# Bayesian Programming Applied to Starcraft Micro-Management and Opening Recognition

#### Gabriel Synnaeve and Pierre Bessière

University of Grenoble LPPA @ Collège de France (Paris) E-Motion team @ INRIA (Grenoble)

September 3, 2011

- Introduction
  - StarCraft
  - Our Approach
- Part 1: Micro-Management
  - Problem
  - Model
  - Results
- Part 2: Enemy Strategy Prediction
  - Problem
  - Model
  - Results
- Conclusion
  - Summing-Up
  - Future Work

#### Starcraft: Broodwar

Starcraft (January 1998) + Broodwar (exp., November 1998)



### Pro gaming and competitions

eSports, sponsorship, tournaments' dotations, salaries (Korea)



#### WORLD CYBER GAMES

The World Cyber Games is the world's first "Cyber Game Festival", designed to build a healthy cyber culture.

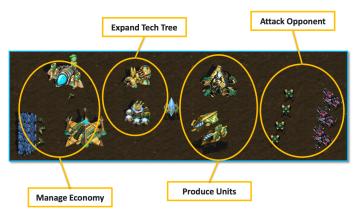
The best gamers around the world gather into different cities to share the excitement and fun of the game tournaments.



#### Starcraft in numbers

- 12 years of competitive play
- 200 to 300 actions per minute amongst pro gamers
- 10 millions licenses sold (4.5 in South Korea)
- 160 BPM: reached rates of pro gamers hearts
- 4.5+ millions licenses sold for Starcraft II

### Real-Time Strategy Game



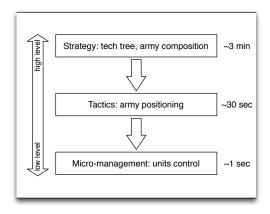
("shamelessly stolen with permission" from Ben Weber, UCSC) The models and approaches presented here are also **valid** in Total Annihilation, Age of Empires and Warcraft 2.

### Interest for RTS games

- Chess / Go / Rock-paper-scissors
- Real-time (1/24th second per micro-turn)
- Machine learning ready (supervised, unsupervised, reinforcement)
- Al competitions



#### Problems to tackle



### Transmute incompleteness into uncertainty

#### Incompleteness



#### Uncertainty



- Many low level moves achieving the same high level goal
- Fog of war (limited sight)
- Partial knowledge of opponent's force (size and composition)

- Considering the units as individual Bayesian robots
- Seen units (viewed units filter)
- Probabilistic inference, machine learning from replays

### Bayesianism



### **EDWIN T. JAYNES**

«One disadvantage of having a little intelligence is that one can invent myths out of his own imagination, and come to believe them.»

### A Bayesian program structure

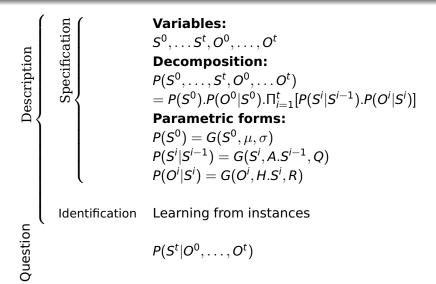
$$BP \begin{cases} Desc. \begin{cases} Spec.(\pi) \\ Spec.(\pi) \end{cases} \begin{cases} Variables \\ Decomposition \\ Forms \ (Parametric \ or \ Program) \end{cases} \\ Identification \ (based \ on \ \delta) \\ Question \end{cases}$$

$$P(Searched|Known)$$

$$= \frac{\sum_{Free} P(Searched, Free, Known)}{P(Known)}$$

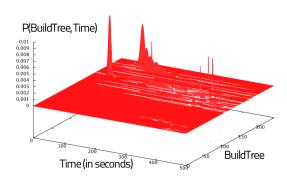
$$= \frac{1}{Z} \times \sum_{Free} P(Searched, Free, Known)$$

### A Bayesian program example: the Kalman filter

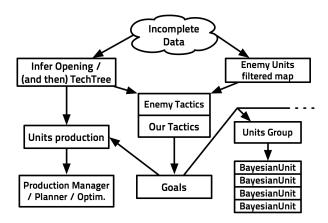


### Machine learnings

- from replays (parameters of predictive models)
- reinforcement (exploration of parameters space for the Bayesian robots)
- online (adapt to particular opponent)



#### Model overview



Not a perfect (nor what-we-want-in-the-end) model, but the actual, implemented, bot model.

