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Abstract—Discretization is a key preprocessing step in
knowledge discovery to make raw time series data applicable
to symbolic data mining algorithms. To improve the compre-
hensibility of the mined results, or to help the induction step
of the mining algorithms, in discretization, it is natural to
prefer having discrete levels which can be mapped into intuitive
symbols. In this paper, we aim to make smoothing of the data
points along with the time axis, and make binning or clustering
at the measurement axis. In particular, we propose a hybrid
discretization method based on variational Bayes, in which the
output of one discretization method is smoothly exploited as
hyperparameters of another probabilistic discretization model
such as a continuous hidden Markov model. The experiments
with artificial and real datasets exhibit the usefulness of this
hybrid approach.

Keywords-discretization; continuous hidden Markov models;
variational Bayes

I. INTRODUCTION

In a knowledge discovery process, the data are often
obtained as time series of real-valued measurements by
experiments or from sensors. Discretization [1], [2] is then a
key preprocessing step to make these time series applicable
to symbolic data mining algorithms, e.g. frequent pattern
mining or inductive logic programming. In discretization,
to improve the comprehensibility of the mined results, or to
help the induction step of the mining algorithms, it is natural
to prefer having discrete levels which can be mapped into
intuitive symbols like “high,” “medium,” or “low.” These
symbols can also be basic elements in qualitative/logical
reasoning [3], [4].

One frequent problem in time series discretization is that
the data just include raw measurements and have no extra
clue to know the meaningfulness of a discretization. In this
case, discretization needs to be performed in an unsupervised
fashion, which has been less explored [2], and such unsu-
pervised methods would inherently rely on some assumption
or model behind the data. We may see that discretization of
a time series is a segmentation or clustering process in a
two-dimensional (measurement-time) space, preserving the
temporal behavior of the time series. In this paper, we aim
to make smoothing of the data points along with the time
axis, and make binning or clustering at the measurement
axis. This strategy basically works, but as we will see later,

it is not always easy to find a desired discretization only
with a single underlying segmentation/clustering model.

From this background, hybrid approaches are practi-
cally attractive where we effectively combine a couple of
promising heterogeneous methods for smoothing, binning or
clustering. In this paper, we propose a hybrid discretization
method based on variational Bayes [5], [6], in which the
output of one discretization method is smoothly exploited
as hyperparameters (as “prior knowledge”) of another prob-
abilistic discretization model. Also variational Bayes is
suitable by itself for unsupervised discretization in that it
is known as robust against noises and provides a principled
way of determining the plausible number of discrete levels
(i.e. model selection). Our main tool is continuous (density)
hidden Markov models (HMMs) [7], and the experiments
show that the output of Persist [8] or SAX [9] can be a
good guide for building a robust HMM against noisy time
series.

The remainder of this paper is structured as follows. In
Section II, we describe the previous approaches to unsuper-
vised time series discretization and clarify our motivation.
Section III and IV respectively describe the proposed method
and the experimental results. In Section V, we conclude the
paper and mention the future work.

II. PREVIOUS APPROACHES

In this section, we make a review on unsupervised dis-
cretization with a little detailed description on the methods
our hybrid method uses. Also we present a reproduced result
of a comparative experiment by Mörchen and Ultsch [8]
and discuss the advantages and disadvantages of the existing
methods to make our motivation clear.

Before starting, let us make some preliminaries. In this
paper, we consider to discretize a univariate time series
x = (x1, x2, . . . , xT ) into x̃ = (k1, k2, . . . , kT ) where T
is the length of x, each xt is the measurement at discrete
time t, and kt is a discrete level into which xt is converted
(t ∈ [1, T ]). We use positive integers to indicate the discrete
levels, and will map a larger measurement into a higher
discrete level. K denotes the number of possible levels
(hence kt ∈ [1,K]). Also let µ̂(x), σ̂2(x), and ζq(x) denote
the sample mean, the sample variance and the q-percentile



value (e.g. ζ50(x) is the median) of the measurements
appearing in a time series x, respectively.

A. Binning, clustering and smoothing
In the literature of discretization, many algorithms have

been proposed for supervised situations, but unsupervised
discretization has been less explored [2], and also for the
case of time series discretization. In a simplest way, binning
or clustering methods, such as equal width binning, equal
frequency binning, K-means, Gaussian mixture models and
so on, can be applied as stand-alone discretizers (e.g. [1],
[10]), though the temporal information is lost. On the other
hand, while the temporal characteristics of interest (e.g. pe-
riodicity, sharp peaks/valleys, long trends and so on) would
differ according to the purpose, following [8], we focus on
the time series whose flat portions (referred to as “enduring
states” in [8]) are crucial to the goal of the application.
Hence, we aim to reveal the potentially flat portions by
smoothing (by removing noises), and then to map them
into discrete levels. For instance, Geurts’s discretization [11]
makes a smoothing based on a regression tree where the
time axis is recursively segmented so that the measurements
in each segmented time interval are as close as possible.
Piecewise aggregate approximation, which will be described
in the next section, is another smoothing method. Also as
done in [10], we may apply smoothing filters like Savitzky-
Golay filters in advance to the noisy time series.

