothesis H such that:

B ∧H |= E (2.2)
and B ∧H 2 ⊥ (2.3)

Abduction infers direct causes of observations, like missing facts (that hasn’t been ob-
served), that are often called explanations. Induction focuses more on finding gen-
eral hypotheses that cover as many positive examples as possible (and as less nega-
tive ones as possible). Their relation and interactions are studied more in depth in
[Flach & Kakas 00].

The resolution is complete for consequence finding [Lee 67] and even C |= D can be re-
placed by C ⊆ D (subsumes). With Σ |=resolution Th(Σ)⇒ Σ ⊆ Th(Σ), Σ |= µΣ and µΣ ⊆ Σ:
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Figure 3: Left: abduction, Right: induction.

Th(Σ) and µTh(Σ) are equivalent under subsumption. Consequence finding a key point
for ILP as it both provides a theoretical background for discussing the completeness of
ILP systems [Nienhuys-Cheng & De Wolf 97] but also as it allows to use resolution (or
tableaux calculus) for finding H.

Generalization is often required for induction in order to generate “general” hypothe-
ses. Its task is, given a CNF F , to find a more general CNF H such that H |= F . Some
well-known techniques for achieving that are:

• Reverse Skolemization: conversion of Skolem functions to existentially quantified
variables.

• Anti-instanciation: ground terms are replaced with variables.

• Anti-subsumption (dropping of literals): some literals are arbitrarly dropped from a
clause.

2.2.3 Inverse Entailment for Abduction and Induction

Abduction through IE is considered in [Inoue 92, Muggleton 95]. It uses the facts that:

(2.2 & 2.3)⇐⇒ B ∧ ¬E |= ¬H (2.4)
and B 2 ¬H (2.5)

Let L be the representation language to express our hypotheses, and Γ be a set of candi-
date hypotheses (so, for abduction, ground literals), defined as a subset of L. We want to
explain a finite number of observations E1, . . . , En from an abductive theory (B,Γ). Γ is
called the abductive bias as it restraint the possible expressions of the hypotheses. And
so, with (2.4) and (2.5), the negation of H can be computed through a consequence finding
procedure (or other entailment calculus) from B ∧ ¬E. We can consider:

B: a full clausal theory (containing non-Horn clauses)

E: a conjunction of existentially-quantified literals

8
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H: a conjunction of literals (within the abductive bias)

With respect to this, the IE calculus is sound and complete for computing abductive ex-
planations.

IE for induction was first considered in [Muggleton 95] with the Progol system. The
principle that it introduced for induction as IE is to work with a “bridge” formula U such
that

B ∧ ¬E |= U, U |= ¬H (2.6)

IE for induction as in [Muggleton 95] uses the bottom clause (conjunction of all unit
clauses entailed by B ∧ ¬E) as “bridge” formula:

⊥(B,E) = {¬L|L is a literal and B ∧ ¬E |= L} (2.7)

and a hypothesis H is constructed by generalizing a sub-clause of ⊥(B,E):

H |= ⊥(B,E) (2.8)

The negation of H can be computed through a consequence finding procedure. We can
consider:

B: a Horn program

E: a Horn clause

H: a Horn clause

With respect to this, the IE calculus is sound (correct) but incomplete [Yamamoto 97] for
computing inductive hypotheses.

2.2.4 CF-induction

By extending the notion of consequence finding, [Inoue 92] defined characteristic clauses
to represent “interesting” clauses for a given problem. For a clausal theory Σ, the set of
logical consequence of Σ belonging to the production field P is denoted as ThP(Σ). The
characteristic clauses of Σ with respect to P are defined as:

Carc(Σ,P) = µThP)(Σ) (2.9)

Which leads to Carc(Σ,P) = {�} ⇔ Σ is unsatisfiable and P is stable. For instance, when
Σ = (¬p ∨ q) ∧ p:

Carc(Σ,LΣ) = p ∧ q

There are several procedures to compute characteristic clauses (through the elegantNewCarc:
new characteristic clauses expansion) that can be found in [Inoue 92] and [Inoue 04].

CF-induction (as induction in the large) is interested in the formulas derived from
B ∧ ¬E that are not derived from B alone. Instead of ⊥(B,E), it considers some clausal
theory CC(B,E) as a “bridge” formula. (2.4) and (2.5) can then be rewritten as:

B ∧ ¬E |= CC(B,E) (2.10)
CC(B,E) |= ¬H (⇐⇒ H |= ¬CC(B,E)) (2.11)

9
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CC(B,E) is obtained by consequence finding from the characteristic clauses of B ∧ ¬E
because (by definition of Carc) any other consequence of B ∧ ¬E belonging to P can be
obtained by constructing a clause that is subsumed by a characteristic clause. Hence, we
have:

Carc(B ∧ ¬E,P) |= CC(B,E) (2.12)

with P giving an inductive bias. In (2.11), we have ¬CC(B,E) as DNF, it should be
converted into the CNF formula F which H entails:

F ≡ ¬CC(B,E) (2.13)
H |= F (2.14)

Finishing the process of CF-induction from (2.13) is only to generalize (see page 8) the
clausal theory F to H such that B ∧ H is consistent and H is Skolem free (without
Skolem terms, i.e. without constants that could be replaced by existentially quantified
variables).

CF-induction can be tracted to a consequence finding procedure and consider the most
general class:

B: a full clausal theory

E: a full clausal theory

H: a full clausal theory

The IE calculus is sound (correct) and complete for computing inductive hypotheses.

2.3 Previous and Related Works

“To understand biology at the system level, we must examine the structure
and dynamics of cellular and organismal function, rather than the
characteristics of isolated parts of a cell or organism.” [Kitano 02]

2.3.1 Analytical Models and Quantitative Analysis

There are analytical models of cells’ metabolisms, which are organised as complex net-
works of interconnected reactions, where the global behavior is the result of individual
properties of enzymes, stoichiometry, metabolites, reactions constants. The approaches
are based on mass-balance and/or kinetic methods which also account for dynamic behav-
ior. The choice of Michaelis-Menten formalism has often been made as a representation
of a non-linear allosteric regulation system.

Dynamic models are often based on integral and (ordinary) differential equations
(ODEs). In [Waser et al. 83], the authors study the kinetics of the phosphofructokinase
reaction (part of the glycolysis pathway) through the use of ODE. They used mainly Hill’s
kinetics for the regulation of the enzymatic activity. A work that is closer to what we
have done can be found in [Franco & Canela 84], where the authors simulate the purine
metabolism by ODEs (one equation per reaction-enzyme couple) using the Michaelis con-
stant of each enzyme. The results that we have for the experiment of a pulse of glu-
cose on Saccharomyces Cerevisiae are based on an simulator from Andrei Doncescu
using integral / differential equations. This is a work based on experimental data and

10
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[Mauch et al. 00] where the authors describe the experiments, assumptions and modeling
in details. Not every quantitative analysis is done through ODE. For instance, the pa-
per [Hofestädt & Thelen 98] presents a quantitative simulation of biochemical networks
while using Petrinets.

In [Reder 88], the author has emphasized on the structural characterization and prop-
erties of the metabolic network as opposed to the reaction kinetics. This is not directly
related to the current work, but this is an interesting approach of a very related problem.
More generally, the analytical models are designed to have a very precise modeling of the
cell (or part of it) but lack a global approach that would allow to find “general” formulas
that rule this complex system. Also, it is not always possible to measure the evolution
of concentration of metabolites in vivo, but parameters of ODEs (or other quantitative)
models are sometimes approximated by in vitro measurements. This can be a source of
error as they can differ a lot from in vivo numbers. This is why logic based approaches
(and mixed ones) exist: it should be better at handling general cases and structural driven
rules.

2.3.2 Logic Based Approaches

In [Tamaddoni-Nezhad et al. 06], the authors use both abduction and induction to model
inhibition in metabolic pathways. Abduction is used to complete the background knowl-
edge, and then induction allows for learning general rules while working in an hypothesis
language that is disjoint from the observation language. They clearly aim at predicting
the inhibitory effects of different substances to assess the potential harmful side-effects
of drugs. The network topology and the functional classes of inhibitors and enzymes con-
stitute the background knowledge, whereas the examples are derived from in vive experi-
ments involving nuclear magnetic reasonance analysis of metabolite concentrations in rat
urine following injections of toxins. The background knowledge is regarded as incomplete
and so the “hypotheses are considered which consist of a mixture of specific inhibitions
of enzymes (ground acts) together with general (non-ground) rules which predict classes
of enzymes likely to be inhibited by the toxin”. Their results suggest that non-ground
hypotheses have a better predictive accuracy than ground ones when sufficient training
data is provided.

[Chen et al. 07] investigated probabilistic inductive logic programming (PILP) appli-
cation to systems biology within the stochastic logic programs (SLP) description. Their
example data was derived from studies of the effects of toxins on rats metabolic path-
ways reactions inhibitions (using nuclear magnetic resonance). They found a decrease in
error compared to classic ILP but the main advance was to be able to learn PILP mod-
els from probabilistic examples. They used the same data to make a comparative study
[Muggleton & Chen 08] of existing probabilistic logic models, being them statistical rela-
tional model (SRM) based as in [Kersting & De Raedt 01] or statistical logic programming
(SLP) based as in [Sato 98].

