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Introduction

Problems: exploit experimental data, learn what rules
the cell.

Method: discretize metabolites concentration,
combine with existing pathways structures, use
kinetic models with inductive logic programming.
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Metabolic Pathways
Inductive Logic Programming
Bibliography

(Metabolic) Pathways

Graphs of interconnected
reactions
Glucose enters ATP⇒ADP

G6P
Chain of reactions to take
energy and store it in
ATP/NADH (2 per molecule
of Glucose)
Acetyl CoA is at the origin
of the Krebs cycle (part of
cellular respiration)
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Glycolysis and Pentose Phosphate of E. Coli

pg6 ribu5p rib5p

glucose g6p xyl5p sed7p

f6p

dhap fdp pep pyr

gap pg3 accoa

cell membrane
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Abduction & Induction

ILP strength lies in the fact that learnt rules/clauses are
directly useable in a logical program.

Induction & Abduction
From Background Knowledge ∧ Examples
� Find Hypotheses satisfying B∧H |= E and B ∪H 2 ⊥
Abduction: ground (or ∃ quant.) formulaes, direct
causes of observations that are called explanations.
Induction: universally (∀) quantified formulaes (small
B), more general hypotheses.

R. J. Mooney: Integrating abduction and induction in machine
learning. IJCAI97 Workshop on Abduction and Induction in AI,
37–42 (1997).

Flach P. A., Kakas A. C.: Abduction and induction: Essays on
their relation and integration. Kluwer (2000).
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Inverse Entailment (Consequence Finding)

ILP is interested in the formulas derived from B∧¬E
that are not derived from B alone.

Inverse Entailment
The previous definition is equivalent to B∧¬E |= ¬H
and B 2 ¬H.

We can then use a consequence finding procedure
(resolution, tableaux) to find ¬H (SOLAR).

Inoue, K.: Linear resolution for consequence finding. Artificial
Intelligence 56:301-353 (1992).

Inoue K.: Induction as consequence finding. Machine Learning,
55:109–135 (2004).

Nabeshima H., Iwanuma K., and Inoue K.: SOLAR: A
Consequence Finding System for Advanced Reasoning.
TABLEAUX 2003, LNAI, Vol. 2796, pp. 257-263, Springer (2003).
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New age began there

The point for automatic qualitative reasoning
through ILP has been made.

King, R., Whelan, K., Jones, F., Reiser, P., Bryant, C., Mug-
gleton, S., Kell, D., and Olivier, S. (2004). Functional genomic
hypothesis generation and experimentation by a robot
scientist. Nature, 427:247–252.

King, R., Garrett, S., and Coghill, G. (2005). On the use of
qualitative reasoning to simulate and identify metabolic
pathways. Bioinformatics, 21(9):2017–2026.
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Inhibitionary effect of toxins

Metabolic flux analysis through induction: rules
that explain the concentration changes (up or down)
between 2 experiments, with and w/o toxin.

Doncescu, A., Inoue K., Yamamoto Y.: Knowledge Based
Discovery in Systems Biology Using CF-Induction. LNCS N.4570,
pages 395-404 (2007).
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Dealing with kinetics?

Main complete models use ordinary differential
equations.

Temporal logic combined with stochastic logic
programming ⇒ kinetic models.

Franco R. and Canela E.: Computer simulation of purine
metabolism. Eu- ropean Journal of Biochemistry, 144:305-315
(1984).

Fages, F., Soliman, S., and France, I. R. (2008). Model revision
from temporal logic properties in systems biology. In:
Probabilistic Inductive Logic Programming. LNAI, volume 4911,
pages 287–304.
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Limits of The Previous Models

No models for dynamic transitions
Not enough information to be precise enough:
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Dealing With More Knowledge
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Be More Precise but Avoid Overfitting

Generalization

Learning

Complexity of the Hypothesis space

Errors

currently

evolution
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Michaelis-Menten Kinetics

Speed of a one-way reaction

v = #{products per second per mole of the enzyme}
sS→ pP ⇒ v = −1

s
d[S]
dt = 1

p
d[P]
dt
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Simplification of Michaelis-Menten Equation

E+ S�k1
k−1

ES→k2 E+ P

Michaelis−Menten equation :
d[P]

dt
= Vm

[S]

[S] +Km
(1)

d[P]

dt
−→disc.time

[P]T+timestep − [P]T

(T + timestep)− T
(2)

(1) and (2) =⇒ Vm
[S]T

[S]T +Km
≈

[P]T+timestep − [P]T

(T + timestep)− T

We chose to work with a constant timestep :

=⇒ [P]T+1 = Vm
[S]T

[S]T +Km
+ [P]T (3)
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Additional work and tools

Michaelis-Menten

Discretization

KEGG

Experimental
Data

kegg2symb
Symbolic
pathway

py-tsdisc

HUP 

SOLAR 

Discretized
data

Rules, here a
kinetic model

BDD-EM 

Hypotheses

Ranked
hypotheses

Conversion

: append
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HUP: HMM Utility Program
Clustering method that uses
Continuous Hidden Markov Model +
Bayesian Score: Discretization