B. SAX
One may consider from the above that it is reasonable

to combine the binning/clustering/smoothing methods, se-
quentially or simultaneously. Symbolic Aggregate approX-
imation (SAX) [9] is a well-known algorithm in which
the measurements in a time series are first smoothed in
each of equal-width segments (frames) at the time axis by
piecewise aggregate approximation (PAA), and the smoothed
measurements are then grouped into K equal frequency
bins under the assumption that the measurements follow a
Gaussian distribution.

More formally speaking, in PAA, a raw time series x of
length T is compressed into a time series x̄ = (x̄1, . . . , x̄T ′)
where T ′ < T . For simplicity, we suppose T = wT ′ where
w is some positive integer which indicates the frame width1.
Each x̄t′ is computed as x̄t′ =

1
w

∑wt′

t=w(t′−1)+1 xt , the av-
erage of the measurements in the t′-th segment (t′ ∈ [1, T ′]).
Then, SAX classifies x̄t′ into the k-th bin [βk−1, βk) where
βk′ = Φ−1

µ̂(x),σ̂2(x)(
k′

K ) (k ∈ [1,K], k′ ∈ [0,K]). Here Φ−1
µ,σ2

is the inverse cumulative distribution function of a Gaussian
distribution N (µ, σ2). Finally we construct a discretized
time series x̃ = (k1, k2, . . . , kT ′) where x̄t′ ∈ [βkt′−1, βkt′ ).
We can see βk’s (k ∈ [1,K − 1]) as the breakpoints at the
measurement axis, and these breakpoints can also be used
later as a byproduct.

1See Section 3.5 of [9] for the case in which T is not divisible by T ′.

In the original description, SAX takes as input a stan-
dardized time series, and then it only depends on K and T ′

above, which are specified by the user. In this sense, SAX
is not data-adaptive. On the other hand, the compression by
PAA brings a good approximation of the original series and
a significant improvement in efficiency at the later tasks,
called dimension reduction [9].

C. Persist

The algorithm named Persist [8] makes variable-width
binning at the measurement axis adaptively to the input
time series. In this algorithm, we first regard the event
that a measurement xt at time t falls into the k-th bin
[βk−1, βk) as the event that the time series stays at an
enduring state sk at time t (k ∈ [1,K], t ∈ [1, T ]).
Accordingly a time series is considered to move around in
the state space S = {s1, s2, . . . , sK}. Then, for a state space
S, we introduce a heuristic score, named the persistence
score, as Persistence(S)

def
= 1

K

∑K
k=1 Persistence(sk).

Each Persistence(sk) is defined as sgn(P̂ (sk|sk)−P̂ (sk)) ·
SKL(P̂ (sk|sk), P̂ (sk)), where p̂(sk|sk) is the estimated self
transition probability at the state sk, p̂(sk) is the estimated
probability of staying at sk, and SKL(q, q′) is the sym-
metric Kullback-Leibler divergence between two Bernoulli
distributions {q, 1 − q} and {q′, 1 − q′}. The persistence
score is based on a Markov process, and measures the
total persistence (or enduringness) of the state space S with
respect to the input time series. Under this setting, Persist
tries to find a state space, or a set of variable-width bins,
S that makes Persistence(S) as high as possible. After the
bins found, similarly to SAX, the time series is discretized
and the bin boundaries or the breakpoints βk can be used
as a byproduct.

The higher persistence leads to the higher smoothness
of the discretized time series, so we can say that Persist
performs binning at the measurement axis and smoothing
along the time axis simultaneously. Also by definition, we
can use the persistence score to measure the plausibility of
the number K of discrete levels. Due to the space limit, we
omit the algorithmic details.

D. Continuous hidden Markov models

HMMs are one of the standard tools for analyzing se-
quence data in various application fields such as speech
recognition [7], [12]. As in [8], continuous HMMs can also
be used for discretization with K levels, in which each hid-
den state sk corresponds to the k-th discrete level. Similarly
to Persist, we have a state space S = {s1, s2, . . . , sK} and
a time series is considered to move around in this space. A
continuous HMM has the initial state distribution p(Q1 =
sk), the transition distributions p(Qt+1 = sk′ |Qt = sk) and
the emission distributions (densities) p(Xt = xt|Qt = sk),
where Qt is a random variable which takes the state at time



t and Xt is a random variable which takes the measurement
at time t.