A publication in Nature [King et al. 04] makes a strong point for the automation of
the scientific discovery process. It is stated that the data are being generated much faster
than they can be analysed by experts. Thus, the authors have built a physical robot scien-
tist that conduct cycles of scientific experimentation through artificial intelligence tech-
niques. A cycle is as follows: the system automatically generates hypotheses to explain
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observations, come up with the testing experiments, physically runs them using a labora-
tory robot, interprets the results and change the discovered hypotheses in consequence,
and cycle again. The authors of this paper applied it to the determination of gene func-
tion in the growth of Saccharomyces Cerevisiae (yeast). They show that this automated
experiment stategy is competitive with human performance for experiment selections.

In [Ray et al. 09], the authors show how biological pahways can be modeled in a logic
programming formalism. They then use a nonmonotonic logic system for learning and
revising such networks from observations. There are numerous logic-based attempts to
model cells metabolisms, we should also cite BIOCHAM from [Chabrier-Rivier et al. 04],
which stands for BIOCHemical Abstract Machine and that consist in modeling the bio-
chemical system through reaction rules and properties. The additional knowledge from
experiments comes is formalized in temporal logic and can be used to learn modifica-
tions or refinements of the model. The biological validation can be done through model-
checking, both qualitatively and quantitatively.

To conclude this overview, in [King et al. 05], the analysis of metabolic pathways is
done by using a qualitative reasoning (QR) as a unified formalism for prediction (sim-
ulation) and identification. This QR formalism is an abstration of ordinary differential
equations (ODEs) that has the advantage over logical graph-based models of explicitely
including dynamics. These QR models are obtained from generate-and-test ILP proce-
dure, which bring it close to our approach.

2.3.3 Japanese-French Symposium on Systems Biology

The goal of the Japanese-French symposium on systems biology is to elaborate sym-
bolic models of these systems in order to discover the mechanisms that govern them,
so as to better apprehend the behavior of cells. Previous work has been done concerning
[Doncescu et al. 07, Yamamoto et al. 08] the use of inductive logic programming for study-
ing metabolic pathways.

In [Doncescu et al. 07], the authors explain a practical use of CF-induction to explain
the metabolism of a simple, yet relevant, pathway that has a hidden metabolite and a
bidirectional reaction. Their framework is the one of metabolic flux analysis (2.1) with
up/down variations of concentrations. In [Yamamoto et al. 08], the authors explain the
rules that they use for toxins inhibitory effects within metabolic flux analysis. This rules
are:

con(X,up)← reac(Y,X) ∧ reac(X,Z) ∧ con(Y, up) ∧ ¬inh(Y,X) ∧ inh(X,Z) (2.15)
con(X, down)← react(Y,X) ∧ con(Y, down) ∧ ¬inh(Y,X) (2.16)

where con(metabolite, change), reac(X,Y ), inh(X,Y ) respectively stand for concentra-
tion(metabolite, change), reaction between metabolites X and Y, inhibition of the reaction
between X and Y. We have to keep in mind that inhibition is indeed an effect of the toxin
on the enzyme that normally allows for the reaction activation.

In [Inoue et al. 09], the work is based on the same models and problem than in
[Tamaddoni-Nezhad et al. 06, Chen et al. 07, Muggleton & Chen 08]: the inhibitory ef-
fects of toxins on the rat metabolisms. What is new in this work, and that we have
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successfully used in the current one, is that it describes a method to rank hypotheses
with the help of BDD-EM [Ishihata et al. 08]. That is also in this paper that is mentioned
for the first time the full system for hypothesis finding, described in Fig.4, that we will
base our work on.

Experiments

Logically 
possible 

hypotheses

Databases

Hypotheses 
Generator
(SOLAR)

Hypotheses Evaluator 
(BDD-EM)

Background 
knowledge

Observations

Most probable 
hypotheses

Figure 4: Current biological hypothesis-finding system as explained in [Inoue et al. 09]
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3 Discrete Levels and Kinetic Modeling of Reactions

The kinetic model that will be presented in the following allows for the study of metabolic
flux analysis by handling not only qualitative results (like changes of concentration of a
metabolite between to instants) but quantitative values. For that, we clusterize contin-
uous concentrations of metabolites over time into discrete levels and discrete timesteps.
Then (4.3), we applied it on an inverse problem: given the measured concentrations of
some metabolites in steady state, we compute the concentrations of metabolites before
the dynamic transition from the perturbation that cause a pulse of glucose to this steady
state thanks to the kinetic modeling.

3.1 Precision – Generality trade-off

Generalization

Learning

Complexity of the Hypothesis space

Errors

currently

evolution

Figure 5: Variations of the learning and generalization errors in function of the complexity
of the hypothesis space. The “evolution” arrow show where we are heading by discretizing
the time series more finely.

We are dealing with the classic problem of machine learning: given some samples
data as input, could we learn hypotheses that describe this data in terms of important
properties, for us to be able to predict the class (or what will happen) when we are given a
new sample (an event occurs). This is also the way we, as human being, learn our lessons,
make hypotheses, conclusions, and even learn to walk. Let X be the samples space and
H be the hypotheses space. These spaces are generated respectively by LX , language of
the samples, and by LH, language of the hypotheses. The task of machine learning is to
find a function X → H that associate the x ∈ X with corresponding classes hi ∈ H. The
problem is that the x can be differing from each others by very tiny differences in their
features. Which features are the most important for LH? If we try and make a machine
that learns by taking all the features into account, that is equivalent to have LX = LH
and learning is simply copying the values of the features. When a new x will be given to
this machine, it will be unable to differentiate that sample from the others, in fact: every
sample will be a special case.
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H(↓,↑)

H(⇓,↓,=,↑,⇑)

Samples space Hypothesis spaces

H(∞)

Figure 6: Trade-off between the ability to describe the samples space given the complexity
of the hypothesis space

There is a recurrent problem in machine learning: the learning error is decreasing
when the dimension of the hypotheses space is growing but the generalization error
begins growing after some point as seen in Fig.5. As stated above, if the complexity
of the hypotheses space is too big, the hypotheses will all be special cases. There are
numerous of possible metaphors for explaining machine learning, one of them that is
near the reality is that machine learning is like a data compression task: if the dictionary
of possible features (LH) is too small, there will be a lot of loss in the process and
the learning error will be big. If you specialise it too much, you will lose robustness
(predictive power) and each compressed data input will be so precise that it will look like
neither of the others. That’s the strong argument in favor or Occam’s razor: “entities
should not be multiplied unnecessarily”, meaning that if one has to choose between two
hypotheses, the best choice should be the shorter (in terms of use of LH) one.

In regard to the previous results, it seemed that the limitations are due to a too small
LH with only up and down for the concentrations of metabolites. It doesn’t allow us to
have enough discrimination power between the samples (hypotheses are too simple) as
showed in Fig.6. We hope to have a better (more accurate, yet still robust) predictive
power by increasing the expressivity of the hypotheses (Fig.6). For example, if we work as
in [Tamaddoni-Nezhad et al. 06, Inoue et al. 09], trying to analyze the inhibitory effect of
toxins on metabolisms based on NMR measurements on rats: up / down correspond
here to the differences between an experiment without toxins and one with an injec-
tion of toxins. If we have a piece of pathway as in Fig.7 and use the same rules as in
[Yamamoto et al. 08], we are unable to infer if Reaction 1 (R1) is inhibited or not with just
up / down. Now if we had a finer discretization of the values and that we found that
Metabolite 3 (M3) has a big increase of concentration between the two experiments, but
that M2 has only a low decrease: we can infer that the consumption (transformation) of
M2 alone is not enough to account for M3 increase, and thus M1 should also be consumed
and R1 is not inhibited.
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Figure 7: Being more expressive (4 levels instead of 2 as previously) allows for more
deductions: we can infer that R1 has to be not inhibited and M1 has to be consumed.

3.2 Introducing Discrete Levels (in the Symbolic Modeling)

As seen before in Fig.7, one way to increment de complexity of the hypothesis space is
by being able to deal with other qualifications than just “up” and “down”. We have to be
careful not to have a too fine discretization in order to avoid the right part of Fig.5: we
would fail in our attempt to learn general hypotheses (and we would be doing numerical
analysis, which is the area of expertize of analytical models, not ILP). That’s the reason
why we will use scores that penalize solutions for discretization with too much levels.

3.2.1 Time Series Discretization

In our modeling, we first introduce discrete concentration levels to filter what are the
relevant changes of concentration of the metabolites, in regard to hypotheses generation
from ILP. We need to be able to infer hypotheses that have a certain level of generality
and, for that, we should use intervals instead of single real values. This could have been
done with an interval constraints approach [Benhamou 94], but we currently choose
a discretization approach. Although this gives us less freedom in the logic part as
levels are fixed (as if we have had fixed intervals), levels can be handled just as symbols
in a logical model of pathways, without having any knowledge of the real values behind it.

Discretizing time series is a research field in which many works have been conducted
recently on the rather new problem of unsupervised discretization of time series. In the
following, time is considered to be on the x-axis and value(s) on the y-axis. [Geurts 01]
uses regression trees and tries to minimize the (y-axis) variance of the values in each
time sample (x-axis interval). The drawback is that one can’t directly control the time
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sampling (nor the values, but this is closer to what we want with an unsuppervised clus-
tering). [Keogh et al. 05] have developed “Symbolic Aggregate approXimation” (SAX) that
is built on piecewise aggregate approximation and makes a normality assumption on mea-
sured values. In [Lin et al. 07], the authors showed the theoretical validity of SAX and
we considered using it. However, we didn’t see an easy way of dealing with our various
and distant (in y-axis mean) time series because of the normality assumption: we should
have one Gaussian for each time-series. [Mörchen et al. 05] proposed the Persist algo-
rithm, that is really noise-resistant. But more of that, we have been interested in their
exhaustive comparison of the quality of discretized sequences resulting from Persist, SAX
and continuous hidden Markov models (CHMMs).

