
Introduction
Enemy Build Tree Prediction

Conclusion

A Bayesian Model for Plan Recognition in RTS

Games applied to StarCraft

Gabriel Synnaeve and Pierre Bessière

LPPA @ Collège de France (Paris)
University of Grenoble

E-Motion team @ INRIA (Grenoble)

October 14, 2011

1/38

Introduction
Enemy Build Tree Prediction

Conclusion

1 Introduction
StarCraft
Our approach

2 Enemy Build Tree Prediction
Problem
Model
Results

3 Conclusion
Summing up
Future work

2/38

Introduction
Enemy Build Tree Prediction

Conclusion

StarCraft
Our approach

Starcraft: Broodwar
Starcraft (January 1998) + Broodwar (exp., November 1998)

3/38

Introduction
Enemy Build Tree Prediction

Conclusion

StarCraft
Our approach

Pro gaming and competitions

eSports, sponsorship, tournaments’ dotations

4/38

Introduction
Enemy Build Tree Prediction

Conclusion

StarCraft
Our approach

Starcraft in numbers

12 years of competitive play

200 to 300 actions per minute amongst pro gamers

10 millions licenses sold (4.5 in South Korea)

160 BPM: rates of pro gamers hearts

4.5+ millions licenses sold for Starcraft II

1/24th of a second per micro-turn

5/38

Introduction
Enemy Build Tree Prediction

Conclusion

StarCraft
Our approach

Granularity of Problems to tackle

Strategy: tech tree, army composition

Tactics: army positioning

Micro-management: units controllo
w

 le
ve

l

 h

ig
h

le
ve

l

~1 sec

~30 sec

~3 min

6/38

Introduction
Enemy Build Tree Prediction

Conclusion

StarCraft
Our approach

Transmute incompleteness into uncertainty

hi
gh

 le
ve

l

 lo
w

 le
ve

l

Incompleteness

Many low level moves
achieving the same
high level goal

Fog of war (limited
sight)

Partial knowledge of
opponent’s
units/buildings/tech

=⇒ Uncertainty

Considering the units as
individual Bayesian
robots

Seen units (viewed
units filter)

Probabilistic inference,
machine learning from
replays

7/38

Introduction
Enemy Build Tree Prediction

Conclusion

StarCraft
Our approach

A Bayesian program structure

BP


Desc.


Spec.(π)


Variables

Decompositionofthejoint

Forms (Parametric or Program)

Identification (based on δ)

Question

P(Searched|Known)

=

∑
Free P(Searched, Free, Known)

P(Known)

=
1

Z
×

∑
Free

P(Searched, Free, Known)

8/38

Introduction
Enemy Build Tree Prediction

Conclusion

StarCraft
Our approach

Machine learning

reinforcement
(exploration of
parameters space
for the Bayesian
robots)

online (adapt to
particular
opponent)

from replays
(parameters of
predictive models)

9/38

Introduction
Enemy Build Tree Prediction

Conclusion

StarCraft
Our approach

BroodwarBotQ model overview

Incomplete
Data

Enemy Units
filtered mapInfer TechTree

Enemy Tactics

Our Tactics
Units production Units Group

BayesianUnit
BayesianUnit
BayesianUnit
BayesianUnit

Production Manager
/ Planner / Optim.

Goals

Not a perfect (nor what-we-want-in-the-end) model, but the
actual, implemented, bot model.

10/38

Introduction
Enemy Build Tree Prediction

Conclusion

Problem
Model
Results

Examples of cheeses

All-in fast dark templars:
Produce dark templars as fast as
possible, attempt to finish the game
with a very specific unit deep in the
tech path. → Need to have detection!

All-in 2 gates zealots rush:
Produce only zealots, attempt to finish
the game before the opponent’s
economy or technological ROI kicked in.
→ Need to play defensively!

11/38

Introduction
Enemy Build Tree Prediction

Conclusion

Problem
Model
Results

What problem are we trying to solve?

Problem statement

Predict what the enemy build treea is from partial
observations (because of the fog of war) to be able to adapt
our own.

aWe will reserve the term strategy for army composition + long term
tactical goals, which can be infered from the build tree and other variables

Infering the tech tree is exactly the same task as infering the
build tree.

(Another problem is then to dynamically adapt our own
techtree/strategy. And it can be done with the same model
and extensions, see conclusion.)