In HMMs considered in this paper2, the emission distri-
bution at the k-th state p(Xt = xt|Qt = sk) follows a
Gaussian distribution N (µk, σ

2
k). In our case, this indicates

that the k-th level has its own mean µk and variance σ2
k

of the measurements. Without loss of generality, we assume
that µk ≤ µk′ if k ≤ k′. Discretization is then performed
by the Viterbi algorithm [7] which takes as input a raw time
series x = (x1, x2, . . . , xT ) and returns the most probable
state sequence z∗ = (sk1 , sk2 , . . . , skT

), from which we can
construct the discretized time series x̃ = (k1, k2, . . . , kT ).

Under the maximum likelihood framework, the parame-
ters of the above distributions are estimated from the input
time series x by the forward-backward algorithm [7]. The
forward-backward algorithm can be seen as a temporal
extension of probabilistic clustering of the measurements
based on a univariate Gaussian mixture model, and the
estimated positions (µ̂k) and the shapes (σ̂2

k) of the emission
Gaussian distributions are crucial in discretization. In the
Viterbi algorithm, on the other hand, the probabilities of
self transitions work as weights to keep the HMM staying
at the same state as long as possible, and consequently play
a role of smoothing.

E. Experiment with the enduring-state dataset

In this section, to discuss the characteristics of the existing
discretization methods above, we present a reproduced result
of the comparative study in [8] with an artificial dataset,
which we hereafter call the enduring-state dataset. In ad-
dition to accuracy adopted in [8], we introduce normalized
mutual information (NMI) [13] as an evaluation criterion on
predictive performance. NMI is frequently used in evaluation
of a clustering result.

In the enduring-state dataset, raw time series of length
1,000 are generated by a state machine which randomly
changes its state after a random duration. See [8] for more
details. At each state, the data points (the measurements) are
generated with Gaussian noises around the mean proper to
the state. The generation process is thus close to a hidden
Markov process, but additionally, some of the data points
are replaced with outliers. The ratio of these outliers varies
from 0% to 10%. Fig. 1 above shows a time series with five
states and 5% outliers. As in Persist and HMMs, each state
corresponds to a discrete level. Hereafter the state sequence
obtained in the sampling process of a raw time series is
called the answer sequence, and the output of a discretizer
is called the predicted sequence.

The goal here is to see how well the discretizers recover
the answer sequence from the noisy time series. We pick
up six methods to compare from [8]: equal width bin-
ning (EQW), equal frequency binning (EQF), SAX, Persist,

2HMMs in [7] uses a Gaussian mixture as the emission distribution. Our
version is a special case with only one mixture component.

Figure 1. (above) An enduring-state time series. The plots with a thick
line indicate the answer sequence. (below) Predictive performance of the
existing methods in the enduring-state dataset with five levels.

clustering by Gaussian mixture models (GMM), continuous
HMMs (HMM). We tested these methods on 100 time series
for each number K of discrete levels and ratio R of outliers.
In the forward-backward algorithm for HMMs, the means
and variances of the emission distributions are initialized
as the sample mean µ̂(x) (with small Gaussian noises) and
the sample variance σ̂2(x) of the raw time series x, and
we chose the one achieving the highest likelihood from 100
reinitializations. In SAX, we picked up the frame width from
{1, 2, 3, 5, 10, 20, 50} that works best for each pair of K
and R. Fig. 1 below shows the median accuracy (left) and
the median NMI (right) for the time series with five discrete
levels and various ratios of outliers. The error bars indicate
the 95% median absolute deviation (MAD) t confidence
interval [14].

Under the accuracy, as reported in [8], a direct use of bin-
ning or clustering (EQW, EQF or GMM) works poorly, and
SAX’s normality assumption at the measurement axis seems
not to fit to this dataset. Also it is observed that continuous
HMMs work nearly perfectly for the time series without
outliers (this is not surprising from the way of generating
time series), but their performance quickly degenerates as
the outliers increase. Persist, on the other hand, is found
to be stable (i.e. the variances of accuracies are small) and
robust against outliers. Interestingly, the results under NMI
show a different tendency. That is, the degeneration of the
HMMs’ performance is similar to the others, and HMMs
constantly outperform them.