3.2.2 Our approach

In the end, both the facts that we had little to no noise1 in our experimental time-series
and that we wanted to discretize our concentrations time-series all at once (with the same
levels) lead us to try and develop our own discretization method, adapted to (and taking
benefit of) the particularities of our data. Our practical problem is that we want to have a
statistically relevant (unsupervised) discretization for N metabolites concentrations over
time. We also have to discretize the values of Km (Michaelis-Menten constants), for each
reaction, with the same levels.

For that purpose, we have chosen to use a probabilistic model, used in speech recog-
nition and time-series analysis: continuous hidden Markov model (HMMs) [Rabiner 89].
We can therefore compute an appropriate number of levels (that was 3 for the experi-
ment with Escherichia Coli , 9 for the one with Saccharomyces Cerevisiae ) in regard
to a Bayesian score such as Bayesian Information Criterion (BIC) [Schwarz 78] or as
the Cheeseman-Stutz score [Cheeseman & Stutz 95] or as the variational free energy.
This process can be achieved through maximum likelihood estimation or maximum a
posteriori estimation [Gauvain & Lee 94] or through a variational Bayesian method
[Beal 03, Ji et al. 06], respectively. There are more details in the implementation part
beginning page 21.

Whereas the results of CHMMs discretization are relevant and already usable. We
have also begun working on another discretization method that heavily uses the fact that
we have almost no noise. One can (and is obliged to) apply a filtering as Savitzky-Golay
[Savitzky & Golay 64] filtering beforehand if the data is noisy (see Fig.21 page 43). The
choice of Savitzky-Golay filtering has been made as it keeps the amplitude of the time
series (the maximum values) and it is particularly adapted to experimental data from
chemistry [Savitzky & Golay 64]. The changes of tendencies of the concentration time-
series seem important to be able to infer the cause-consequences relations with the in-
ducted logic rules. With respect to this assumption, the inflexion points (see Fig.8) of
the time series are central in this discretization approach. We use them as the seeds of
y-values clusters as well as sampling stops for the time-sampling. We should now imple-
ment statistical tests to merge (prune) some levels (y-axis) and sampling stops (x-axis).

1Indeed, Andrei Doncescu provided a simulator that enables us to get very clean signals. Even without
that, the signal/noise ratio of experimental data would allow us to smooth is efficiently beforehand.
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Figure 8: Inflexion points (red dots) of the evolution of the concentrations of metabolites
in a “pulse of Glucose” experiment in Saccharomyces Cerevisiae .

3.3 Michaelis-Menten Kinetics

3.3.1 Establishing Michaelis-Menten Equation

The metabolic networks dynamics are in their enzymatic part ruled by the combina-
tion of classical kinetics: essentially Michaelis-Menten, Hill and allosteric ones. If we
limit our modeling to these kinetics, we can highly simplify their mathematical handling.
Michaelis-Menten treatment assumes that the two binding equilibria are fast when com-
pared to the interconversion of ES and EP. The choice of Michaelis-Menten kinetic model
have been made, because it is the more general representation for a non-linear allosteric
regulation system. It assumes that the two binding equilibria are fast when compared to
the interconversion of ES and EP.

Note: [S] means “concentration of the metabolite S”. SI unity is mol/L (you will also
find mmol/L for millimol/L). 1mol ≈ 6.022× 1023 elementary entities, Avogadro constant.

E + S 
k1
k−1

ES →k2 E + P (3.1)

Under the quasi steady-state assumption, with to (2.1), it comes:

d[ES]
dt

= k1[E][S]− (k−1 + k2)[ES] ≈ 0 (3.2)

and
d[P ]
dt

= k2[ES] (3.3)

Under the assumption that the total quantity of the enzyme E is constant, it comes:

[E]total = [E] + [ES] = const. (3.4)
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(3.4) into (3.2) gives:

k1[S]([E]total − [ES]) − (k−1 + k2)[ES] = 0 (3.5)

[S][E]total = [S][ES] + [ES](
k−1 + k2

k1
) (3.6)

let KM =
k−1 + k2

k1
(3.7)

=⇒ [ES] =
[S][E]total
KM + [S]

(3.8)

by replacing [ES] in (3.3) and with the maximum velocity Vm = k2[E]total, it comes:

Michaelis−Menten equation :
d[P ]
dt

= Vm
[S]

[S] +Km
(3.9)

Figure 9: Reaction velocity given the substrate concentration with Michaelis-Menten ki-
netics (under quasi steady-state and constant enzyme concentration assumptions)

The Michaelis-Menten constants can be determined by a series of experiments with
varying [S] (substrate concentration) and for instance a Lineweaver–Burk plot, plot-
ting the inverse of substrate concentration against the inverse of the initial velocity (see
Fig.10).

3.3.2 Simplification

If both S and P are present, neither can saturate the enzyme. For any given concentration
of S the fraction of S bound to the enzyme is reduced by increasing the concentration of P
and vice versa. For any concentration of P, the fraction of P bound to the enzyme is reduced
by increasing concentration of S. When we have S � P , we just have to consider reactions
for both directions. We consider a time discretization of the chemical rate equation for
a reation between a Substrate and a Product with respective stoechiometric coefficient s
and p:

s.S → p.P : rate =
1
p
× d[P ]

dt
−→disc.time

1
p
× ∆[P ]

∆T
(3.10)

(3.9) and (3.10) =⇒ p× rate = Vm
[S]T

[S]T +Km
≈

[P ]T+timestep − [P ]T
(T + timestep)− T

(3.11)
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Figure 10: ( 1
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V ) plot, a.k.a. Lineweaver-Burk plot

If we choose to work with a constant timestep:

=⇒ [P ]T+1 = Vm
[S]T

[S]T +Km
+ [P ]T (3.12)

We can note that the Michaelis-Menten constants (Km) are homogenous to a concentration.
We can then state concentration(Km, Level, T) (∀ T) in our modeling to set them.
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4 Implementations and Results

We have been developping an automated framework to deal with different real world
pathways and experiments. It is currently composed of two tools:

• kegg2symb: this is a program that transforms metabolic pathways from the KEGG
online database into symbolic relational models by querying KEGG’s API (see Fig.23
page 44 in Appendix).

• The combination of an implementation of continuous HMMs [Gauvain & Lee 94,
Ji et al. 06] with py-tsdisc, a Python automating wrapper that takes time-series
of concentrations of metabolites and output the corresponding symbolic predicates
concentration(metabolite, level, time).

Both are under heavy developpement but already avaible for downloading and use
through their working repository2 under the free BSD/MIT-Python licenses.

Along with that, we used SOLAR [Nabeshima et al. 03] for the hypothesis finding part
and BDD-EM [Ishihata et al. 08] for ranking these hypotheses. You can see the whole
path of the data, from experimental results and KEGG database to the ranked hypotheses
in figure 11 page 22. The “new” parts (this work) are the one with a grey background.

4.1 kegg2symb: Automatic Conversion of Pathways

This program generates a symbolic model with the name of a pathway from KEGG.
http://www.genome.jp/dbget-bin/show_pathway?sce00010 is described in ftp://ftp.

genome.jp/pub/kegg/xml/organisms/sce/sce00010.xml.
The default behavior is to parse the XML describing the map and to output the reac-

tion nodes. As all that contains the XML are IDs, it has the options:

• offline: builds the reactions with KEGG’s {enzyme:id} and {metabolite:id} with one
reaction predicate per enzyme.

• genes: reactions with genes that have to be activated to produce such a protein, and
metabolites names (from KEGG’s API). One reaction predicate per gene.

• convert (default): reactions with metabolites and enzymes names (from KEGG’s API)
with one reaction predicate per enzyme.

We think that this is interesting to automate such uses of existing databases to be able to
build large models quickly and to be able to persue our automated knowledge discovery
process.

4.2 Discrete Levels

4.2.1 Hidden Markov Models

An hidden Markov model (HMM) is a statistical model in which the system being modeled
is assumed to be a Markov process with unobserved state: the corresponding discrete

2kegg2symb: http://github.com/SnippyHolloW/kegg2symb/tree/master from Gabriel Synnaeve
HUP: http://sato-www.cs.titech.ac.jp/kameya/hup4d/ from Yoshitaka Kameya
py-tsdisc: http://github.com/SnippyHolloW/py-tsdisc/tree/master from Gabriel Synnaeve
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Figure 11: The full process of hypothesis finding (without enhancing the knowledge
base). We want to discover new hypotheses (in the present work: abductibles) from exper-
imental results. For that, we need to build a symbolic model of the studied pathway, we
can use KEGG to extract such a model with kegg2symb. We have to discretize experimen-
tal data, we use HUP (HMM utility program) in conjunction with py-tsdic to generate
a symbolic, discretized model of the data. We concatenate the model of the pathway, the
data and the rules that will be used to infer new hypotheses in a big file that we give
to SOLAR to generate hypotheses. Finally, we use BDD-EM to rank this hypotheses, so
that we can study them in their order of interest. The result of the work of the current
internship features a grey background.

level of concentration here. The assumption of a Markov process for the variations of
concentrations of a metabolite can be justified by thinking that only the current level
value is influencing the next value. This is not totally true, as we work with a complex
system and for instance, with chained reactions of metabolites: A→ B → C → A, C(A[t0])
influences C(A[t3]). But this is a good assumption and our “pattern recognition” task of
discretizing levels corresponds well to speech recognition [Rabiner 89] or part-of-speech
tagging [Brants 00], both often done with HMMs. In mathematical terms, an HMM is
made of a Markov chain: i.e. the current state S(t) depends only on S(t − 1). It is an
hidden Markov model because S(t) cannot be observed. Instead, one can observe X(t)
which is the observation depending only on the value of S(t), as in Fig.12.