#### Part 1

# Micro-management

### Micro-management in RTS games

Micro-management is the art of maximizing the efficiency of your units:

- Focus-fire enemy units to reduce their fire power,
- Move away damaged units ("dancing"),
- Allow damaged units to flee (collisions), best placements w.r.t. wanted/best target possible.

Open question: for humans, another objective is to rank the actions by importance (APM limit).

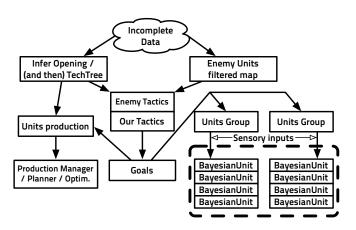
### Serious Stuff (real-time Chess)

**24** game simulation FPS, fine grained discrete world (almost continuous), **branching factor** out of control, **uncertainty** about opponent's movements.

 $\Rightarrow$  "No" computable optimal solution.

Our take: units as independent Bayesian robots.

#### Where are we?



Here

### The Bayesian unit (1)

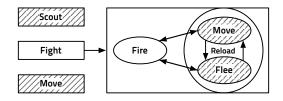
The workers are *not* controlled as (Bayesian) sensory motor systems as their tasks are extremely simple.

Modal unit, can be simplified as HFSM:

- Scout
- Move (small / large group)
- In position
- Fight:
  - Attack
  - Fight-move
  - Flee

**}** When not attacking

### The Bayesian unit (2) [Firing]



Focus-firing heuristic (simplified): Fire on units that do the most damages, have the less hit points, and take the most damages from their attack type.

#### Inputs to our unit:

- wanted/best target: best target w.r.t heuristic
- immediate target: best target in firing range

### The Bayesian unit (3) [Moving/Fleeing]



Mode dependant influences, as:

- "statically" occupied tiles
- "dynamically" occupied tiles
- height
- damage map (+ gradient)
- pathfinder
- ..

### Fight-move example (1)

#### Variables:

- *Dir n* values with  $n = \#\{\text{possible directions}\}$ ,
- $Dir_{i \in \{\text{possible directions}\}} \in \{T, F\}$ ,
- $Obj_i \in \{T, F\}$ , direction of the objective (quantified)
- $Dam_i \in \{no, low, med, high\}$ , subjective potential field,
- $A_i\&E_i \in \{none, small, big\}$ , allied & enemy units presence,
- $Occ_i \in \{no, terrain, building\}$ , "static" occupation

#### **Decomposition:**

$$P(Dir, Dir_{1:n}, Obj_{1:n}, Dam_{1:n}Rep_{1:n}, Occ_{1:n})$$
 $= \Pi_{i=1}^{n} P(Dir_{i}|Dir) // Dir = i \Rightarrow 1, Dir \neq i \Rightarrow 0$ 
 $.P(Obj_{i}|Dir_{i})$ 
 $.P(Dam_{i}|Dir_{i})$ 
 $.P(A_{i}|Dir_{i}).P(E_{i}|Dir_{i})$ 
 $.P(Occ_{i}|Dir_{i})$ 

### Fight-move example (2)

#### **Parameters:**

They are hand-specified for the moment but should be learned through task-specific maps and maximization (EA/GP, RL).

#### **Questions:**

Our pathfinder gives us  $Obj_{1:n}$ , the damage map  $Dam_{1:n}$ , the size (or number) of other units in tile/direction  $i A/E_{1:n}$ , etc.

$$P(Dir|Obj_{1:n}, Dam_{1:n}, A_{1:n}, E_{1:n}, Occ_{1:n})$$



### Fight-move example (3)

**Video**: a fight in AIIDE micro-tournament setup 2 (decisions of movements taken by sampling on *Dir*):



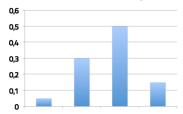
### Bayesian flocking (simplified)

#### Variables:

- $Dir_{i \in \{\text{possible directions}\}} \in \{T, F\}$ ,
- $Obj_i \in \{T, F\}$ ,
- Att<sub>i</sub> ∈ {too close, close, far, too far}, closeness to allied units for the ith direction (for instance),

#### **Parameters:**

 $P(Att_i|Dir_i)$  can be learned with maze-like maps and on the objective to minimize the time-to-completion (will find the optimal flocking distance/attraction-repulsion):





### Repulsion applied "in position"

(2 videos which can be found on youtube

http://www.youtube.com/snippyhollow#p/a/u/1/sMyF\_PlDqFo http://www.youtube.com/snippyhollow#p/a/u/2/mvv9kUntLHU) **Variables:**  $Dir_i$ ,  $Obj_i$ ,  $Rep_i$ , but with different parameters for  $P(Rep_i|Dir_i)$  (can be learned also), and a different objective: the wanted unit position.





