Kinetic Models and Qualitative Abstraction for Relational Learning in Systems Biology

Gabriel Synnaeve, Katsumi Inoue, Andrei Doncescu, Taisuke Sato Yoshitaka Kameya, Masakazu Ishihata, Hidetomo Nabeshima

> 2009 internship at NII (Tokyo), now at E-Motion@INRIA / Collège de France (Paris)

January 27, 2011

Introduction

<u>Problems:</u> **exploit** experimental data, **learn** what rules the cell.

<u>Method:</u> **discretize** metabolites concentration, **combine** with existing pathways structures, use **kinetic models** with **inductive logic programming**.

Previous works

- Metabolic Pathways
- Inductive Logic Programming
- Bibliography
- 2 A finer logic modeling
 - The trap
 - Kinetic modeling
 - Implementation
- Results and further
 Ranked Results
 - Where next?

Previous works

- Metabolic Pathways
- Inductive Logic Programming
- Bibliography
- 2 A finer logic modeling
 - The trap
 - Kinetic modeling
 - Implementation
- Results and further
 Ranked Results
 Where next?

Previous works

- Metabolic Pathways
- Inductive Logic Programming
- Bibliography
- 2 A finer logic modeling
 - The trap
 - Kinetic modeling
 - Implementation

- Ranked Results
- Where next?

Metabolic Pathways Inductive Logic Programming Bibliography

(Metabolic) Pathways

- Graphs of interconnected reactions
- Glucose enters $_{ATP} \Rightarrow_{ADP}$ G6P
- Chain of reactions to take energy and store it in ATP/NADH (2 per molecule of Glucose)
- Acetyl CoA is at the origin of the Krebs cycle (part of cellular respiration)

Metabolic Pathways Inductive Logic Programming Bibliography

Glycolysis and Pentose Phosphate of E. Coli

Metabolic Pathways Inductive Logic Programming Bibliography

Abduction & Induction

ILP strength lies in the fact that learnt rules/clauses are directly useable in a logical program.

Induction & Abduction

From Background Knowledge $\land \mathcal{E}$ xamples \diamond Find \mathcal{H} ypotheses satisfying $\mathcal{B} \land \mathcal{H} \models \mathcal{E}$ and $\mathcal{B} \cup \mathcal{H} \nvDash \bot$ **Abduction**: ground (or \exists quant.) formulaes, direct causes of observations that are called explanations. **Induction**: universally (\forall) quantified formulaes (small \mathcal{B}), more general hypotheses.

R. J. Mooney: Integrating abduction and induction in machine learning. IJCAI97 Workshop on Abduction and Induction in AI, 37–42 (1997).

Flach P. A., Kakas A. C.: Abduction and induction: Essays on their relation and integration. Kluwer (2000).

Inverse Entailment (Consequence Finding)

ILP is interested in the formulas derived from $\mathcal{B} \land \neg \mathcal{E}$ that are not derived from \mathcal{B} alone.

Inverse Entailment

The previous definition is equivalent to $\mathcal{B} \land \neg \mathcal{E} \models \neg \mathcal{H}$ and $\mathcal{B} \nvDash \neg \mathcal{H}$.

We can then use a consequence finding procedure (resolution, tableaux) to find $\neg H$ (SOLAR).

- Inoue, K.: Linear resolution for consequence finding. Artificial Intelligence 56:301-353 (1992).
- Inoue K.: Induction as consequence finding. Machine Learning, 55:109–135 (2004).
- Nabeshima H., Iwanuma K., and Inoue K.: SOLAR: A Consequence Finding System for Advanced Reasoning. TABLEAUX 2003, LNAI, Vol. 2796, pp. 257-263, Springer (2003).

Metabolic Pathways Inductive Logic Programming Bibliography

New age began there

The point for automatic **qualitative reasoning** through **ILP** has been made.