4.2.2 Parameter Tying

We use continuous (Gaussian) HMMs (CHMMs) with parameter tying. CHMMs are
HMMs working with continuous time series so they model the observable (output) values
as mixture of Gaussians and have a lot of transitions (one for each new value) between the
hidden states. Parameter tying is a solution to the problem of sharing the same symbolic
levels in all the logic modeling in order to be able to assign the level of a compound to
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S(t-1) S(t) S(t+1)

X(t-1) X(t) X(t+1)

Figure 12: HMM: the conditional probability distribution of the hidden S(t) only depends
on the value of S(t− 1). The probability of an observed variable X(t) only depends on its
(time-) assiociated hidden variable S(t).

another and be dealing with the same real values behind the scene. Basically, all the
HMMs share a state space as well as the parameters in the output variables (i.e. means
and variances), so that they produce discrete levels that are corresponding. Parameter
tying is a notion often used in HMMs for speech recognition [Rabiner 89] and recently
in statistical relational learning [De Raedt 08]. A typical example for parameter tying
appears in a simple Markov chain, where the transition parameters are considered as
time-invariant, i.e. P (Zt+1 | Zt) = P (Zt′+1 | Zt′) holds for any time indices t and t′. Here
we say that the parameters P (Zt+1 | Zt) and P (Zt′+1 | Zt′) (t 6= t′) are all tied. Note here
that the sufficient statistics of tied parameters are shared accordingly. In our case, the
mean and the variance for X(n)

t , the output variable at time t in the HMM for the n-th
metabolite (n = 1, . . . , N ), are tied with the mean and the variance for X(n′)

t′ , respectively
(n 6= n′ and t 6= t′). In contrast, to allow the concentration levels of N compounds to
change in different ways, the transition parameters for P (S(n)

t+1 | S
(n)
t ) are not tied with

any for P (S(n′)
t′+1 | S

(n′)
t′ ), where S(n)

t is the hidden state variable at time t in the n-th HMM,
n 6= n′ and t 6= t′.

4.2.3 Expectation-Maximization and Variational Bayes EM

An expectation-maximisation (EM) algorithm is used to find the maximum likelihood esti-
mates of missing parameters in a probabilistic model by iteratively repeating the following
two steps:

Given a likelihood function L(θ;S,X) with θ the parameters vector, S the unobserved
data (missing values, here: the discrete levels) and X the observed data (here, the con-
centration values).

• Expectation step: compute the conditional expected value of the log likelihood func-
tion, with respect to the conditional distribution of X given S under θ.

Q(θ|θ(t)) = Eθ(t);S|X logL(θ;S,X) (4.1)

• Maximization step: find the parameters which maximizes it.

θ(t+1) = arg max
θ
Q(θ|θ(t)) (4.2)
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L(z;z1)

L(z;z0)
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Figure 13: f is convex, any tangent L(z; zi) can be used as its lower bound

The variational Bayes EM algorithm is an implementation of the EM algorithm that uses
the fact that the tangent of a convex at any point can always be used as its lower bound
(see Fig.13) as an approximation:

∀z : f(z) ≥ L(z; z0) = f(z0) +
∂

∂z
fz=z0(z)(z − z0) (4.3)

The model parameters (θ) are treated as latent variables. For instance, the evidence is:

p(S|prior) =
∫
θ

∫
X
p(S,X, θ|prior)dXdθ (4.4)

The joint posterior is contrained to be a factorized approximation:

q(X, θ) ≈ qX(X)qθ(θ) (4.5)

(with the intention that q can be made very similar to the true posterior, this is measured
by a dissimilarity function). The log-evidence is approximated to:

log p(S|prior) = log
∫
θ

∫
X
p(S,X, θ|prior)dXdθ (4.6)

= log
∫
θ

∫
X
q(X, θ)

p(S,X, θ|prior)
q(X, θ)

dXdθ (4.7)

≥
∫
θ

∫
X
q(X, θ) log

p(S,X, θ|prior)
q(X, θ)

dXdθ (4.8)

≈
∫
θ

∫
X
qX(X)qθ(θ) log

p(S,X, θ|prior)
qX(X)qθ(θ)

dXdθ (with 4.5) (4.9)

=⇒ log p(S|prior) ≥ Fprior(qX(X), qθ(θ)) (4.10)

The VB-EM algorithm is as follows:

• VB expectation step: q(t+1)
X (X) = arg maxqX Fprior(qX(X), q(t)

θ (θ))

• VB maximization step: q(t+1)
θ (θ) = arg maxqθ Fprior(q

(t+1)
X (X), qθ(θ))

The purpose of the EM algorithm is to learn the parameters of the CHMMs that are
the means and variances of the Gaussian corresponding to each level. For a 3-states (⇔
3-discrete-levels) CHMM as in 14 (page 26), there are 3 Gaussians.
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4.2.4 Discretization Process

The relevant discretized levels of concentration are computed through the EM algorithm
with maximum a posteriori (MAP) estimation [Gauvain & Lee 94] (Baum-Welch algo-
rithm) or through the variational Bayes EM (VB-EM) [Beal 03, Ji et al. 06]. We prefer
this last method as it is shown [Beal 03] that variational free energy provides a more
accurate approximation of the marginal log-likelihood than BIC or the Cheeseman-Stutz
score. The discretization process itself simply consist in choosing with which discrete
level will be mapped some numerical value of the time series. This is done by finding the
most probable states sequence in the CHMM, once the parameters are all learned and
tuned. For an example, see in appendix page 44. All of this is done with the help of HMM
utility program (HUP) from Yoshitaka Kameya.

We first prepare N continuous HMMs (one for each metabolite), where each state
variable takes a concentration level, and each output variable takes a measurement of
concentration (2nd figure of Fig.14) and follows a univariate Gaussian distribution (1st
figure of Fig.14). For knowing which number of states (levels) k? is better fitting for our
set of time series (one for each metabolite), we test a range [i . . . j]. We then run VB-EM
(or another EM algorithm) p times for each level and take the best outputs in regard to
the scores (see below). We need to do numerous runs because variational Bayes is an
approximate framework. We score the p CHMMs models (differing by their parameters,
not the structure) of each level and take the best. We end up with (j − i) CHMMs dis-
cretizing in [i..j] levels, the “better fitting” number of levels has just been computed in
an unsuppervised manner by taking the only one best score among this lasting (j − i)
CHMMs: this is the number of states. We can now recycle this very one CHMM and use
it to find its most probable sequence (for instance with the Viterbi algorithm) that will be
our discretized levels output sequence. For example, if we set p = 100 and test within
the range k ∈ [3 . . . 15], so we run 120 ((15 − 3) × 100) times the VB-EM algorithm on the
N continuous HMM with an increasing number of states (levels), from 3 to 15. At each
“level-step”, we keep only the highest scoring CHMM, we end up with 12 CHMMs. We
take the best one, let it be the 3 states (3 levels) CHMM as for our simplified Escherichia
Coli model and as in Fig.14. The discretization of the time series of concentrations is the
most probable sequence of this CHMM: 1-1-2-3-3-3-2-1.

Then, we use a simple round-mean aggregation of them for time-sampling. We set
a maximal number of time steps and look for the better fitting width and alignment
for equal-width time intervals. We are currently developping a different discretization
process (inside py-tsdisc) for time-series from molecular biology experiments that will
discretize time and levels simultaneously but current results are already useable (see
Table 1., Fig.18 and Fig.22) and that is what we based the results presented here on.