#### AIIDE 2010 Tournament 1

- 7 participants
- Could not take part (technical problem)
- FreSC (France, Epita team) won
- Played against FreSC: draw! (0-3, 3-0, draw (host wins))







### Benchmarking the movements efficiency

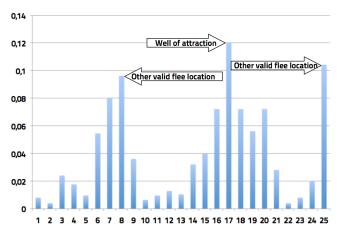
We designed/implemented a bot without the movements advantage to highlight the increase in value of our model: a *target selection heuristic only* bot (focus-firing bot).

#### **Big Populations Blunder: Collisions**



### Simplest solution

Sample in the Dir distribution!



(Note that our AIIDE 2010 bot was using the "pick best" policy.)

### Recap. Table

| 36 units | OAI   | HOAI  | BAIPB | BAIS  |
|----------|-------|-------|-------|-------|
| OAI      | (50%) | 64%   | 9%    | 3%    |
| HOAI     | 59%   | (50%) | 11%   | 6%    |
| BAIPB    | 93%   | 97%   | (50%) | 3%    |
| BAIS     | 93%   | 95%   | 76%   | (50%) |

Win ratios over at least 200 battles of Original AI, Heuristic Only AI, Bayesian AI Pick Best, Bayesian AI Sampling in two mirror setups: 12 and 36 ranged units. Read line vs column win %.

Results

### Compulsory Mike's Slide

#### for 59% wins:

```
vv = c(rep(100, 118), rep(0, 200-118))
t.test(x=vv, mu=50)
One Sample t-test
data: vv
t = 2.5814, df = 199,199 p-value = 0.01056
alternative hypothesis: true mean is not equal to 50
95 percent confidence interval:
 52.12475 65.87525
sample estimates:
mean of x
       59
```

(>60% with 200+ games are all significative results)

### A word on parameters

Parameters can be hand specified, so we can provide **game designers** with a slider on a  $\lambda$  or  $\mu$  parameter controlling the distribution on the model's probability tables. For instance,  $P(Dmg_i|Dir_i=T)$  controls the risk-taking/bravery/temerity of the unit. Game designers can toy around with behaviours this way.

In the framework of a **competition**, we can learn these parameters to maximize the objective. Being it a micro-management only or a complete game (objectives differ a little: the higher tactic level can decide to sacrifice a group on an objective).

#### Next?

#### A lot of possible improvements/follow-ups:

- Other sensory inputs (heights/tactical positions...),
- Learning the tables (EA/GP/RL for big combinations) w.r.t. situations,
- Either a case-based approach for situation recognition or situations recognition tables fusion,
- Group controllability vs unit autonomy ( $\approx$  unit recklessness/sacrifice).

### Part 2

## **Strategy Prediction**

#### Definition

Infer what the enemy **opening**<sup>1</sup> is from partial observations (because of the *fog of war*) to be able to deal with it, or counter it if we can.

(Another problem is then to dynamically adapt our own opening/strategy.)

<sup>&</sup>lt;sup>1</sup>opening = first strategy = first units + first tactical move (as in Chess), we will reserve the term strategy for *army composition* + *long term tactical goals*)

### Examples of openings (cheeses)

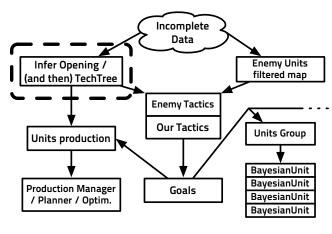
#### All-in fast dark templars:

Produce 2 dark templars (permanently cloaked unit type) as fast as possible to destroy the enemy while he can not detect them. Attempt to finish the game with a very specific (and weak when countered) unit deep in the tech path.

#### All-in 2 gates zealots rush:

Produce only zealots (lowest tech Protoss military unit), stream them once a critical attack mass (6+) is reached. Attempt to finish the game before the opponent's economy or technological ROI kicked in.