- King, R., Whelan, K., Jones, F., Reiser, P., Bryant, C., Muggleton, S., Kell, D., and Olivier, S. (2004). Functional genomic hypothesis generation and experimentation by a robot scientist. Nature, 427:247–252.
- King, R., Garrett, S., and Coghill, G. (2005). On the use of qualitative reasoning to simulate and identify metabolic pathways. Bioinformatics, 21(9):2017–2026.

Metabolic Pathways Inductive Logic Programming Bibliography

Inhibitionary effect of toxins

Metabolic flux analysis through **induction**: rules that explain the concentration changes (up or down) between 2 experiments, with and w/o toxin.

Doncescu, A., Inoue K., Yamamoto Y.: Knowledge Based Discovery in Systems Biology Using CF-Induction. LNCS N.4570, pages 395-404 (2007).

Metabolic Pathways Inductive Logic Programming Bibliography

Dealing with kinetics?

Main complete models use **ordinary differential** equations.

Temporal logic combined with stochastic logic programming \Rightarrow kinetic models.

- Franco R. and Canela E.: Computer simulation of purine metabolism. Eu- ropean Journal of Biochemistry, 144:305-315 (1984).
- Fages, F., Soliman, S., and France, I. R. (2008). Model revision from temporal logic properties in systems biology. In: Probabilistic Inductive Logic Programming. LNAI, volume 4911, pages 287–304.

Metabolic Pathways Inductive Logic Programming Bibliography

Limits of The Previous Models

- No models for dynamic transitions
- Not enough information to be **precise** enough:

The trap Kinetic modeling Implementation

Dealing With More Knowledge

The trap Kinetic modeling Implementation

Be More Precise but Avoid Overfitting

The trap Kinetic modeling Implementation

Michaelis-Menten Kinetics

Speed of a one-way reaction

 $v = \# \{ \text{products per second per mole of the enzyme} \}$ $sS \rightarrow pP \implies v = -\frac{1}{s} \frac{d[S]}{dt} = \frac{1}{p} \frac{d[P]}{dt}$

14/29

The trap Kinetic modeling Implementation

Simplification of Michaelis-Menten Equation

$$E + S \leftrightarrows_{k_{-1}}^{k_1} ES \rightarrow^{k_2} E + P$$

Michaelis – Menten equation : $\frac{d[P]}{dt} = V_m \frac{[S]}{[S] + K_m}$ (1)

$$\frac{d[P]}{dt} \longrightarrow_{disc.time} \frac{[P]_{T+timestep} - [P]_T}{(T+timestep) - T}$$
(2)

(1) and (2)
$$\implies V_m \frac{[S]_T}{[S]_T + K_m} \approx \frac{[P]_{T+timestep} - [P]_T}{(T+timestep) - T}$$

We chose to work with a constant timestep :

$$\implies [P]_{T+1} = V_m \frac{[S]_T}{[S]_T + K_m} + [P]_T \quad (3)$$

The trap Kinetic modeling Implementation

Additional work and tools

<ロト</th>
 < 回ト</th>
 < 回ト</th>
 < 回ト</th>
 < 回</th>
 < 回</th>

 16/29

The trap Kinetic modeling Implementation

HUP: HMM Utility Program

Clustering method that uses Continuous Hidden Markov Model + Bayesian Score:

The trap Kinetic modeling Implementation

Wrapping HUP

The trap Kinetic modeling Implementation

Logical Kinetic Modeling

3

19/29

Approximations for extreme values in:

$$[P]_{T+1} = V_m \frac{[S]_T}{[S]_T + K_m} + [P]_T$$

The trap Kinetic modeling Implementation

Logical Kinetic Modeling (rules)

$[S] \ll K_m$

reaction(S, P, Km) \land concentration(S, 0, 0) \land concentration (Km, 2, 0) \land concentration(P, L, 0) \rightarrow concentration(P, L, 1)

$[S] \simeq K_m$

reaction(S, P, Km) \land concentration(S, 1, 0) \land concentration(Km, 1, 0) \land concentration(P, L, 0) \rightarrow concentration(P, L, 1)

$[S] \gg K_m$

reaction(S, P, Km) \land concentration(S, 2, 0) \land concentration(Km, 0, 0) \rightarrow concentration(P, 2, 1)

Ranked Results Where next?