The experimental response observations of intracellular metabolites to a pulse
of glucose were measured in continuous culture employing automatic stopped flow
and manual fast sampling techniques in the time-span of seconds and millisec-
onds after the stimulus with glucose. The extracellular glucose, the intracellu-
lar metabolites: glucose6phosphate, fructose6phosphate, fructose1-6bisphosphate, glyc-
eraldehyde3phosphate, phospho-enolpyruvate, pyruvate, 6phosphate-gluconate, glu-
cose1phosphate as well as the cometabolites: atp, adp, amp, nad, nadh, nadp, nadph were
measured using enzymatic methods or High Performance Liquid Chromatography. All
the measured steady-state concentrations of the E.Coli experiment and their correspond-
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L1 L2 L3

V1 V2 V3 V4 V5 V6 V7 V8 V9 ... Vn

Figure 14: 3-states (↔ levels) continuous HMM discretizing one experimental time-series,
where Xt is the measurement of concentration at time t taking a value in [V1 . . . Vn] and
St is the hidden state that indicates the corresponding discretized level taking a value in
[L1, L2, L3].

ing discrete levels are summarized in Table 1. We have obtained these discrete levels by
the previously explained discretization method:

Metabolite Concentration Level Metabolite Concentration Level
glucose 0.0556 0 g6p 3.480 2

f6p 0.600 0 fdp 0.272 0
gap 0.218 0 pep 2.670 2
pyr 2.670 2 6pg 0.808 1
g1p 0.653 0 amp 0.955 1
adp 0.595 0 atp 4.270 2

nadp 0.195 0 nadph 0.062 0
nad 1.470 1 nadh 0.100 0

Table 1.Concentrations (mM/L) and their discretized levels for steady states

4.3 Logic Model

4.3.1 Modeling of the Pathway

To obtain an understanding of the central metabolism, a logical model has been developed
according to a kinetic model including the glycolysis and the pentose phosphate pathway
for Escherichia coli [Chassagnole et al. 06]. The structure of such networks is commonly
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displayed on metabolic maps (e.g. Fig.24 for the Glycolysis and Pentose Phosphate of
E.Coli), where each reaction is described in terms of the participating enzyme, metabo-
lites, cofactors and the reaction stoichiometry. These chemical reactions and transport
steps can be thought of as the primary connections between metabolite pools that affect
each other by mass action. Metabolites and enzymes can also interact through regulatory
loops, i.e. feedback and feedforward interactions; these can be thought of as secondary
connections for transmitting information through the network. Another important fea-

Figure 15: Simplified glycolysis and pentose phosphate pathways of E.Coli

ture of many metabolic systems is that they are divided into different compartments with
the same metabolite sometimes occurring in two or more compartments. For the pur-
pose of analysing the dynamic behaviour of such systems the compartmentalised pools
of the same metabolite must be considered as separate metabolites even if they have the
same chemical structure. The Fig.16 shows the simplified pathway that we modelized
logically with relations reaction(Substrate, Enzyme, Product). For instance, the
simplified glucolysis & pentose phosphate pathway for Escherichia Coli that was used
with SOLAR can be found in Appendix page 44.

4.3.2 Abducing hypotheses with SOLAR

Inductive logic programming, used for induction or abduction, allows to deal with discrete
levels (symbols) and qualitative rules [Doncescu et al. 07]. Given the background knowl-
edge B and an observation E (example), the task of ILP is to find an hypothesis H such
that:

B ∧H |= E (4.11)
and B ∧H is consistent (4.12)

27



4.3 ILP Applied to Systems Biology Gabriel Synnaeve

Figure 16: Simplified glycolysis and pentose phosphate pathways of Escherichia Coli au-
tomatically extracted from the symbolic knowledge base.

Inverse entailment [Muggleton 95, Inoue 04] enables us to compute H through deduction
by using

B ∧ ¬E |= ¬H (4.13)
and B 2 ¬H (4.14)

E and H being sets of literals, ¬E and ¬H are clauses. We are here interested in abducing
what happens during the dynamical transition, but our approach stays valid for inducing
general hypotheses as Inoue [Inoue 04] proposed a powerful method to handle inverse
entailment (IE) for computing inductive hypotheses allowing for full clausal theories
through consequence finding. ¬H is constructed by a method called CF-induction, which
computes characteristic clauses of B ∧¬E, selects its subset CC called the bridge formula
from it, and generalizes ¬CC. CF-induction then realizes sound and complete hypotheses
finding from full clausal theories, and not only definite clauses but also non-Horn clauses
and integrity constraints can be constructed as H.

We used SOLAR [Nabeshima et al. 03] for generating the hypotheses, that are ab-
ducted in the current case. SOLAR is a competitive implementation of a consequence
finding procedure based on SOL (Skipping Ordered Linear) tableaux which is complete
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for finding minimal explanations. SOLAR is a part of CF-induction and can be used as an
abductive procedure to infer an hypothesis H in the form of a set of literals. It can also
output all the proofs (iterations) for each hypothesis of the returned set of hypotheses. For
abducing hypotheses through IE, we need to input B ∧ ¬E to deduce ¬H. Thus, all our
observations [e1 ∧ · · · ∧ en] will be inputed in SOLAR as a “top clause” [¬e1, . . . ,¬en] used
together with B to deduce ¬H, the output of SOLAR . As the output of SOLAR is a con-
junction of disjunctions, we have to negate it to have a disjunction of conjunctions: each
conjunction being an hypothesis H ∈ H.

4.3.3 Kinetic Modeling

Our kinetic logical model is based on the simplified Michaelis-Menten equa-
tion (3.12) which has here been represented by 3 background clauses using the
concentration(Compound, Level, Time) predicate. This work was first suggested
by Andrei Doncescu during a meeting. If we make the approximations for extreme values
in:

[P ]T+1 = Vm
[S]T

[S]T +Km
+ [P ]T (3.12)

With only 3 levels, as we have in our discretization of E.Coli experiments, we will get
the following simple rules:

[S]� Km ⇒
∆[P ]
∆T

=
Vm
KM

⇒ [P ]T+1 = [P ]T

reaction(S, P, Km) ∧ concentration(S, 0, 0) ∧ concentration (Km, 2,
0) ∧ concentration(P, L, 0) → concentration(P, L, 1) The concentration
of the Product won’t change between T and T+1 as the reaction will be very slow.

[S] ' Km ⇒
∆[P ]
∆T

=
Vm
2
⇒ [P ]T+1 = Vm/2 + [P ]T

reaction(S, P, Km) ∧ concentration(S, 1, 0) ∧ concentration(Km, 1,
0) ∧ concentration(P, L, 0) → concentration(P, L, 1)

The concentration change of the Product between T and T+1 isn’t big enough to switch
from one level to another. This is an approximation and a consequence of our discretiza-
tion.

[S]� Km ⇒
∆[P ]
∆T

= Vm ⇒ [P ]T+1 = Vm + [P ]T

reaction(S, P, Km) ∧ concentration(S, 2, 0) ∧ concentration(Km, 0,
0) → concentration(P, 2, 1)

The reaction will be very quick and result in transforming all the Substrate into
Product in one time step.

If we had more than 3 levels, we will either need more rules or a general procedure
for handling our kinetic model. This is a current research topic being explored through
the use of a “compute(levels[], result)” (with levels[] beeing a list) predicate
implemented in the Java part of SOLAR . Furthermore, we made some simplifications
in the pathways (see Fig.16) to be able to use only Michaelis-Menten kinetics, another
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research topic is to extend our modeling to other type of reactions. These rules are subject
to changes for others purposes.

We also added constraints about the unicity of levels at a given time to reduce the
number of hypotheses while keeping consistency:

• ¬concentration(S, 0, T) ∨ ¬concentration(S, 1, T)

• ¬concentration(S, 0, T) ∨ ¬concentration(S, 2, T)

• ¬concentration(S, 1, T) ∨ ¬concentration(S, 2, T)

4.4 Results

We chose to study the conjunction of glycolysis and pentose phosphate pathways for
E.Coli. We simplified the pathway’s model: we kept 16 relevant reactions (see Fig.16) and
discretized the 16 experimental values (see Table 1). We added the 3 Michaelis-Menten
based rules and the 3 constraints of unicity for the levels3 . We had 15 abducibles cor-
responding to the unknown concentrations of chemical compounds before the transition
to steady state. SOLAR , used for abduction, outputs 410 hypotheses that cover all this
abducibles. With such a number, picking the right hypotheses should be done in an
automated way. We also discuss here how we could improve the knowledge with the
“most interesting” hypotheses.

4.4.1 Ranking the Hypotheses with BDD-EM

For that, Ishihata et al. [Ishihata et al. 08] proposed the BDD-EM algorithm that is an
implementation of the expectation-maximization algorithm working on binary decision
diagrams (BDDs), allowing it to deal with boolean functions. Inoue et al. [Inoue et al. 09]
has applied the BDD-EM algorithm to rank hypotheses obtained through abduction. A
BDD is a way to compress (“factorize”) a boolean formula into an efficient datastructure
(see Fig.17).

Figure 17: from left to right: the truth table of [(X1 ∨ X2) ∧ ¬X3] ; its corresponding
binary decision tree ; one corresponding ordered BDD ; one corresponding “factored” BDD:
reduced ordered BDD (ROBDD).

To rank our H1, . . . ,Hn hypotheses by probability, we consider the finite set of ground
atoms A that contains all the values that can take our concentration (Compound,

3The full model is avaible on the internet: http://snippyhollow.free.fr/biomodels/
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Level, Time) and reaction(Substrate, Product, Km). Each of the elements of
A is a boolean variable. One of its subsets is the subset of abducibles Γ composed of all
the possible values of concentration(Compounds, Level, 0). With {Ai ∈ A | θi =
P (Ai)}, we have to maximize the probability of the disjunction of hypotheses helped with
the background knowledge B: F = (H1 ∨ · · · ∨ Hn) ∧ B to set the good θ parameters (by
the BDD-EM algorithm). F can still be to big to be retained as a BDD, so an optimisation
F ′ of its size is obtained through the use of the minimal proofs for B and each Hi (see
[Inoue et al. 09] for more details). Then, the BDD-EM algorithm computes the probabili-
ties of ground atoms in A that maximizes the probability of F ′. Finally, the probabilities
of each hypotheses used for the ranking are computed as the products of the probabilities
of literals appearing in each Hi.