#### Where are we?



Here

## A word on the meta-game

Openings prior probabilities are influenced by maps and previous games (meta-game) in the same match and/or against the same opponent (pros tourneys: BO5+). We will not consider it for the rest of this work. **This is a huge mistake**<sup>2</sup>, as it is central to StarCraft gameplay balance, but we play by the rules of current bots tournaments (BO1).

<sup>&</sup>lt;sup>2</sup>it is very easy to adapt in our model: just put/change a prior

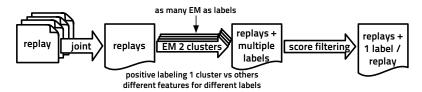
### Replays

Record all the actions of the player so that the game can be deterministically re-simulated (random generators seeds are serialized).

#### Supervised learning model:

- Need for the replays to be annotated with openings.
- Used Ben Weber (UCSC) dataset (annotated with tech tree deployment order / rules) for comparisons purposes: 9316 games, between 500 and 1300 per match-up.
- Can use other (more) replays (as we can automatically annotated them).

## Replays openings labeling



Semi-supervised labeling: manually extracted features + clustering + annotation heuristic ("earliest happening" cluster is labeled positively).

#### Features selection

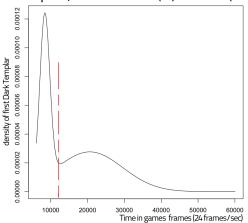
Features selected for each label (opening value) that we want to put. From experts knowledge.

#### For instance:

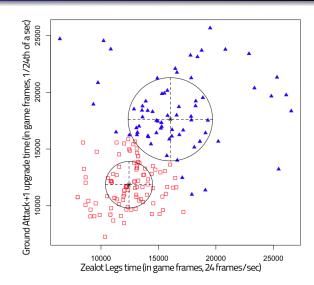
- what is important for the "fast dark templars" opening is the time of the first production of a dark templar.
- what is important for the "2 gates rush" opening are the time of constructions of the first and second gate, and the time of production of the first zealot.

## Clustering (1), PvT Fast DT opening

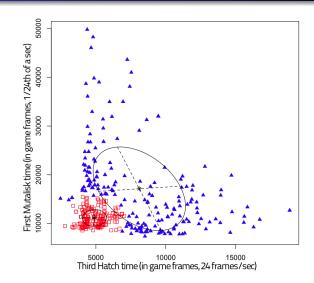
Tried many techniques, used Mclust (R) full EM (best results):



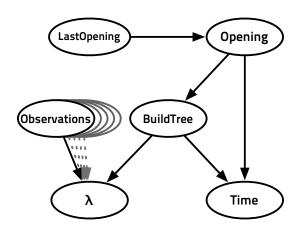
## Clustering (2), PvP Speed zealots opening



## Clustering (3), ZvP Fast mutas opening



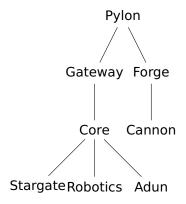
## **Bayesian Model**



#### **Variables**

- BuildTree ∈ [∅, building<sub>1</sub>, building<sub>2</sub>, building<sub>1</sub> ∧ building<sub>2</sub>, buildtrees, . . . ]
- N Observations:  $O_{i \in [1...N]} \in \{0,1\}$ ,  $O_k$  is 1 (true)
- Opening:  $Op^t \in [opening_1 \dots opening_M]$
- LastOpening:  $Op^{t-1} \in [opening_1 \dots opening_M]$
- $\lambda \in \{0,1\}$ : coherence variable (restraining *BuildTree* to possible values with regard to  $O_{\lceil 1...N \rceil}$ )
- Time:  $T \in [1...P]$

# BuildTree variable by example



 $BuildTree \in \{\emptyset, \{Pylon\}, \{Pylon, Gateway\}, \{Pylon, Forge\}, \{Pylon, Gateway, Forge\}, \{Pylon, Gateway, Core\}, \dots\}$ 

## Decomposition

$$P(T, BuildTree, O_1 ... O_N, Op^t, Op^{t-1}, \lambda)$$

$$= P(Op^t | Op^{t-1})$$

$$P(Op^{t-1})$$

$$P(BuildTree | Op^t)$$

$$P(O_{\llbracket 1...N \rrbracket})$$

$$P(\lambda | BuildTree, O_{\llbracket 1...N \rrbracket})$$

$$P(T | BuildTree, Op^t)$$

#### **Forms**

- $P(Op^t|Op^{t-1})$ , a filter so that the previous inference impacts the current one (functional Dirac)
- $P(BuildTree|Op^t)$ , histogram learned from replays
- $P(\lambda|BuildTree, O_{[1...N]})$  restricts BuildTree values to the ones that can co-exist with the observations
- P(T|BuildTree, Op<sup>t</sup>) are discretized normal distributions.
   There is one bell shape per (opening, buildTree) couple.
   The parameters of these discrete Gaussian distributions are learned from the labeled replays.

