A Bayesian Model for Plan Recognition in RTS Games applied to StarCraft

Gabriel Synnaeve and Pierre Bessière

LPPA @ Collège de France (Paris) University of Grenoble E-Motion team @ INRIA (Grenoble)

October 14, 2011

- StarCraft
- Our approach

2 Enemy Build Tree Prediction

- Problem
- Model
- Results

3 Conclusion

- Summing up
- Future work

StarCraft Our approach

Starcraft: Broodwar

Starcraft (January 1998) + Broodwar (exp., November 1998)

StarCraft Our approach

Pro gaming and competitions

eSports, sponsorship, tournaments' dotations

WORLD CYBER GAMES

The World Cyber Games is the world's first "Cyber Game Festival", designed to build a healthy cyber culture. The best gamers around the world gather into different cities to share the excitement and fun of the game tournaments.

StarCraft Our approach

Starcraft in numbers

- 12 years of competitive play
- 200 to 300 actions per minute amongst pro gamers
- 10 millions licenses sold (4.5 in South Korea)
- 160 BPM: rates of pro gamers hearts
- 4.5+ millions licenses sold for Starcraft II
- 1/24th of a second per micro-turn

StarCraft Our approach

Granularity of Problems to tackle

StarCraft Our approach

Transmute incompleteness into uncertainty

Incompleteness

 Many low level moves achieving the same high level goal

low level

gh level

- Fog of war (limited sight)
- Partial knowledge of opponent's units/buildings/tech

Uncertainty

- Considering the units as individual Bayesian robots
- Seen units (viewed units filter)
- Probabilistic inference, machine learning from *replays*

StarCraft Our approach

A Bayesian program structure

$$BP \begin{cases} Desc. \begin{cases} Spec.(\pi) \\ Spec.(\pi) \\ Identification (based on \delta) \\ Question \end{cases} Variables \\ Decompositionofthejoint \\ Forms (Parametric or Program) \\ Output (Desciple) \\ Spec.(\pi) \\ Spec.(\pi)$$

P(Searched|Known)

$$= \frac{\sum_{Free} P(Searched, Free, Known)}{P(Known)}$$
$$= \frac{1}{Z} \times \sum_{Free} P(Searched, Free, Known)$$

StarCraft Our approach

Machine learning

- reinforcement (exploration of parameters space for the Bayesian robots)
- online (adapt to particular opponent)
- from replays (parameters of predictive models)

StarCraft Our approach

BroodwarBotQ model overview

Not a perfect (nor what-we-want-in-the-end) model, but the actual, implemented, bot model.

Problem Model Results

Examples of cheeses

All-in fast dark templars: Produce dark templars as fast as possible, attempt to finish the game with a very specific unit deep in the tech path. \rightarrow Need to have detection!

All-in 2 gates zealots rush: Produce only zealots, attempt to finish the game before the opponent's economy or technological ROI kicked in. \rightarrow Need to play defensively!

What problem are we trying to solve?

Problem statement

Predict what the enemy **build tree**^{*a*} is from partial observations (because of the *fog of war*) to be able to adapt our own.

^aWe will reserve the term strategy for *army composition* + *long term tactical goals*, which can be infered from the build tree and other variables

Infering the tech tree is exactly the same task as infering the build tree.

(Another problem is then to dynamically adapt our own techtree/strategy. And it can be done with the same model and extensions, see conclusion.)

Previous works

Supervised (annotated/labeled replays) and semi-supervised (clusterised into labels) learning:

- A Data Mining Approach to Strategy Prediction (2009) [Weber B. & Mateas M.]
- A Bayesian Model for Opening Prediction in RTS Games with Application to StarCraft (2011) [Synnaeve G. & Bessière P.]

Where are we?

Replays

Record all the actions of the player so that the game can be deterministically re-simulated (random generators seeds are serialized).

Unsupervised learning model: we just need the replays to be able to learn.

Bayesian Model

Variables

- BuildTree ∈ {Ø, building₁, building₂, building₁ ∧ building₂, buildtrees, . . . }
- N Observations: O_{i∈[[1...N]} ∈ {0, 1}, O_k is 1 (true) ⇔ we saw the unit type k.
- λ ∈ {0,1}: coherence variable (restraining BuildTree to possible values with regard to O_[1...N])
- *Time*: *T* ∈ **[**1 . . . *P***]**

Model

BuildTree variable by example

BuildTree $\in \{\emptyset, \{Pylon\}, \{Pylon, Gateway\}, \{Pylon, Forge\}, \}$

{Pylon, Gateway, Forge}, {Pylon, Gateway, Core},...}

Problem Model Results

Decomposition + forms

 $P(T, BuildTree, O_1 \dots O_N, \lambda) = P(T|BuildTree).P(BuildTree)$ $P(\lambda|BuildTree, O_{1:N}).P(O_{1:N})$

- P(\u03c6 | BuildTree, O_{[[1...N]}) restricts BuildTree values to the ones that can co-exist with the observations
- *P*(*T*|*BuildTree*) are discretized normal distributions. There is one bell shape over *Time* per *buildTree*.