We get 410 hypotheses in the form:
H130 = concentration(glucose,0,1)∧concentration(g6p,2,1)

∧concentration(f6p,0,1)∧concentration(fdp,0,1)∧concentration(gap,0,1)
∧concentration(pg3,2,0)∧concentration(adp,0,0)∧concentration(pyr,2,1)
∧concentration(pg6,1,1)∧concentration(g1p,0,1)∧concentration(amp,1,1)
∧concentration(adp,0,1)∧concentration(atp,2,1)∧concentration(nadp,0,1)
∧concentration(nadph,0,1)∧concentration(nad,1,1)∧concentration(nadh,0,1)

To sort them, we ran the EM algorithm on the BDDs corresponding to our hypotheses
10,000 times with random initializations. Note that if the comparison of this probabilities
with each other is relevant, they shouldn’t be taken as absolute probabilities. The 10 most
probable abduced hypotheses and H378, that discovers all abductibles, are the following:

Hypothesis number Probability Abducted concentrations levels at T=0
H130 ≈ 1.0 pg3: 2, adp: 0
H392 4.879.E−1 sed7p: 0, e4p: 2, f6p: 0, pg3: 2, adp: 0
H216 7.567.E−2 pg3: 2, adp: 0, pep: 0, atp: 2, pyr: 2
H196 6.930.E−2 fdp: 0, dhap: 2, gap: 0, pg3: 2, adp: 0
H356 5.621.E−2 pg3: 2, adp: 0, g6p: 1, nadph: 1
H94 3.692.E−2 sed7p: 0, e4p: 2, f6p: 0, pg3: 2, adp: 0,

pep: 0, atp: 2, pyr: 2
H251 3.497.E−2 glucose: 2, adp: 0, pg3: 2
H286 3.382.E−2 sed7p: 0, e4p: 2, f6p: 0, fdp: 0, dhap: 2,

gap: 0, pg3: 2, adp: 0
H405 2.796.E−2 pg3: 2, adp: 0, pep: 2, atp: 0
H167 2.743.E−2 sed7p: 0, e4p: 2, f6p: 0, pg3: 2, adp: 0,

. g6p: 1, nadph: 1

.
H378 1.974.E−8 glucose: 2, adp: 0, sed7p: 0, e4p: 2, f6p: 0,

fdp: 0, dhap: 2, gap: 0, pg3: 2, pep: 0, atp: 2,
pyr: 2, g6p: 0, nadph: 2, pg6: 1

Table 2. 10 most probable hypotheses and H378

4.4.2 Choosing the Hypotheses

It is needed to pick hypotheses that are consistent with the background knowledge and
with each others. For example, if we apply a greedy algorithm (see below: Algorithm 1)
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that picks hypothesis in decreasing probability order such that the hypothesis add some
knowledge and that our enhanced knowledge is still consistent to this 10 first hypotheses,
we will pick H130, H392, H216, H196, H356 and H251. It will result in discovering the
concentrations at time T=0 of pg3: 2, adp: 0, sed7p: 0, e4p: 2, f6p: 0, pep: 0, atp: 2, pyr:
2, fdp: 0, gap: 0, dhap: 0, g6p: 1, nadph: 1, glucose: 2. We could go further and apply it on
all the hypotheses for finding values for all the abducibles.

At first, we consider the background knowledge combined with the observations as our
knowledge base. The goal of such an algorithm is to enhance (update) our knowledge base
with discovered abductibles.

Algorithm 1 An algorithm to enhance the knowledge base: most probables firsts
knowledge← knowledge base
sorted hypotheses← sort(hypotheses)
while length(abductibles) > 0 && length(sorted hypotheses) > 0 do

tmp← sorted hypotheses.pop()
if contains(tmp, abductibles) && consistent(tmp, knowledge) then

knowledge.enhance(tmp)
abductibles.remove(tmp)

end if
end while

With the explicit functions length, pop (destructive), and:

• sort is a function that sorts the hypotheses by decreasing probability.

• contains is a function that returns statements of first argument contained in the
second.

• consistent performs consistency checking of two theories and return True if they are
consistent.

• enhance adds statements that are not yet present in the considered (“self”, “this”)
knowledge.

• remove deletes statements from argument present in the considered (“self”, “this”)
object (could make use of contains).

4.4.3 Interpretation

With an already existing simulator from Andrei Doncescu, we simulated the experi-
ment and put approximations of this values (means of the level’s “intervals”) and the
only value that did not seem to correspond was the one of nadph. Furthermore, this
hypotheses are corresponding to our biological knowledge that pyruvate is a bottleneck
[Peters-Wendisch et al. 01] and that the glucose that is totally consumed (see the left plot
of Fig.18 from simulation) was in high concentration at the beginning of the experiment
(pulse). Also, for other metabolites, as fructose6phosphate, the levels found through ab-
duction are corresponding to the output of the simulation (see the right plot of Fig.18)
with the same low level (0) before and after the dynamic transition.

The justification for an algorithm that enhances the background knowedge while keep-
ing the consistancy (such as Algorithm 1) comes from the fact that the most probable
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Figure 18: Left: Discretization in 3 levels of the concentration of glucose in the Glycolysis
Pathway of E.Coli after an initial pulse. Right: Simulated evolution of fructose6phosphate
during the whole experiment of pulse of glucose on E.Coli.

hypotheses doesn’t infer a lot of values at once as shown in Fig.19, in which the red bars
are showing #{discovered abducibles} / #{abducibles (15)}. This results in a degree of lib-
erty to pick the best combination of abducibles. While H378 discovers the 15 abductibles,
it has a probability of only 1.974.E−8 (with regard to E−2 for the first ones). Therefore, we
need either to complete the model (to have more restrictions, less hypotheses) or to choose
what to do with this consequent degree of liberty with such an algorithm. While noticing
that H378 is ranked very low, we could have chosen to pick from hypotheses that discover
more abducibles by penalizing the fact of taking from too many different hypotheses with
a formula such as the BIC [Schwarz 78]: score = n ln( errorn ) + k ln(n) with n being the
number of chosen hypotheses, k the number of abducibles and error the product of the
probabilities of chosen hypotheses. The goal of such an algorithm would be to discover all
abducibles (as Algorithm 1) while minimizing this score.

Figure 19: 10 first ranked hypotheses and their normalized coverage of abductibles.
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5 Possible Extensions of this Work

5.1 Kinetic Modeling

Why is it important to have many levels ? To be able to handle the differentKm (Michaelis
Menten constant): Km(ATP) = 0.4 mmol/L←→ Km(HCO−3 ) = 26 mmol/L.
With M levels, for example: 1 2 3 4 5 6 7. When the need for N < M levels arises,
we do a projection, for example:

small: {1, 2} ; medium: {3} ; big: {4, 5, 6, 7}

Here, if we have only the 3 previously presented rules (Michaelis-Menten specific
approximations).
How ? We center medium on the discrete level of the relevant Km by doing medium(A)
:- level(A)==level(Km) in the context of a reaction with a substract of product A and
constant Km. This means that the discrete level that will correspond to medium for the
current application of the three 3-levels-based rules will be the level taken by Km. We
made a projection.

Another way to deal with numerous levels is to change our modeling to allow for
one (or many) more general(s) rule than the 3 rules showed above and resulting from
approximations. This is what we try to achieve by introducing a new built-in predicate
compute in SOLAR . As we take Vm and Km from the literature, we can write it:
reaction(X, E, Y, Km, Vm), concentration(X, LX, T), concentration(Y,
LY, T) ⇒ compute(LX, LY, Vm, Km, LXX, LYY), concentration(X, LXX,
T+1) concentration(Y, LYY, T+1)

And in the other direction (from T to T − 1):
reaction(X, E, Y, Km, Vm), concentration(X, LXX, T),
concentration(Y, LYY, T) ⇒ compute(LX, LY, Vm, Km, LXX, LYY),
concentration(X, LX, T-1) concentration(Y, LY, T-1)

compute would be executing the mathematical computations in the Java part of SO-
LAR while using a mathematical expression of the kinetics. For instance, we tried with
the simplified Michaelis-Menten equation:

[P ]T+1 = Vm
[S]T

[S]T +Km
+ [P ]T (3.12)

Why shouldn’t we directly deal with numerical values (without discretization) with
compute ? It would be acceptable for abduction, but we would be venturing on the fields
of analytical models with the wrong tools ; and how would we be so sure about our exact
values ? It would not be acceptable for induction, as long as we want to have quite general
inducted hypotheses. As explained before (section 3.1), we want to have a finer model
but to still be able to generate general hypotheses with the existing induction methods.
As levels account for some sort of “intervals”, why not use an interval constraint logic
programming approach as in [Benhamou 94]? This could be a future area of research.
There could be some benefit of being actually aware of the values “behind” the levels
symbols during the inductive process, but it would be complicating the hypothesis finding
whereas the current approach still has to be studied more in depth (and could eventually
give good results), while enjoying the benefits of having the real meanings of the levels
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symbols dealt with outside the logic part.

Hidetomo Nabeshima provided consistent improvements in the efficiency of SO-
LAR 2.0 (not published yet) through pruning methods on top of SOL calculus
[Nabeshima et al. 08] (based on tableaux calculus). SOLAR 2.0 also brought the possi-
blity to add special predicates (by extending the Op(erator)Checker class) that can do
Java computations before returning their symbolic values in the tableau. This allowed us
to write a prototype of a compute predicate but some problems arose. First, one has to
deal only with integer: we solved that by having numerical values multiplied by a thou-
sand (it could be more, we are on the very beginning of this research) and working with
integers (and Euclidean division!). Secondly, the Java computation is executed for every
node in the tableau: so, it will run this computation a lot of times with the same input
symbols (arguments to the function “compute”). This will add a big overhead. We could
solve this by precalculating all the values that could take this compute predicate and store
it in a look-up table: compute takes 6 arguments that are discrete levels. For instance
for the experiments on Saccharomyces Cerevisiae , we have determined that the better
fitting number of levels is 9. For n arguments and k levels, we have kn possible results for
compute. So, for n = 6 and k = 9, compute will only take 96 = 531441 different values.
We can store them in a look-up table beforehand or the first (and last) time that we have
to do a specific call to compute (if this argument combination is not found in the look-up
table).