The difference in tendencies comes from the nature of



evaluation criteria and the nature of the discretization meth-
ods. The accuracy is defined on exact matchings of the dis-
crete levels between the answer sequence and the predicted
sequence (i.e. we check if kt and k′t are equal or not for each
time t). So it is crucial under the accuracy to identify (the
breakpoints or the means of) the discrete levels in the answer
sequence. Contrastingly, NMI does not depend on such
exact matchings and just indicates the degree of overlapping
between two groupings of data points (that is why NMI is
used for the evaluation of a clustering result). The answer
sequences are of course smooth, and thus NMI emphasizes
the smoothness of the predicted sequence. Indeed, after a
closer look into the predicted sequences, we found that,
in Persist, many non-outliers (only perturbed by Gaussian
noises) go across the boundaries of the bins, and HMMs
frequently fail to identify the answer discrete levels for the
time series with many outliers. From these observations and
the descriptions in Sections II-C and II-D, we summarize
that, in this dataset, Persist is robust in identifying the
underlying discrete levels thanks to the persistence score’s
global nature, while HMMs are good at local smoothing
among the neighboring measurements. Next, we propose a
principled way to exploit these promising characteristics at
the same time.

III. HYBRIDIZATION VIA VARIATIONAL BAYES

To exploit the advantages of the heterogeneous discretiz-
ers, i.e. Persist (or another method) and continuous HMMs,
we propose a hybrid method based on variational Bayes
(VB) [5], [6]. Bayesian learning in general is known to be
robust against noises, and VB is a fast approximate Bayesian
learning that makes available a dynamic programming based
procedure such as the forward-backward algorithm. Al-
though there have been a couple of previous works which
apply VB to continuous HMMs [15], [12], to the best of
our knowledge, our hybrid method is the first attempt to
introduce VB to discretization tasks. The rest of this section
first explains how VB is applied to continuous HMMs, and
then, in Section III-D, describes how we hybridize Persist
and HMMs in the VB framework.

A. Model description

In Section II-D, we have explained that a continuous
HMM has the initial state distribution p(Q1 = sk), the
transition distributions p(Qt+1 = sk′ |Qt = sk) and the
emission distributions p(Xt = xt|Qt = sk). Hereafter we
denote the state at time t by zt, and abbreviate p(Xt = xt)
and p(Qt = zt) as p(xt) and p(zt), respectively. Then,
p(x, z) is the joint distribution where x is a time series and z
is the sequence of states the HMM stays at while generating
x. In HMMs, this joint distribution is factored as follows:

p(x, z) = p(z1)
(∏T−1

t=1 p(zt+1|zt)
)(∏T

t=1 p(xt|zt)
)
.

(1)

Here p(z1) follows a categorical distribution {π1, π2, . . . ,
πK}, where πk is the probability of the state sk being chosen
as the initial state. Similarly, when zt = sk, p(zt+1|zt) fol-
lows a categorical distribution {πk1, πk2, . . . , πkK}, where
πkk′ is the probability of the state sk′ being chosen as
the next state. Besides, when zt = sk, p(xt|zt) follows a
Gaussian distribution N (µk, σ

2
k). Then, πk, πkk′ , µk and

σk (k, k′ ∈ [1,K]) are considered as parameters of the joint
distribution, and jointly denoted by θ.

In Bayesian approaches, we consider the extended joint
distribution p(x, z, θ), which is the product of the prior dis-
tribution p(θ) and the likelihood p(x, z|θ). For mathematical
convenience, we use conjugate priors to define the prior
distribution. That is,

p(θ) = p(π1, . . . , πK)
∏K

k=1 p(πk1, . . . , πkK)p(µk)p(λk)
(2)

where we introduce the precision λk = 1/σ2
k and assume

p(π1, . . . , πK) ∼ D(π1, . . . , πK |α1, . . . , αK) (3)
p(πk1, . . . , πkK) ∼ D(πk1, . . . , πkK |αk1, . . . , αkK)(4)

p(µk) ∼ N (µk|mk, (τλk)
−1) (5)

p(λk) ∼ G(λk|a, b). (6)

Here D(ρ1, . . . , ρK |α1, . . . , αK) and G(λ|a, b) denote the
Dirichlet distribution and the Gamma distribution, respec-
tively (see the appendix for their definitions). Here αk, αkk′ ,
mk, τ , a and b (k, k′ ∈ [1,K]) are the parameters of the prior
distribution, called hyperparameters and jointly denoted by
φ.