Model

A note on identification/learning

- Learning of the P(T|BuildTree) bell shapes parameters takes into account the uncertainty of the couples buildTrees for which we have few observations by starting with a high σ^2 .
- Learning on human replays for bots opening recognition does not work well. We had to impose a large minimal σ^2 (more robustness at the detriment of precision). (Next year we will use bots replays!)

Question

$$egin{aligned} & P(BuildTree | T = t, O_{1:N} = o_{1:N}, \lambda = 1) \ & \propto P(t | BuildTree).P(BuildTree) \ & P(\lambda | BuildTree, o_{1:N}).P(o_{1:N}) \end{aligned}$$

Dataset

- From high level StarCraft players (mainly pros),
- 8806 replays (pprox 1000 / match-up),
- 10-fold cross-validation (learn on 9/10th, test on the rest).
- \Rightarrow a bias towards high level style of play (\neq bot meta-game).

Inference

Model Results

Error metric: distance

BuildTrees distance

 $d(bt_1, bt_2) = \operatorname{card}(bt_1 \Delta bt_2) = \operatorname{card}((bt_1 \bigcup bt_2) \setminus (bt_1 \bigcap bt_2))$

is 2 (it would be 1 with a tree edit distance).

d(best, real) = "best" distance
d(bt, real) * P(bt)= "mean": marginalized distance

Predictive power

k buildings ahead

k (> 0) next buildings for which we have a "good enough"(limit on d) prediction in future build trees in:

$$P(BuildTree^{t+k}|T=t, O_{1:N}=o_{1:N}, \lambda=1)$$

(In the tests/results, we sometimes used d = 1, d = 2, and d = 3 as hard limits.)

Problem Model Results

Low CPU and memory footprint

On a 2.8 Ghz Core 2 Duo:

- Learning with 1000 replays takes \approx 0.1 second,
- Inference takes \approx 0.01 second,
- pprox 3Mb of memory.

Problem Model Results

		d for k = 0		k for <i>d</i> = 1		k for <i>d</i> = 3	
noise	measure	best	"mean"	best	"mean"	best	"mean"
-	avg	0.535	0.870	1.193	3.991	3.642	6.122
%0	min	0.313	0.574	0.861	2.8	3.13	4.88
	max	1.051	1.296	2.176	5.334	4.496	7.334
%	avg	0.610	0.949	0.900	3.263	2.866	4.873
20	min	0.381	0.683	0.686	2.3	2.44	3.91
	max	1.062	1.330	1.697	4.394	3.697	5.899
40%	avg	0.740	1.068	0.611	2.529	2.20	3.827
	min	0.488	0.820	0.44	1.65	1.94	3.09
	max	1.257	1.497	1.201	3.5	2.773	4.672
%	avg	0.925	1.232	0.400	1.738	1.724	2.732
60	min	0.586	0.918	0.22	1.08	1.448	2.22
	max	1.414	1.707	0.840	2.483	2.083	3.327
80%	avg	1.134	1.367	0.156	0.890	1.283	1.831
	min	0.665	1.027	0.06	0.56	1.106	1.66
	max	1.876	1.999	0.333	1.216	1.5	2.176

Problem Model Results

		d for k = 0		k for <i>d</i> = 1		k for <i>d</i> = 3	
noise	measure	best	"mean"	best	"mean"	best	"mean"
	avg	0.535	0.870	1.193	3.991	3.642	6.122
%0	min	0.313	0.574	0.861	2.8	3.13	4.88
	max	1.051	1.296	2.176	5.334	4.496	7.334
%	avg	0.610	0.949	0.900	3.263	2.866	4.873
20	min	0.381	0.683	0.686	2.3	2.44	3.91
	max	1.062	1.330	1.697	4.394	3.697	5.899
%	avg	0.740	1.068	0.611	2.529	2.20	3.827
40	min	0.488	0.820	0.44	1.65	1.94	3.09
	max	1.257	1.497	1.201	3.5	2.773	4.672
%	avg	0.925	1.232	0.400	1.738	1.724	2.732
60	min	0.586	0.918	0.22	1.08	1.448	2.22
	max	1.414	1.707	0.840	2.483	2.083	3.327
%	avg	1.134	1.367	0.156	0.890	1.283	1.831
80	min	0.665	1.027	0.06	0.56	1.106	1.66
	max	1.876	1.999	0.333	1.216	1.5	2.176