12/38

Introduction
Enemy Build Tree Prediction

Conclusion

Problem
Model
Results

Previous works

Supervised (annotated/labeled replays) and semi-supervised
(clusterised into labels) learning:

A Data Mining Approach to Strategy Prediction (2009)
[Weber B. & Mateas M.]

A Bayesian Model for Opening Prediction in RTS Games
with Application to StarCraft (2011) [Synnaeve G. &
Bessière P.]

13/38

Introduction
Enemy Build Tree Prediction

Conclusion

Problem
Model
Results

Where are we?

Incomplete
Data

Enemy Units
filtered mapInfer TechTree

Enemy Tactics

Our Tactics
Units production Units Group

BayesianUnit
BayesianUnit
BayesianUnit
BayesianUnit

Production Manager
/ Planner / Optim.

Goals

14/38

Introduction
Enemy Build Tree Prediction

Conclusion

Problem
Model
Results

Replays

Record all the actions of the player so that the game can be
deterministically re-simulated (random generators seeds are
serialized).

Unsupervised learning model: we just need the replays to
be able to learn.

15/38

Introduction
Enemy Build Tree Prediction

Conclusion

Problem
Model
Results

Bayesian Model

Building
s

Building
s

Building
s

Building
s

Observations

λ Time

BuildTree

16/38

Introduction
Enemy Build Tree Prediction

Conclusion

Problem
Model
Results

Variables

BuildTree ∈ {∅,building1,building2,building1 ∧
building2,buildtrees, . . . }
N Observations: Oi∈J1...NK ∈ {0,1}, Ok is 1 (true)⇔ we
saw the unit type k.

λ ∈ {0,1}: coherence variable (restraining BuildTree to
possible values with regard to OJ1...NK)

Time: T ∈ J1 . . . PK

17/38

Introduction
Enemy Build Tree Prediction

Conclusion

Problem
Model
Results

BuildTree variable by example

Pylon

Gateway

Core

StarG Robo Adun

Forge

Cannon

BuildTree ∈ {∅, {Pylon}, {Pylon,Gateway}, {Pylon, Forge},

{Pylon,Gateway, Forge}, {Pylon,Gateway,Core}, . . . }

18/38

Introduction
Enemy Build Tree Prediction

Conclusion

Problem
Model
Results

Decomposition + forms

P(T,BuildTree,O1 . . .ON, λ) =

P(T|BuildTree).P(BuildTree)

P(λ|BuildTree,O1:N).P(O1:N)

P(λ|BuildTree,OJ1...NK) restricts BuildTree values to the
ones that can co-exist with the observations

P(T|BuildTree) are discretized normal distributions. There
is one bell shape over Time per buildTree.

19/38

Introduction
Enemy Build Tree Prediction

Conclusion

Problem
Model
Results

A note on identification/learning

Learning of the P(T|BuildTree) bell shapes parameters
takes into account the uncertainty of the couples
buildTrees for which we have few observations by
starting with a high σ2.

Learning on human replays for bots opening recognition
does not work well. We had to impose a large minimal σ2

(more robustness at the detriment of precision). (Next
year we will use bots replays!)

20/38

Introduction
Enemy Build Tree Prediction

Conclusion

Problem
Model
Results

Question

P(BuildTree|T = t,O1:N = o1:N, λ = 1)

∝ P(t|BuildTree).P(BuildTree)

P(λ|BuildTree, o1:N).P(o1:N)

21/38

Introduction
Enemy Build Tree Prediction

Conclusion

Problem
Model
Results

Dataset

From high level StarCraft players (mainly pros),

8806 replays (≈ 1000 / match-up),

10-fold cross-validation (learn on 9/10th, test on the rest).

⇒ a bias towards high level style of play (6= bot meta-game).

22/38

Introduction
Enemy Build Tree Prediction

Conclusion

Problem
Model
Results

Inference

23/38

Introduction
Enemy Build Tree Prediction

Conclusion

Problem
Model
Results

Error metric: distance

BuildTrees distance

d(bt1,bt2) = card(bt1∆bt2) = card((bt1
⋃

bt2)\(bt1
⋂

bt2))

The error distance d between:
P

G

C

S A

F

C

and

P

G

C

S R

F

C

is 2 (it would be 1 with a tree edit distance).

d(best, real) =“best” distance
d(bt, real) ∗ P(bt)=“mean”: marginalized distance

24/38

Introduction
Enemy Build Tree Prediction

Conclusion

Problem
Model
Results

Predictive power

k buildings ahead

k (> 0) next buildings for which we have a “good enough”
(limit on d) prediction in future build trees in:

P(BuildTreet+k|T = t,O1:N = o1:N, λ = 1)

(In the tests/results, we sometimes used d = 1, d = 2, and
d = 3 as hard limits.)