B. VB learning for continuous HMMs

In variational Bayes (VB), we first consider the log-
arithm of the marginal likelihood L(x)

def
= log p(x) =

log
∑

z

∫
Θ
p(x, z, θ)dθ. Here we fix the hyperparameters

φ and omit them for the moment. Now x is said to be
incomplete since we cannot know the state sequence z
from x, and then, some approximation method is required
to compute L(x). We consider an approximation of L(x)
via VB. To be more specific, we introduce the variational
free energy F [q]

def
=

∑
z

∫
Θ
q(z, θ) log p(x,z,θ)

q(z,θ) dθ, which is
a functional of the test distribution q(z, θ). It can be shown
that F [q] is a lower bound of L(x), and hence the maximized
free energy F [q∗] can be seen as a good approximation of
L(x). Then, as we will see in the next section, the maximizer
q∗ is used to find a desirable discretization.

In VB, we assume q(z, θ) ≈ q(z)q(θ), and obtain a
generic form of variational Bayesian EM (VB-EM) algo-
rithm as an iterative procedure consisting of the following
two updating rules:

VB-E step : q(z) ∝ exp
(∫

Θ
q(θ) log p(x, z|θ)dθ

)
(7)

VB-M step : q(θ) ∝ p(θ) exp (
∑

z q(z) log p(x, z|θ)) .(8)



Now we can derive the algorithm specific to continuous
HMMs by substituting the distribution form of continuous
HMMs to the generic VB-EM procedure above. As a result,
we obtain the adjusted hyperparameters φ∗ that specify q∗:
αk, αkk′ , mk, τk, ak and bk. The derived VB-EM algorithm
is presented in the appendix.

To determine the number K∗ of discrete levels, we
further extend the joint distribution to p(x, z, θ,K) where
K indicate the number of discrete levels. Then we find
K = K∗ that maximizes the probability p(K|x). Assuming
p(K) is uniform, and having p(K|x) = p(x|K)p(K)/p(x)
from the Bayes’ theorem, this maximization is equivalent to
the maximization of the logarithm of the marginal likelihood
L(x) = log p(x|K) = log

∑
z

∫
Θ
p(x, z, θ|K)dθ. Again,

L(x) is approximated by the variational free energy, which
is thus used as the score on the plausibility of the number
of discrete levels.

C. Finding the discretized time series

From the property L(x)− F [q] = KL(q(z, θ), p(z, θ|x)),
where KL denotes the Kullback-Leibler divergence, finding
the maximizer q∗ of F [q] leads to a good approximation
of p(z, θ|x), the posterior distribution of hidden state se-
quence and the parameters. Averaging by this approximated
posterior distribution, we compute the predictive distribution
of the (hidden) state sequence p(z|x) ∝

∫
Θ
q∗(θ)p(x, z|θ)dθ

for the input series x. Finally we get the most probable state
sequence (the discretized time series) z∗ = argmaxzp(z|x).
Note here that p(z|x) is analytically obtained but cannot
be computed in a dynamic programming fashion [6]. To
remedy this problem, we take a heuristic approach known
as reranking [16]. That is, we first find top-n ranked state
sequences {z1, . . . , zn} by the n-best Viterbi algorithm (we
used n = 10) working on an HMM whose initial state dis-
tribution, transition distributions, and emission distributions
are independently averaged by q∗(θ)3. Then, we compute
p(zi|x) exactly for each i ∈ [1, n], and finally obtain z∗ as
argmaxzi:i∈[1,n]p(zi|x).

D. Hyperparameter settings for hybridization

As in Sections II-D and II-E, in discretization, it is crucial
to find the positions (µk) and the shapes (σ2

k) of the emission
Gaussian distribution which capture well the input series
x. The posterior distribution of µk (i.e. q∗(µk)) follows a
Gaussian distribution whose mean is the adjusted mk, and
hence mk eventually affects the quality of discretization. In
the VB-M step, we obtain mk by

mk := (τmk + T kxk)/(τ + T k), (9)

3Consequently, the initial state distribution, the transition distributions,
and the emission distributions respectively follow a categorical distribu-
tion {π∗

k = αk/
∑

`
α`}k∈[1,K], categorical distributions {π∗

kk′ =

αkk′/
∑

`
αk`}k′∈[1,K] and student’s t-distributions (details omitted).

where mk and τ are the hyperparameters, xk and T k can
be interpreted as the mean of real values emitted while
staying at the state sk, and the expected counts of staying
at sk, respectively. We can see from Eq. 9 that mk is an
weighted sum of mk and xk, and that mk can be controlled
by hyperparameters mk and τ , which are the mean from our
prior knowledge and its weight, respectively.

In combining HMMs with Persist, we determine mk using
the breakpoints βk obtained as a byproduct by Persist,
and the 5% and 95% percentile values of the input x.
Specifically, we compute mk := (β′

k−1 + β′
k)/2 where

β′
k = βk for k ∈ [1,K − 1], β′

0 = ζ5(x) and β′
K = ζ95(x).