### A note on identification/learning

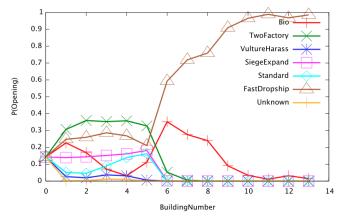
- Learning of the  $P(T|BuildTree, Op^t)$  bell shapes parameters takes into account the uncertainty of the couples (buildTree, opening) for which we have few observations by starting with a high  $\sigma^2$ .
- Learning on human replays for bots opening recognition does not work well. We had to impose a large minimal  $\sigma^2$  (more robustness at the detriment of precision).

### Question

$$\begin{split} P(Op|T=t,O_{\llbracket 1...N\rrbracket} = o_{\llbracket 1...N\rrbracket},\lambda = 1) \\ &\propto P(Op).P(o_{\llbracket 1...N\rrbracket}) \\ &\times \sum_{BuildTree} P(\lambda|BuildTree,o_{\llbracket 1...N\rrbracket}) \\ .P(BuildTree|Op).P(t|BuildTree,Op) \end{split}$$

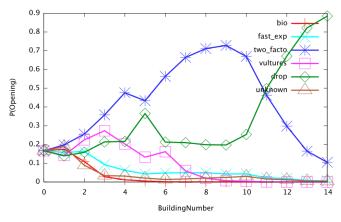
Note: P(BuildTree|Opening, Time) would use the plan recognition model as a planning model.

## Evolution of predictions (1)



Ben's labels

# Evolution of predictions (2)



Our labels

Results

### Low CPU and memory footprint



| Race | # Games | Learning time | Inference $\mu$ | Inference $\sigma^2$ |  |  |
|------|---------|---------------|-----------------|----------------------|--|--|
| Т    | 1036    | 0.197844      | 0.0360234       | 0.00892601           |  |  |
| Т    | 567     | 0.110019      | 0.030129        | 0.00738386           |  |  |
| Р    | 1021    | 0.13513       | 0.0164457       | 0.00370478           |  |  |
| Р    | 542     | 0.056275      | 0.00940027      | 0.00188217           |  |  |
| Z    | 1028    | 0.143851      | 0.0150968       | 0.00334057           |  |  |
| Z    | 896     | 0.089014      | 0.00796715      | 0.00123551           |  |  |

## In game prediction

```
(Video: watch the right of the screen.)
http://www.youtube.com/watch?v=7ycEkK54lTg
```

Used it in BroodwarBotQ, free software (BSD 3-clauses): http://github.com/SnippyHolloW/BroodwarBotQ

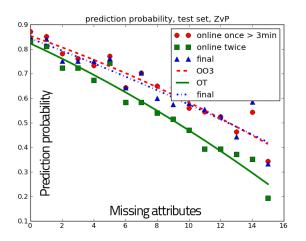
#### **Evaluation metrics**

- the final prediction, opening that is predicted at the end of the test.
- the online twice (OT), counts the openings that have emerged as most probable twice during a test (not due to noise),
- the online once > 3 (OO3), counts the openings that have emerged as most probable openings after 3 minutes (meaningful information).