KEGG

Experimental
Data

kegg2symb
Symbolic
pathway

py-tsdisc

HUP 

SOLAR 

Discretized
data

Rules, here a
kinetic model

BDD-EM 

Hypotheses

Ranked
hypotheses

Conversion

: append

# time, value
 0, 10
 0.1, 4
 0.2, 1

HUP
### levels

2
1
0
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Wrapping HUP

Discretization

KEGG

Experimental
Data

kegg2symb
Symbolic
pathway

py-tsdisc

HUP 

SOLAR 

Discretized
data

Rules, here a
kinetic model

BDD-EM 

Hypotheses

Ranked
hypotheses

Conversion

: append

HUP

prepare
# time, C(A), C(B)
 0, 10, 2
 0.1, 6, 4
 0.2, 5, 5

conc(A, 3, 0)
conc(B, 1, 0)
conc(A, 2, 1)
conc(B, 2, 1)

options12 metabolites

30
00

 ti
m

e 
sa

m
pl

es

12 metabolites

3 tim
e steps

12*3 =  36 "conc" predicates
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Logical Kinetic Modeling

Approximations for extreme values in:

[P]T+1 = Vm
[S]T

[S]T +Km
+ [P]T

Michaelis-Menten

KEGG

Experimental
Data

kegg2symb
Symbolic
pathway

py-tsdisc

HUP 

SOLAR 

Discretized
data

Rules, here a
kinetic model

BDD-EM 

Hypotheses

Ranked
hypotheses

Conversion

: append
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Logical Kinetic Modeling (rules)

[S]� Km

reaction(S, P, Km) ∧ concentration(S, 0, 0) ∧
concentration (Km, 2, 0) ∧ concentration(P, L, 0) →
concentration(P, L, 1)

[S] ' Km

reaction(S, P, Km) ∧ concentration(S, 1, 0) ∧
concentration(Km, 1, 0) ∧ concentration(P, L, 0) →
concentration(P, L, 1)

[S]� Km

reaction(S, P, Km) ∧ concentration(S, 2, 0) ∧
concentration(Km, 0, 0) → concentration(P, 2, 1)
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Data-centric schema

Michaelis-Menten

Discretization

KEGG

Experimental
Data

kegg2symb
Symbolic
pathway

py-tsdisc

HUP 

SOLAR 

Discretized
data

Rules, here a
kinetic model

BDD-EM 

Hypotheses

Ranked
hypotheses

Conversion

: append
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Inputs

Structure of the pathway(s) + Background knowledge
(MM) + Metabolites concentrations
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Ranking the hypotheses with BDD-EM

Hyp. no. Probability Abducted concentrations levels at T=0
H130 ≈ 1.0 pg3: 2, adp: 0
H392 4.879.E−1 sed7p: 0, e4p: 2, f6p: 0, pg3: 2, adp: 0
H216 7.567.E−2 pg3: 2, adp: 0, pep: 0, atp: 2, pyr: 2
H196 6.930.E−2 fdp: 0, dhap: 2, gap: 0, pg3: 2, adp: 0
H356 5.621.E−2 pg3: 2, adp: 0, g6p: 1, nadph: 1
H94 3.692.E−2 sed7p: 0, e4p: 2, f6p: 0, pg3: 2, adp: 0,

pep: 0, atp: 2, pyr: 2
H251 3.497.E−2 glucose: 2, adp: 0, pg3: 2
H286 3.382.E−2 sed7p: 0, e4p: 2, f6p: 0, fdp: 0, dhap: 2,

gap: 0, pg3: 2, adp: 0
H405 2.796.E−2 pg3: 2, adp: 0, pep: 2, atp: 0
H167 2.743.E−2 sed7p: 0, e4p: 2, f6p: 0, pg3: 2, adp: 0,

. g6p: 1, nadph: 1

.
H378 1.974.E−8 glucose: 2, adp: 0, sed7p: 0, e4p: 2, f6p: 0,

fdp: 0, dhap: 2, gap: 0, pg3: 2, pep: 0, atp: 2,
pyr: 2, g6p: 0, nadph: 2, pg6: 1

KEGG

Experimental
Data

kegg2symb
Symbolic
pathway

py-tsdisc

HUP 

SOLAR 

Discretized
data

Rules, here a
kinetic model

BDD-EM 

Hypotheses

Ranked
hypotheses

Conversion

: append

23/29



Previous works
A finer logic modeling

Results and further

Ranked Results
Where next?

Is is correct?

Ok with: glucose+ 2ADP+ 2P+ 2NAD+→
2 pyruvate+ 2ATP+ 2(NADH,H+) + 2H2O

Agree with:
Peters-Wendisch, P., Schiel, B., Wendisch, V., and et al., E. K.
(2001).Pyruvate carboxylase is a major bottleneck for
glutamate and lysine production by corynebacterium
glutamicum. Molecular Microbiol. Biotechnol., 3(2).
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Full system

Experiments

Logically 
possible 

hypotheses

Databases

Hypotheses 
Generator
(SOLAR)

Hypotheses Evaluator 
(BDD-EM)

Background 
knowledge

Observations

Most probable 
hypotheses

Discretization

Automated

Enhancer
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Future tracks:

Enhancing of the knowledge base, 2 simple and
sound algorithms (one in the paper):

most probable hypotheses first
smallest number of hypothesis additions (biggest
abducibles coverage first)

Finer discretization: trivial with our continuous
HMMs with parameter tying.
Automatic generation of MM rules (for orders > 3).
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Conclusion

We presented and validated a method and tools to
work on real data.

Working with other experiments on more complex
organisms and pathways (for instance S. Ce) will
require:

Enhancing of the KB
Finer discretization
Kinetic rules
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Thanks

Thank you for your attention.
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Any questions?

Any questions?

Me: gabriel.synnaeve@gmail.com
Prof. Inoue: ki@nii.ac.jp
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