The weight τ is set to balance the prior knowledge and
the input series. The hyperparameters αk and αkk′ play the
same role, and we fixed a ≈ 1

2 and b = 1
2 σ̂

2(x) in our
experiments. Note that we can also combine HMMs with
SAX using the breakpoints βk, which are SAX’s byproduct.
The hybridization above is surely simple, but is flexible since
the hyperparameters are the only connection point between
the discretizers to be combined.

IV. EXPERIMENTS

A. The enduring-state dataset revisited

To test our hybrid method, we conducted three exper-
iments with artificial and real datasets. First, we test our
method with the enduring-state dataset, described in Sec-
tion II-E. The experimental settings are the same except that
we set αk = 1 and αkk′ = 1, and chose the hyperparameter
τ from {0.5, 1, 5, 10, 20, 50, 70, 100} that works best for
each pair of the number K of discrete levels and the ratio R
of outliers. The results with five levels are shown in Fig. 2 in
which “HMM+P” and “HMM+S” respectively indicate the
HMM combined with Persist and the one combined with
SAX. As expected, these hybrids outperform the original
single methods under both accuracy and NMI. For the other
cases under accuracy, by Wilcoxon’s rank sum test with the
significance level 0.01, “HMM+P” is shown to be better
than the original Persist, except several cases with a large
number of levels and many outliers4. This superiority was
also confirmed under NMI for all cases.

B. Time series classification

The task in the second experiment is supervised time
series classification, where we classify a whole time series
into one of the predefined classes. The 1-nearest neighbor
(1-NN) classifiers are often used with the Euclidean dis-
tance ∆(x, x′)

def
=

√∑
t∈[1,T ](xt − x′

t)
2 as a dissimilarity

measure between two raw time series x and x′. In this
experiment, to see how the discretization methods affect the
classification performance, we replace ∆ with its discretized

4More precisely, in the cases (K,R) = (6, 7%), (6, 8%), (6, 10%),
(7, 4%), (7, 7%), (7, 8%), (7, 9%) and (7, 10%), there is no significant
difference.



Figure 2. Predictive performance of Persist, HMMs and two hybrids in
the enduring-state dataset with five discrete levels. The plots for Persist and
HMMs are the same as those in Fig. 1.

version ∆̃(x, x′)
def
=

√∑
t∈[1,T ](kt − k′t)

2, where (k1, . . . ,

kT ) and (k′1, . . . , k
′
T ) are the discretized series of x and x′,

respectively5.
We worked on two widely-used artificial datasets called

the control chart (CC) dataset and the cylinder-bell-funnel
(CBF) dataset6. The CC dataset contains 600 time series of
length 60 and has six classes, and the CBF dataset contains
798 time series of length 128 and has three classes. All
time series in each dataset are standardized in advance.
We conducted 10 times 10-fold stratified cross-validation.
In each fold, we first train a discretizer with the training
time series, and then discretize all time series by the trained
discretizer7. Finally we apply the 1-NN classifier in a usual
manner. In SAX, we chose the frame width w from {1,
2, 3, 5, 10, 15, 20, 25, 30} that works best. Also we
trained HMMs under αk = 1, αkk′ = 1 and τ chosen
from {1, 10, 100, 1000} with 10 reinitializations. Table I
shows the error rates (%) with 95% confidence interval under
Student’s t-distribution with various numbers K of discrete
levels. In each row, the smallest error rate is marked with the

5∆̃ indicates that the penalty cost of mismatching between two discrete
levels is the square of their difference. In SAX, a dissimilarity measure,
called MINDIST, is proposed [9]. However, we do not present the results
with MINDIST here, since the classifier based on MINDIST worked poorly
with fewer discrete levels (e.g. with three levels).

6The CC dataset is available from the UCI Machine Learning Repository
(http://archive.ics.uci.edu/ml/), and the CBF dataset was generated by the
authors based on the description in [11].

7This procedure is necessary for data-adaptive discretizers such as Persist
and HMMs. We extended Persist and HMMs in a straightforward way to
handle more than one time series.

Table I
PREDICTIVE PERFORMANCE IN TIME SERIES CLASSIFICATION.