Problem Model Results

		d for <i>k</i> = 0		k for <i>d</i> = 1		k for <i>d</i> = 3	
noise	measure	best	"mean"	best	"mean"	best	"mean"
	avg	0.535	0.870	1.193	3.991	3.642	6.122
%0	min	0.313	0.574	0.861	2.8	3.13	4.88
	max	1.051	1.296	2.176	5.334	4.496	7.334
%	avg	0.610	0.949	0.900	3.263	2.866	4.873
20	min	0.381	0.683	0.686	2.3	2.44	3.91
	max	1.062	1.330	1.697	4.394	3.697	5.899
%	avg	0.740	1.068	0.611	2.529	2.20	3.827
40	min	0.488	0.820	0.44	1.65	1.94	3.09
	max	1.257	1.497	1.201	3.5	2.773	4.672
%	avg	0.925	1.232	0.400	1.738	1.724	2.732
60	min	0.586	0.918	0.22	1.08	1.448	2.22
	max	1.414	1.707	0.840	2.483	2.083	3.327
%	avg	1.134	1.367	0.156	0.890	1.283	1.831
80	min	0.665	1.027	0.06	0.56	1.106	1.66
	max	1.876	1.999	0.333	1.216	1.5	2.176

Problem Model Results

		d for k = 0		k for <i>d</i> = 1		k for <i>d</i> = 3	
noise	measure	best	"mean"	best	"mean"	best	"mean"
	avg	0.535	0.870	1.193	3.991	3.642	6.122
0%	min	0.313	0.574	0.861	2.8	3.13	4.88
	max	1.051	1.296	2.176	5.334	4.496	7.334
%	avg	0.610	0.949	0.900	3.263	2.866	4.873
20	min	0.381	0.683	0.686	2.3	2.44	3.91
	max	1.062	1.330	1.697	4.394	3.697	5.899
40%	avg	0.740	1.068	0.611	2.529	2.20	3.827
	min	0.488	0.820	0.44	1.65	1.94	3.09
	max	1.257	1.497	1.201	3.5	2.773	4.672
%	avg	0.925	1.232	0.400	1.738	1.724	2.732
60	min	0.586	0.918	0.22	1.08	1.448	2.22
	max	1.414	1.707	0.840	2.483	2.083	3.327
%	avg	1.134	1.367	0.156	0.890	1.283	1.831
80	min	0.665	1.027	0.06	0.56	1.106	1.66
	max	1.876	1.999	0.333	1.216	1.5	2.176

Introduction **Enemy Build Tree Prediction**

Results

Predictive power under noise

Introduction **Enemy Build Tree Prediction**

Results

Error distance evolution w/ noise

Summing up Future work

Comparing results with existing works

Compared to previous work by Ben Weber (CIG 2009):

- Works with partial information (fog of war),
- Resists quite well to noise,
- Gives a distribution, not just a decision (that's how high level human player think, I think ☺).

Compared to both previous works ([Weber09] and [Synnaeve11]):

- Unsupervised,
- Usable during the "end game".

Summing up Future work

Possible uses

- Adaptive RTS AI:
 - Direct rules triggers ("DT tech \Rightarrow detection"),
 - Integrated in a Bayesian decision model (leveraging the distribution on *BuildTree* more easily).
- Commentary assistant (null noise, prediction of tech trees), as Poker commentary software do.

Summing up Future work

"Why does your bot suck?"

Possible Improvements

- Direct possible improvements:
 - Learning the parameters of the model from a **bigger dataset**,
 - Learning the parameters of the model from **bot vs bot replays**,
- Additional model/extension:
 - Learn which $BuildTree_1$ wins against $BuildTree_2$ so that we can ask: $P(BuildTree_{bot}|obs_{op,1:N}, time, \lambda = 1)$ by the intermediate $P(BuildTree_{op}|obs_{op,1:N}), time, \lambda = 1)$ for dynamic adaptation of our own Build/TechTree.
 - A filter on $P(BuildTree_{bot}^t|BuildTree_{bot}t 1)$ which will balance radical changes.

Summing up Future work

Bibliography

- Bayesian Robot Programming (2004) [Lebeltel O. et al.]
- A Data Mining Approach to Strategy Prediction (2009) [Weber B. & Mateas M.]
- Case-Based Planning and Execution for RTS Games (2007) [Ontañón S. et al.]
- Opponent Behaviour Recognition for Real-Time Strategy Games (2010) [Kabanza F. et al.]
- Building A Player Strategy Model by Analyzing Replays of Real-Time Strategy Games [Hsieh J-L. & Sun C-T.]
- Probability Theory: The Logic of Science (2003) [Jaynes E.T.]

Summing up Future work

Thanks

Thank you for your attention, Questions ?