5.2 Building other Models

More generally, a predicate such as compute could be used for other models than a
kinetic one. For instance, we can think about a structural modeling where one would
have indentified the invariants of a metabolic pathway, as in [Reder 88]. For instance,
Takehide Soh works on a SAT-solving approach for hypothesis finding based on symbolic
pathways extracted from KEGG. Also, the multi-levels interactions with genes should be
an interesting subject for logic modeling.

We have also been working on a model from a “pulse of glucose experiment” with
Saccharomyces Cerevisiae . There are many possible continuations of this work to achieve
the full hypothesis finding process. One could:

• simplify the pathway to allow for Michaelis-Menten kinetics only.

• add rules to allow for Hills and other allosteric kinetics (with more than 1substrate-
1enzyme-1product reactions).

• use an implementation of compute.

We have used a notation of multiple substrates/enzymes/products reactions using a
complex predicate in order to keep the syntaxical form of reaction. For instance, S1 +
S2 → E1S1 + E2S2 → E1 + E2 + P should be noted: reaction(complex(S1, S2),
complex(E1, E2), P). To write rules for Michaelis-Menten kinetics using the same
approximations as 4.3.3 page 29, one could either expand them to more levels: but it will
soon be too many rules (it is okay for 5 levels, not 9 as in Saccharomyces Cerevisiae ’s
experiment) or write a predicate for answering� (A,B). This predicate should take into
account the means and variances corresponding to each levels. Perhaps that � (4, 5) is
True but� (1, 2) is False.
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5.3 Hypothesis Finding

The preparation of data, the modeling and the inductive generation of hypotheses are
very important, but we should not forget the other important part that aims at find-
ing relevant hypotheses and using them: for instance, sorting them with BDD-EM
[Ishihata et al. 08, Inoue et al. 09] seems very promising. There have been some works in
this direction within the Japanese-French Symposium on Systems Biology. Petr Buryan
worked on grammar-based genetic algorithms for scanning the hypothesis space. Gauvain
Bourgne worked on hypothesis generation with a collective process [Bourgne & Inoue 09].

Algorithm 2 An algorithm to enhance the knowledge base: smallest number of hypothe-
ses additions (hypotheses with the biggest abducibles coverage firsts)

knowledge← knowledge base
while length(abductibles) > 0 && length(sorted hypotheses) > 0 do

tmp← hypotheses.covering most(abductibles)
if consistent(tmp, knowledge) then

knowledge.enhance(tmp)
abductibles.remove(tmp)

end if
end while

With the functions functions length, contains, consistent, enhance, remove as in Algo-
rithm 1 and:

• covering most is a function that outputs the hypothesis covering the largest number
of elements of the given (set) argument, here abducibles. It could delete it from the
current container (“self”, “this”) for efficiency, but this is not necessary.

Nevertheless, it seems that having an efficient way to bootstrap the automatic knowl-
edge discovery process is not yet achieved. It could (and should) be a very important
future work for which we propose to enhance the knowledge base with an algorithm such
as Algorithm 1 which takes the best hypotheses according to BDD-EM and add them
to the knowledge base as long as it stays consistent and that we haven’t explained all
that we want to. The problems that arises now comes from the fact that we don’t know
beforehand which hypotheses we will discover by adding some other hypotheses to the
knowledge base. The bruteforce exploration of such a combinatory4 space has a very high
computational cost. That’s why there should be some research on how to make the knowl-
edge base grow and which branches to explore. For that purpose, we also propose the
Algorithm 2 which adds less hypotheses to “complete” the knowledge base: the hypothe-
ses chosen for the enhancement are the one that cover the largest number of abductibles.
It could still use BDD-EM to then take the most probable between two hypotheses that
explain the same number of abducibles. Note that we could use the number of covered
observations as a ranking, because this is exactly the purpose of inductive logic pro-
gramming. This could be practically be done by using the proof of each hypothesis that
comes with the proof in the output of SOLAR .

4if we have an initial knowledge base KB0, then enhance it KB1 ← KB0 ∪ H1 or KB2 ← KB0 ∪ H2 or
KB3 ← KB0 ∪H1 ∪H2. We then have a disjunction of 3 knowledge bases to explore and enhance differently
for the next step, and so on...
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6 Conclusion

We showed one way to discretize biology experiments into relevant levels to be used
with ILP and logic programs in the large. An enhancement is already being investigated
for the discretization. Moreover, based on this discretization of concentration into levels,
we explained our processus to transform Michaelis-Menten analytical kinetics equation
into logic rules, we are not aware of any previous work in this direction. We think that
this approach improves the accuracy of the metabolic flux analysis. Allowing for other
kinds of kinetic modeling (two substrate and/or two products reactions) would enable us
to work with more complete models. As in [King et al. 05], this approach tries to enable
the behaviour of many ordinary differential equations while considering a symbolic model.

The more global approach of discretizing experimental data and using it in
conjunction with automatically generated symbolic pathways extracted from KEGG
[Kanehisa & Goto 00, Kanehisa et al. 08] can be applied regardless of the model cho-
sen for infering new knowledge (see Fig.11 page 22). This approach can be generically
applied to turn quantitative results from systems biology into qualitative (symbolic) ones
and should be seen as a step towards automation of hypothesis finding [King et al. 04].
The process of evaluating hypotheses thanks to BDD-EM [Inoue et al. 09] is seen as a
good method to find relevant knowledge among the large quantity of processed data. Par-
ticularly here, we only need to rank (as opposed to evaluate) the hypotheses in regard to
each others (“pairwise”). The practical validity of this full process has been shown by the
results presented above while working in a well-known theoretical framework of induc-
tive logic programming [Inoue 04, Mooney 97].

Still, our modeling can be improved. New highly probable knowledge could be ap-
pended to the knowledge base to try and discover new hypotheses, being it through ab-
duction (to find missing observations) or full clausal theory induction (to find rules that
govern the system). This idea of revising the knowledge base is already present
in Ray et al. [Ray et al. 09] with a nonmonotonic approach. The pathway’s symbolic
model, time and concentration discretization could be finer. For instance, experiments
dealing with more than 3 levels through a compute predicate implemented in SOLAR
[Nabeshima et al. 03] and many time steps should be brought to a close on the Glycoly-
sis and Pentose Phosphate pathways of another bacteria (representative of the eukaryote
cells, this time), Saccharomyces Cerevisiae (yeast), with both real world data from ex-
periments and simulated data. This will lead to use and test “iterative” (incremental)
hypothesis finding process as this model is more complex and there are more discrete lev-
els (9) and more discrete time steps.

This work can be seen as a proof of concept in the direction of mixing the real
world experimental values, analytical methods and logic-based approaches. The current
contribution can be found in Fig.11 page 22. We intend to modify (fork) the current
hypothesis finding system found in Fig.4 page 13 towards something like Fig.20 page 38.
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Figure 20: Enhanced biological hypothesis-finding system, the new parts have a grey
(dark) background. To be compared with Fig.4 page 13.
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Glossary

abduction find hypotheses that are ground or existentially quantified formulaes (miss-
ing facts or data). 3, 7

allosteric regulation regulation of an enzyme (or other protein) by binding an effector
module at a protein’s site that is different from the active one. 10

anabolism synthesis of large molecules and structural components of the cell (proteins,
RNA, DNA, lipids) from smaller substrates and chemical energy. 6

Baum-Welch algorithm generalized EM algorithm that computes maximum likelihood
estimates and posterior mode estimates for the parameters (transition and emission
probabilities) of an HMM, when given only emissions as training data.. 25

catabolism degradation of an external substrate (ex: Sugar) into smaller chemical prod-
ucts to provide energy (ex: stored in ATP). 6

clausal theory finite conjunctive set of clauses. 7

clause disjunction of litterals,
∨n
i=1Ai. 3, 7

expectation-maximization iterative algorithm to find the maximum likelihood esti-
mates of parameters in a probabilistic model. 23, 30

hidden Markov model (⊂ Bayesian networks) statistical model in which the system
modeled is assumed to be a Markov process with unobserved states. 17, 21

Horn clause definite or negative clause, ex: {¬A ∨ ¬B ∨ C} ⇔ {A ∧B ⇒ C}. 7

induction find hypotheses that are unversally quantified formulaes (missing rules). 3, 7

inhibition decreasing an enzyme activity (and so reaction rate) by binding some
molecule to it at a strategic location. 6

integrity constraint negative clause, ex: {¬A ∨ ¬B ∨ ¬C}. 7

likelihood function given a parametrized density function x 7→ f(x|θ), the likehood
function is θ 7→ f(x|θ) ,written L(θ;x) = f(x|θ). 23

metabolic pathway sequence of reactions occuring within the cell, which are intercon-
nected via substrates, catalyzed by enzymes and often requiring other cofactors. 3,
4, 6

metabolism set of reactions that maintain life. 3

metabolite intermediate and/or final chemical product of a metabolism. 3, 5

subsumption (subsomption) Cθ-subsumes D iff ∃θ such that, syntactically, Cθ ⊆ D. We
also say that C is more general than D.. 7
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Appendix

Filtering (Savitzky Golay)

Filtering (Low-Band)

Value

Time

Figure 21: Savitzky-Golay filtering compared to low-pass filtering.