25/38

Introduction
Enemy Build Tree Prediction

Conclusion

Problem
Model
Results

Low CPU and memory footprint

On a 2.8 Ghz Core 2 Duo:
Learning with 1000 replays takes ≈
0.1 second,

Inference takes ≈ 0.01 second,

≈ 3Mb of memory.

26/38

Introduction
Enemy Build Tree Prediction

Conclusion

Problem
Model
Results

Recap. performance table

d for k = 0 k for d = 1 k for d = 3
n
o
is

e

m
e
a
su

re

best “mean” best “mean” best “mean”

0
%

avg 0.535 0.870 1.193 3.991 3.642 6.122
min 0.313 0.574 0.861 2.8 3.13 4.88
max 1.051 1.296 2.176 5.334 4.496 7.334

2
0

% avg 0.610 0.949 0.900 3.263 2.866 4.873
min 0.381 0.683 0.686 2.3 2.44 3.91
max 1.062 1.330 1.697 4.394 3.697 5.899

4
0

% avg 0.740 1.068 0.611 2.529 2.20 3.827
min 0.488 0.820 0.44 1.65 1.94 3.09
max 1.257 1.497 1.201 3.5 2.773 4.672

6
0

% avg 0.925 1.232 0.400 1.738 1.724 2.732
min 0.586 0.918 0.22 1.08 1.448 2.22
max 1.414 1.707 0.840 2.483 2.083 3.327

8
0

% avg 1.134 1.367 0.156 0.890 1.283 1.831
min 0.665 1.027 0.06 0.56 1.106 1.66
max 1.876 1.999 0.333 1.216 1.5 2.176

27/38

Introduction
Enemy Build Tree Prediction

Conclusion

Problem
Model
Results

Recap. performance table

d for k = 0 k for d = 1 k for d = 3
n
o
is

e

m
e
a
su

re

best “mean” best “mean” best “mean”

0
%

avg 0.535 0.870 1.193 3.991 3.642 6.122
min 0.313 0.574 0.861 2.8 3.13 4.88
max 1.051 1.296 2.176 5.334 4.496 7.334

2
0

% avg 0.610 0.949 0.900 3.263 2.866 4.873
min 0.381 0.683 0.686 2.3 2.44 3.91
max 1.062 1.330 1.697 4.394 3.697 5.899

4
0

% avg 0.740 1.068 0.611 2.529 2.20 3.827
min 0.488 0.820 0.44 1.65 1.94 3.09
max 1.257 1.497 1.201 3.5 2.773 4.672

6
0

% avg 0.925 1.232 0.400 1.738 1.724 2.732
min 0.586 0.918 0.22 1.08 1.448 2.22
max 1.414 1.707 0.840 2.483 2.083 3.327

8
0

% avg 1.134 1.367 0.156 0.890 1.283 1.831
min 0.665 1.027 0.06 0.56 1.106 1.66
max 1.876 1.999 0.333 1.216 1.5 2.176

28/38

Introduction
Enemy Build Tree Prediction

Conclusion

Problem
Model
Results

Recap. performance table

d for k = 0 k for d = 1 k for d = 3
n
o
is

e

m
e
a
su

re

best “mean” best “mean” best “mean”

0
%

avg 0.535 0.870 1.193 3.991 3.642 6.122
min 0.313 0.574 0.861 2.8 3.13 4.88
max 1.051 1.296 2.176 5.334 4.496 7.334

2
0

% avg 0.610 0.949 0.900 3.263 2.866 4.873
min 0.381 0.683 0.686 2.3 2.44 3.91
max 1.062 1.330 1.697 4.394 3.697 5.899

4
0

% avg 0.740 1.068 0.611 2.529 2.20 3.827
min 0.488 0.820 0.44 1.65 1.94 3.09
max 1.257 1.497 1.201 3.5 2.773 4.672

6
0

% avg 0.925 1.232 0.400 1.738 1.724 2.732
min 0.586 0.918 0.22 1.08 1.448 2.22
max 1.414 1.707 0.840 2.483 2.083 3.327