Error rates (%) for the CC dataset
K SAX Persist HMM HMM+SAX HMM+Persist
2 *24.61±0.94 24.82±1.01 38.15±1.71 36.75±0.72 36.70±0.70
3 *4.73±0.55 18.58±0.97 8.70±0.90 8.00±0.58 8.55±0.60
4 *5.08±0.58 17.17±1.07 16.48±1.67 10.38±0.80 11.65±1.16
5 *3.03±0.42 14.03±0.84 19.58±1.63 25.08±0.70 14.95±1.52
6 *2.52±0.38 10.67±0.79 15.68±2.15 25.47±0.73 23.33±0.60
7 *1.57±0.30 11.73±0.84 14.65±2.65 6.23±0.62 11.05±1.31
8 *1.40±0.30 11.40±0.71 12.92±2.48 4.40±0.62 6.47±0.92

Error rates (%) for the CBF dataset
K SAX Persist HMM HMM+SAX HMM+Persist
2 *23.64±0.82 25.99±0.77 27.55±1.03 27.50±1.02 25.81±1.01
3 5.51±0.48 12.29±0.80 2.43±0.33 2.29±0.31 *1.74±0.27
4 4.41±0.48 4.01±1.28 *0.76±0.19 *0.76±0.19 1.24±0.24
5 2.84±0.38 1.05±0.25 1.23±0.27 *0.98±0.24 0.99±0.22
6 1.85±0.33 2.83±0.45 0.80±0.21 *0.74±0.19 0.83±0.20
7 1.40±0.24 1.90±0.30 1.20±0.25 0.90±0.26 *0.82±0.20
8 1.43±0.27 1.99±0.44 *0.83±0.21 1.01±0.25 0.88±0.19

‘*’ symbol. Without discretization (i.e. using ∆), the error
rates (%) are 7.90±0.62 for CC and 1.85±0.27 for CBF.

In the results for the CC dataset, SAX outperforms the
other methods including the method without discretization.
This seems to be due to the effect of smoothing by PAA [1],
[9], and more importantly to the assumption made by the
methods other than SAX — time series have flat portions
which are crucial to the goal of the application. Indeed,
the time series with long increasing/decreasing trend in-
cur more errors to these methods. On the other hand, it
should be remarked that the two hybrids “HMM+SAX” and
“HMM+Persist” surely improve the performance of 1-NN
over the original HMMs in most cases. Also with three
discrete levels, the performance with HMM-based methods
is comparable to the one without discretization.

For the CBF dataset, the performance with two hybrids is
better than the one without discretization, and than the one
with SAX or Persist especially when we have fewer discrete
levels. This result is important since from the viewpoint of
comprehensibility, the number of discrete levels should be
preferred to be small. Besides, we observed that, in both
datasets, a large τ is sometimes needed for hybrids, since
the training set contains numerous measurements (e.g. 600×
0.9× 60 = 32, 400 in the case of CC).

C. The muscle dataset

In the last experiment, following [8] again, we discretize
the time series on the muscle activation of a professional
inline speed skater [10]8, focusing on determining the num-
ber of discrete levels. In this dataset, the measurement is
the muscle activation calculated from the original EMG

8The dataset is included in the package of Persist’s MATLAB imple-
mentation (http://www.mybytes.de/persist.php).
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Figure 3. (left-above) The original and discretized time series. (left-below) The time series compressed by PAA and discretized. (right) The variational
free energy with different number of discrete levels.

(Electromyography) as the logarithm of the energy, and
nearly 30,000 measurements are recorded. The plots with a
thin line in Fig. 3 left-above shows the original time series.

Since the time series contains numerous measurements,
to determine the number of discrete levels, we should set
relatively large numbers to τ , αk and αkk′ , the weights for
prior knowledge (Section III-D). Otherwise, the estimated
number K∗ of discrete levels turns to be counterintuitively
large. This overfitting problem is illustrated in Fig. 3 right,
where the x-axis indicates the number K of discrete levels
and the y-axis indicates the variational free energy (VFE)
with K levels. The plots “weight = 1” and “weight = 500”
show the VFEs under τ = 1 and τ = 500, respectively9.
Also, we can have a similar effect by compressing the time
series with PAA. The plots “PAA” indicate the VFEs under
the frame width w = 20 and τ = 1.

The plots with thick lines in Fig. 3 left indicate the
discretized sequence in the case of τ = 500 without PAA
(above), and in the case of τ = 1 with PAA under w = 20
(below). In both cases, K∗ is estimated as four, but one of
the discrete levels (whose mean is at −17.7) appears only
rarely. This result coincides with the fact that the expert
prefers K∗ to be three [8], and the discretized sequence
with PAA clearly shows the high activation at the end of
each cycle, which means the last kick to the ground to move
forward. Note here that this result has been obtained using
Persist [8], but we reached a similar result by a more general
approach via variational Bayes.