Figure 22: Discretization with 7 common levels of the concentration of 4 metabolites in
the Glycolysis Pathway of S.Cerevisiae after an initial pulse of glucose.
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pathway.xml db2symb

KEGG 
API

output.sol

Figure 23: Overview of kegg2symb (old name, db2symb)

6.1 (Short) Example of the discretization of a time series

Input: time series of concentration of metabolites A and B:

time (in s.) [A] (in mmol/L) [B] (in mmol/L)
0.1 1.92 0.22
0.2 1.69 0.23
0.3 1.51 0.25
0.4 1.42 0.38
0.5 1.33 0.42
0.6 1.25 0.44

Intermediate output of the CHMM: most probable sequence of the HMM encoding the
levels of A and B as hidden variables.

time (in s.) level of A level of B
0.1 4 1
0.2 4 1
0.3 4 1
0.4 4 2
0.5 3 2
0.6 3 2

Final output:

concentration(A, 4, 0)
concentration(A, 3, 1)
concentration(B, 1, 0)
concentration(B, 2, 1)

6.2 Glycolysis & Pentose Phosphate Pathway for E.Coli

The SOLAR input file is as follows:

%% Glycosys + Pentose Phosphate pathways
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Glycolysis: 9 enzyme reactions
%% Pentose-Phosphate: 7 enzyme reactions
%% 33 compounds
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%% 18 enzymes
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%
%%%% Reactions
%%%%%%%%%%%%%%%%%

%%Predicates:
%reaction_1(Substrate, Enzyme1, Product).
%reaction_2(Substrate1,Enzyme1, Product,Enzyme2).
%reaction_3(Substrate1, Substrate2, Substrate3, Enzyme, Product).

% Phosphotransferase system
cnf(r1_1, axiom, [reaction_2(glucose,atp,g6p,adp)]).

%Embden-Meyerhof-Parnas pathway
cnf(r2_1, axiom, [reaction_2(g6p,atp,f6p,adp)]).
cnf(r2_2, axiom, [reaction_2(f6p,atp,fdp,adp)]).
cnf(r2_3, axiom, [reaction_2(fdp,atp,gap,dhap)]).
cnf(r2_4, axiom, [reaction_2(dhap,atp,gap,adp)]).
cnf(r2_5, axiom, [reaction_2(gap,nad,pg3,nadh)]).
cnf(r2_6, axiom, [reaction_2(pg3,atp,pep,adp)]).
cnf(r2_7, axiom, [reaction_2(pep,adp,pyr,atp)]).
cnf(r2_8, axiom, [reaction_2(pyr,nad,accoa,nadh)]).

%Pentose phosphate pathway
cnf(r3_1, axiom, [reaction_2(g6p,nadp,pg6,nadph)]).
cnf(r3_2, axiom, [reaction_2(pg6,nadp,ribu5p,nadph)]).
cnf(r3_3, axiom, [reaction_2(ribu5p,atp,rib5p,adp)]).
cnf(r3_4, axiom, [reaction_2(ribu5p,atp,xyl5p, adp)]).
cnf(r3_5, axiom, [reaction_2(rib5p,xyl5p,sed7p,gap)]).
cnf(r3_6, axiom, [reaction_2(sed7p,gap,f6p,e4p)]).
cnf(r3_7, axiom, [reaction_2(xyl5p,e4p,f6p,gap)]).

%%%%%%%%%%%%%%%%%%%%%%
%% Causal relations
%%%%%%%%%%%%%%%%%%%%%%

%%% On the predicate ‘‘reaction_2’’

cnf(un, axiom, [
-reaction_2(Substrate1,Enzyme1, Product, Enzyme2),
-concentration(Substrate1, 0, 0),
-concentration(Enzyme2, 2, 0),
-concentration(Product, L, 0),
concentration(Product, L, 1)
%%% concentration(Product, 0, 1)

]).

cnf(un, axiom, [
-reaction_2(Substrate1, Enzyme1, Product, Enzyme2),
-concentration(Substrate1, 1, 0),
-concentration(Enzyme2, 1, 0),
concentration(Product, 1, 1)

]).
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cnf(un, axiom, [
-reaction_2(Substrate1, Enzyme1, Product, Enzyme2),
-concentration(Substrate1, 2, 0),
-concentration(Enzyme2, 0, 0),
concentration(Product, 2, 1)

]).

%%% On the fact that a given product can’t have 2 different levels at T

cnf(un, axiom, [-concentration(S, 0, T), -concentration(S, 1, T)]).
cnf(un, axiom, [-concentration(S, 0, T), -concentration(S, 2, T)]).
cnf(un, axiom, [-concentration(S, 1, T), -concentration(S, 2, T)]).

%%%%%%%%%%%%%%%%%%%%%%
%% Observation(s)
%%%%%%%%%%%%%%%%%%%%%%

%%%Test examples
cnf(ex, top_clause, [-concentration(glucose,0,1),
-concentration(g6p,2,1),
-concentration(f6p,0,1),
-concentration(fdp,0,1),
-concentration(gap,0,1),
-concentration(pep,2,1),
-concentration(pyr,2,1),
-concentration(pg6,1,1),
-concentration(g1p,0,1),
-concentration(amp,1,1),
-concentration(adp,0,1),
-concentration(atp,2,1),
-concentration(nadp,0,1),
-concentration(nadph,0,1),
-concentration(nad,1,1),
-concentration(nadh,0,1)]).

%%%%%%%%%%%%%%%%%%%%%%
%%% Inductive Bias
%%%%%%%%%%%%%%%%%%%%%%

production_field([+-concentration(_,_,_)]<=40).
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Figure 24: General glycolysis / glucogenesis pathway
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6.3 ILP 2009 Poster

Kinetic Models for Logic Based 
Hypothesis Finding in Metabolic Pathways

 Emails, respectively: gabriel.synnaeve@gmail.con, adoncesc@nii.ac.jp, ki@nii.ac.jp

Gabriel Synnaeve1,3, Andrei Doncescu2,3, Katsumi Inoue3 

We use Inverse entailment (IE) for abduction with
SOLAR (Nabeshima, Iwanuma & Inoue 2003)　

B:    background knowledge, full clausal theory
E:    examples, conjunction of literals  

(¬E  is a clause)
H:    hypotheses, conjunctions of literals 

(¬H  is a clause)

Computing a hypothesis H  can be done deductively: 
B  ∧ ¬E   ⊨ ¬H 

1. Grenoble University (Grenoble)
2. LAAS-CNRS (Toulouse)
3. National Institute of Informatics (Tokyo)

Metabolic Pathways Michaelis-Menten Kinetics

Discretization

We propose a logical model of Glycolysis and 
Pentose phosphate pathways of E.Coli that 
enables us to apprehend better the dynamical 
response of a biological pathway to a pulse of 
glucose. This approach is based on a kinetic 
modeling of the evolution of the concentration of 
metabolites in a metabolic pathway. The majority 
of kinetic models in biology are studied with 
ordinary differential equations (ODE). We try

• [S] ≃ Km ⇒ [P ]T+1 = Vm/2 + [P ]T
Conc(S, 1, 0) ∧ Conc (Km, 1, 0) ∧ Conc(p, L, 0) → Conc(P, L, 1)

• [S] ≫ Km ⇒ Vm ⇒ [P ]T+1 = Vm + [P ]T

•Conc(S, 2, 0) ∧ Conc (Km, 0, 0) → Conc(P, 2, 1) 

Conc(s, 0, 0) ∧ Conc (Km, 2, 0) ∧ Conc(p, L, 0) → Conc(p, L, 1)
• [S] ≪ Km ⇒ [P ]T+1 = [P ]T 

here to understand the 
phenomenon described by 
a complex system, such as 
a cell, by doing a qualitative 
study with  discrete levels of 
concentration of metabolites  
processed by inductive logic 
programming (ILP) rules.

E + S !k1
k−1 ES →

k2 E + P

d [P ]

dt
= Vm

[S]

[S] +Km

=⇒ [P ]T+1 = Vm
[S]T

[S]T +Km
+ [P ]T

Michaelis-Menten kinetic model is the most general 
representation for a non-linear allosteric regulation 
system. Assumptions made: 
• quasi steady-state (d[ES]/dt ≈ 0)
• one substrate ↔ one product reactions

MM equation:

Reaction:

Simplifications:

We first prepare N continuous HMMs (one for 
each metabolite), where each state variable takes 
a concentration level, and each output variable 
takes a concentration and follows a univariate 
Gaussian distribution. All the HMMs share a state 
space as well as the parameters in the output 
variables so that they produce discrete levels that 
are corresponding.

We compose a background knowledge with 
reactions, levels corresponding to measured 
concentrations at the end of the experiment,and 
this rules (corresponding to the kinetic model):

Modeling

Results
The results obtained 
f r o m S O L A R a r e 
corresponding to our 
biological knowledge 
t h a t p y r u v a t e i s a 
bottleneck and that the 
glucose, that was in 
high concentration at 
the beginning, is totally 
consumed (see right).

Discretization of fructose-1,6-bisphosphate and 
phosphoenolpyruvate in another experiment (S.Ce). Glucose during E.Coli experiment
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