Data-centric schema

Inputs

Ranked Results Where next?

Structure of the pathway(s) + Background knowledge (MM) + Metabolites concentrations

・ロ・・母・・ヨ・・ヨ・ しょうくろ

22/29

Ranked Results Where next?

Ranking the hypotheses with BDD-EM

Hyp. no.	Probability	Abducted concentrations levels at T=0
H130	≈ 1.0	pg3: 2, adp: 0
H392	4.879 <i>.E</i> ⁻¹	sed7p: 0, e4p: 2, f6p: 0, pg3: 2, adp: 0
H216	7.567.E ⁻²	pg3: 2, adp: 0, pep: 0, atp: 2, pyr: 2
H196	6.930 <i>.E</i> ⁻²	fdp: 0, dhap: 2, gap: 0, pg3: 2, adp: 0
H356	5.621 <i>.E</i> ⁻²	pg3: 2, adp: 0, g6p: 1, nadph: 1
H94	3.692 <i>.E</i> ⁻²	sed7p: 0, e4p: 2, f6p: 0, pg3: 2, adp: 0,
		pep: 0, atp: 2, pyr: 2
H251	3.497 <i>.E</i> ⁻²	glucose: 2, adp: 0, pg3: 2
H286	3.382 <i>.E</i> ⁻²	sed7p: 0, e4p: 2, f6p: 0, fdp: 0, dhap: 2, 🔄 拱 🛱 📕
		gap: 0, pg3: 2, adp: 0 👛 🔔 📜
H405	2.796.E ⁻²	pg3: 2, adp: 0, pep: 2, atp: 0
H167	2.743 <i>.E</i> ⁻²	sed7p: 0, e4p: 2, f6p: 0, pg3: 2, adp: 0,
		g6p: 1, nadph: 1
H378	1.974. <i>E</i> ⁻⁸	glucose: 2, adp: 0, sed7p: 0, e4p: 2, f6p: 0,
		fdp: 0, dhap: 2, gap: 0, pg3: 2, pep: 0, atp: 2,
		pyr: 2, g6p: 0, nadph: 2, pg6: 1

Is is correct?

Ranked Results Where next?

Ok with: $glucose + 2ADP + 2P + 2NAD^+ \rightarrow 2 pyruvate + 2ATP + 2(NADH, H^+) + 2H_2O$

Agree with:

Peters-Wendisch, P., Schiel, B., Wendisch, V., and et al., E. K. (2001).Pyruvate carboxylase is a major bottleneck for glutamate and lysine production by corynebacterium glutamicum. Molecular Microbiol. Biotechnol., 3(2).

Ranked Results Where next?

Full system

Ranked Results Where next?

Future tracks:

- Enhancing of the knowledge base, 2 simple and sound algorithms (one in the paper):
 - most probable hypotheses first
 - smallest number of hypothesis additions (biggest abducibles coverage first)
- Finer discretization: trivial with our continuous HMMs with parameter tying.
- Automatic generation of MM rules (for orders > 3).

Ranked Results Where next?

Conclusion

We presented and validated a **method** and **tools** to work on **real data**.

Working with **other experiments** on **more complex** organisms and pathways (for instance *S. Ce*) will require:

- Enhancing of the KB
- Finer discretization
- Kinetic rules

Ranked Results Where next?

Thanks

Thank you for your attention.

<ロト</p>
<日ト</p>
<日ト</p>
<日ト</p>
<日ト</p>
<日ト</p>
<日ト</p>
<日ト</p>
<10</p>
<10</p

Ranked Results Where next?

Any questions?

Any questions?

Me: gabriel.synnaeve@gmail.com Prof. Inoue: ki@nii.ac.jp

<ロト < (型) < 注) < 注) < 注) < 注) < 注) < 29/29</p>