V. CONCLUSION

We proposed a hybrid method for unsupervised time
series discretization based on variational Bayes (VB). By hy-
bridization, we can benefit from heterogeneous discretizers
which have their own assumption/model on the distribution

9In this experiment, we always set (τ + 1) to the other weight hyper-
parameters αk and αkk′ , and tried 500 reinitializations in the VB-EM
algorithm.

of data points in a two dimensional (measurement-time)
space. As examined by experiments, VB provides a prin-
cipled and flexible way to build a robust discretizer and to
determine the number of discrete levels, which would finally
lead to a discretization meaningful for symbolic data mining
or other AI systems. Also the hybrid discretizer we built
is data-adaptive, and hence is expected to produce a more
comprehensible discretization. To the best of our knowledge,
the proposed method is the first attempt to introduce VB for
discretization tasks.

There are some remaining works. We need to apply the
proposed method to other datasets in time series classi-
fication. Computational issues are important as well. In
particular, the computation time of HMM-related algorithms
is quadratic to the number of discrete levels. This problem is
remedied by a compression method like PAA, and as men-
tioned in Section IV-B, fewer discrete levels are preferred
from the viewpoint of comprehensibility. Besides, there are
cases where we wish to discretize multivariate time series
with common discrete levels. Synnaeve et al. [4] realized it
by extending HMMs with the notion of parameter tying [7].
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APPENDIX

The Dirichlet and the gamma distributions are defined as:

D(ρ1, . . . , ρK |α1, . . . , αK)
def
=

Γ(
∑K

k=1
αk)∏K

k=1
Γ(αK)

∏K
k=1 ρ

αk−1
k

G(λ|a, b) def
= 1

Γ(a)b
aλa−1 exp(−bλ),

where Γ is the gamma function. In the VB-EM algorithm, we
initialize αk = αk+ε, αkk′ = αkk′+ε, mk := mk+ε, ak :=
a, bk := b and τk := τ for each k ∈ [1,K]. Here each of
ε’s is a distinct small random noise, and the hyperparameters
αk, αkk′ , mk, τ , a and b are specified in advance. Then, in
the VB-E step, we compute the expectations Uk, T kk′ , xk

and Sk by the following procedure:

q(z) := q(z1)
(∏T−1

t=1 q(zt+1|zt)
)(∏T

t=1 q(xt|zt)
)

q(sk) := exp (Ψ(αk)−Ψ(
∑

k αk))

q(sk′ |sk) := exp (Ψ(αkk′)−Ψ(
∑

k′ αkk′))

q(xt|sk) := exp
(
− 1

2

(
log 2π + 1

τk
+ log bk −Ψ(ak)

))
·

exp
(
− ak

2bk
(xt −mk)

2
)

Uk :=
∑

z:z1=sk
q(z)

T kk′ :=
∑

z q(z)
∣∣{t ∈ [2, T ] | zt−1 = sk, zt = sk′}

∣∣
xk := 1

Tk

∑
z q(z)

∑
t:t∈[1,T ],zt=sk

xt

Sk := 1

Tk

∑
z q(z)

∑
t:t∈[1,T ],zt=sk

(xt − xk)
2,

where T k
def
=

∑
k′ T kk′ and Ψ is the digamma function:

Ψ(x)
def
= d

dx log Γ(x). The VB-E step can be computed
by the forward-backward algorithm on an HMM whose
initial state distribution, transition distributions and emission
distributions are q(z1), q(zt+1|zt) and q(xt|zt), respectively.
In the VB-M step, on the other hand, we update the
hyperparameters as below.

αk := αk + Uk

mk := (τmk + T kxk)/(τ + T k)

αkk′ := αkk′ + T kk′

ak := a+
1

2
T k

τk := τ + T k

bk := b+
1

2

(
τT k

τ + T k

(mk − xk)
2 + Sk

)
We iterate the VB-E step and the VB-M step alternately until
the convergence of the variational free energy derived as:

F [q] := log
∑

z q(z) +
∑

k log
Γ(αk)
Γ(αk)

+ log
Γ(
∑

k
αk)

Γ(
∑

k
αk)

+
∑

k,k′ log
Γ(αkk′ )
Γ(αkk′ )

+
∑

k log
Γ(
∑

k′ αkk′ )

Γ(
∑

k′ αkk′ )

+
∑

k Uk (Ψ(αk)−Ψ(
∑

k αk))

+
∑

k,k′ T kk′ (Ψ(αkk′)−Ψ(
∑

` αk`))

+
∑

k

(
1
2 log

τ
τ + log Γ(ak)

Γ(ak)
+ log ba

b
ak
k

)
+
∑

k
ak

bk
((bk − b)− 1

2τ(mk −mk)
2)

+1
2

∑
k T k(

1
τk

+ log bk −Ψ(ak)).