8
0

% avg 1.134 1.367 0.156 0.890 1.283 1.831
min 0.665 1.027 0.06 0.56 1.106 1.66
max 1.876 1.999 0.333 1.216 1.5 2.176

29/38

Introduction
Enemy Build Tree Prediction

Conclusion

Problem
Model
Results

Recap. performance table

d for k = 0 k for d = 1 k for d = 3
n
o
is

e

m
e
a
su

re

best “mean” best “mean” best “mean”

0
%

avg 0.535 0.870 1.193 3.991 3.642 6.122
min 0.313 0.574 0.861 2.8 3.13 4.88
max 1.051 1.296 2.176 5.334 4.496 7.334

2
0

% avg 0.610 0.949 0.900 3.263 2.866 4.873
min 0.381 0.683 0.686 2.3 2.44 3.91
max 1.062 1.330 1.697 4.394 3.697 5.899

4
0

% avg 0.740 1.068 0.611 2.529 2.20 3.827
min 0.488 0.820 0.44 1.65 1.94 3.09
max 1.257 1.497 1.201 3.5 2.773 4.672

6
0

% avg 0.925 1.232 0.400 1.738 1.724 2.732
min 0.586 0.918 0.22 1.08 1.448 2.22
max 1.414 1.707 0.840 2.483 2.083 3.327

8
0

% avg 1.134 1.367 0.156 0.890 1.283 1.831
min 0.665 1.027 0.06 0.56 1.106 1.66
max 1.876 1.999 0.333 1.216 1.5 2.176

30/38

Introduction
Enemy Build Tree Prediction

Conclusion

Problem
Model
Results

Predictive power under noise

31/38

Introduction
Enemy Build Tree Prediction

Conclusion

Problem
Model
Results

Error distance evolution w/ noise

32/38

Introduction
Enemy Build Tree Prediction

Conclusion

Summing up
Future work

Comparing results with existing works

Compared to previous work by Ben Weber (CIG 2009):

Works with partial information (fog of war),

Resists quite well to noise,

Gives a distribution, not just a decision (that’s how high
level human player think, I think ,).

Compared to both previous works ([Weber09] and
[Synnaeve11]):

Unsupervised,

Usable during the “end game”.

33/38

Introduction
Enemy Build Tree Prediction

Conclusion

Summing up
Future work

Possible uses

Adaptive RTS AI:

Direct rules triggers (“DT tech⇒ detection”),
Integrated in a Bayesian decision model (leveraging the
distribution on BuildTree more easily).

Commentary assistant (null noise, prediction of tech
trees), as Poker commentary software do.

34/38

Introduction
Enemy Build Tree Prediction

Conclusion

Summing up
Future work

“Why does your bot suck?”

35/38

Introduction
Enemy Build Tree Prediction

Conclusion

Summing up
Future work

Possible Improvements

Direct possible improvements:

Learning the parameters of the model from a bigger
dataset,
Learning the parameters of the model from bot vs bot
replays,

Additional model/extension:

Learn which BuildTree1 wins against BuildTree2 so that we
can ask: P(BuildTreebot|obsop,1:N, time, λ = 1) by the
intermediate P(BuildTreeop|obsop,1:N), time, λ = 1) for
dynamic adaptation of our own Build/TechTree.
A filter on P(BuildTreet

bot|BuildTreebott − 1) which will
balance radical changes.

36/38

Introduction
Enemy Build Tree Prediction

Conclusion

Summing up
Future work

Bibliography

Bayesian Robot Programming (2004) [Lebeltel O. et al.]

A Data Mining Approach to Strategy Prediction (2009) [Weber B.
& Mateas M.]

Case-Based Planning and Execution for RTS Games (2007)
[Ontañón S. et al.]

Opponent Behaviour Recognition for Real-Time Strategy Games
(2010) [Kabanza F. et al.]

Building A Player Strategy Model by Analyzing Replays of
Real-Time Strategy Games [Hsieh J-L. & Sun C-T.]

Probability Theory: The Logic of Science (2003) [Jaynes E.T.]

37/38

Introduction
Enemy Build Tree Prediction

Conclusion

Summing up
Future work

Thanks

Thank you for your attention,
Questions ?

38/38

	Introduction
	StarCraft
	Our approach

	Enemy Build Tree Prediction
	Problem
	Model
	Results

	Conclusion
	Summing up
	Future work