## Recap. performance table

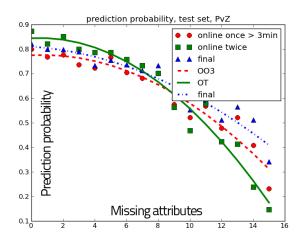
|          | V     | Weber and Mateas' labels |            |      |           | Our labels |            |       |      |      |
|----------|-------|--------------------------|------------|------|-----------|------------|------------|-------|------|------|
|          | 5 mir | nutes                    | 10 minutes |      | 5 minutes |            | 10 minutes |       |      |      |
| match-up | final | 003                      | final      | OT   | 003       | final      | 003        | final | OT   | 003  |
| PvP      | 0.65  | 0.59                     | 0.69       | 0.69 | 0.71      | 0.78       | 0.68       | 0.83  | 0.83 | 0.83 |
| PvT      | 0.75  | 0.71                     | 0.78       | 0.86 | 0.83      | 0.62       | 0.69       | 0.62  | 0.73 | 0.72 |
| PvZ      | 0.73  | 0.66                     | 0.8        | 0.86 | 8.0       | 0.61       | 0.62       | 0.66  | 0.66 | 0.69 |
| TvP      | 0.69  | 0.76                     | 0.6        | 0.75 | 0.77      | 0.50       | 0.54       | 0.5   | 0.6  | 0.69 |
| TvT      | 0.57  | 0.65                     | 0.5        | 0.55 | 0.62      | 0.72       | 0.77       | 0.68  | 0.89 | 0.84 |
| TvZ      | 0.84  | 0.81                     | 0.88       | 0.91 | 0.93      | 0.71       | 0.77       | 0.72  | 0.88 | 0.86 |
| ZvP      | 0.63  | 0.64                     | 0.87       | 0.82 | 0.89      | 0.39       | 0.52       | 0.35  | 0.6  | 0.57 |
| ZvT      | 0.59  | 0.59                     | 0.68       | 0.69 | 0.72      | 0.54       | 0.61       | 0.52  | 0.67 | 0.62 |
| ZvZ      | 0.69  | 0.67                     | 0.73       | 0.74 | 0.77      | 0.83       | 0.85       | 0.81  | 0.89 | 0.94 |
| overall  | 0.68  | 0.68                     | 0.73       | 0.76 | 0.78      | 0.63       | 0.67       | 0.63  | 0.75 | 0.75 |

### Tolerance to noise (1)



Zerg (versus Protoss) opening recognition with increasing noise (15 missing attributes  $\leftrightarrow$  93.75% mission information).

### Tolerance to noise (2)



Protoss (versus Zerg) opening recognition with increasing noise (15 missing attributes  $\leftrightarrow$  88.23% mission information).

## "Ours is bigger than yours" compulsory slide

Compared to previous work by Ben Weber [CIG 2009]:

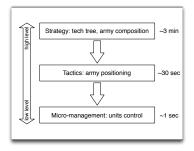
- Works with partial information (fog of war),
- Resists quite well to noise,
- Gives a distribution, not just a decision (that's how high level human player think).

Kudos to Ben, who was a nice enough pioneer to distribute his dataset.

#### Limitations

- Dependant on the labeling: while I think ours is better than Ben's, it's not systematically the case,
- Can not deal with multiple-labels (*Unknown* label contains some unexploited information),
- Should use some other (sometimes more advanced, not necessarily more numerous) features.

## Things that work



- Micro-management "in general" is quite efficient and robust (could be more optimized and more controllable),
- Opening/Strategy recognition/prediction gives good enough results online.

### Possible Improvements

#### Direct possible improvements:

- Micro-management optimization for particular situations through learning (see Part 1),
- Learning the parameters of the opening recognition model from a bigger dataset,
- Learning the parameters of the opening recognition model from bot vs bot replays,
- Add  $Opening^{t+1}$  and so the  $P(Opening^{t+1}|Observations^t)$  question explicitly.

#### Next? (1)

If we want a bot capable to compete at the highest level **against bots** (for 1.0 RC1):

- Most important: develop (with a release→benchmark loop) the full model (!),
- Add tactics (drops, run-by, contain...), and their counters,
- Vary tactics from learned outcome (enemy defenses type and position, UCT?),
- Abuse the game engine more (drop trick...),
- Deal with economy/tech/production and scouting/defense/attack concurrencies for resources/units (full model).

### Next? (2)

If we want a bot capable to adapt to "good" **human play** (for v2.0):

- Dynamic adaptation of the strategy/build order, for instance through P(BuildTree<sup>t+1</sup>|Observations<sup>t</sup>, BuildTree<sup>t</sup>) (see AIIDE 2011 for more informations),
- Detect fake builds.
- Detect fake tactical moves.

### Bibliography

- Bayesian Robot Programming (2004) [Lebeltel O. et al.]
- Teaching Bayesian Behaviours to Video Game Characters (2004) [Le Hy R. et al.]
- A Data Mining Approach to Strategy Prediction (2009) [Weber B. & Mateas M.]
- Case-Based Planning and Execution for RTS Games (2007) [Ontañón S. et al.]
- Opponent Behaviour Recognition for Real-Time Strategy Games (2010) [Kabanza F. et al.]
- Building A Player Strategy Model by Analyzing Replays of Real-Time Strategy Games [Hsieh J-L. & Sun C-T.]
- Probability Theory: The Logic of Science (2003) [Jaynes E.T.]

## Thanks

