
Special Tactics: a Bayesian Approach to Tactical Decision-making

Gabriel Synnaeve (gabriel.synnaeve@gmail.com) and Pierre Bessière (pierre.bessiere@imag.fr)

Abstract—We describe a generative Bayesian model of tac-
tical attacks in strategy games, which can be used both to
predict attacks and to take tactical decisions. This model
is designed to easily integrate and merge information from
other (probabilistic) estimations and heuristics. In particular,
it handles uncertainty in enemy units’ positions as well as their
probable tech tree. We claim that learning, being it supervised
or through reinforcement, adapts to skewed data sources. We
evaluated our approach on StarCraft1: the parameters are
learned on a new (freely available) dataset of game states,
deterministically re-created from replays, and the whole model
is evaluated for prediction in realistic conditions. It is also
the tactical decision-making component of our StarCraft AI
competition bot.

I. INTRODUCTION

A. Game AI

We believe video game AI is central to new, fun, re-
playable gameplays, being them multi-player or not. In their
study on human like characteristics in RTS games, Hagelbäck
and Johansson [1] found out that “tactics was one of the
most successful indicators of whether the player was human
or not”. No current non-cheating AI consistently beats good
human players in RTS (aim cheating is harder to define
for FPS games), nor are fun to play many games against.
Finally, multi-player game AI research is in between real-
world robotics (the world is simulated but not the players)
and more theoretical AI and can benefit both fields.

B. RTS Gameplay

Real-time strategy (RTS) gameplay consist in producing
and managing group of units with attacks and movements
specificities in order to defeat an enemy. Most often, it is
required to gather resources and build up an economic and
military power while expanding a technology tree. Parts of
the map not in the sight range of the player’s units are under
fog of war, so the player only has partial information about
the enemy buildings and army. The way by which we expand
the tech tree, the specific units composing the army, and the
general stance (aggressive or defensive) form what we call
strategy. At the lower level, the actions performed by the
player (human or not) to optimize the effectiveness of its
units is called micro-management. In between lies tactics:
where to attack, and how. A good human player takes much
data in consideration when choosing: are there flaws in the
defense? Which spot is more worthy to attack? How much
am I vulnerable for attacking here? Is the terrain (height,
chokes) to my advantage? etc.

In this paper, we focus on tactics, in between strategy
(high-level) and micro-management (lower-level), as seen

1StarCraft and its expansion StarCraft: Brood War are trademarks of
Blizzard EntertainmentTM

Strategy (tech tree,
army composition)

Tactics (army
positions)

Micro-management 1 sec

30 sec

3 min

direct
knowledge

intention

partial
information

tim
e to sw

itch behaviors

more
constraints

Fig. 1. Gameplay levels of abstraction for RTS games, compared with
their level of direct (and complete) information and orders of magnitudes
of time to chance their policies.

in Fig. 1. We propose a model which can either predict
enemy attacks or give us a distribution on where and how
to attack the opponent. Information from the higher-level
strategy constrains what types of attacks are possible. As
shown in Fig. 1, information from units positions (or possibly
an enemy units particle filter as in [2]) constrains where
the armies can possibly be in the future. In the context of
our StarCraft bot, once we have a decision: we generate
a goal (attack order) passed to units groups (see Fig.2). A
Bayesian model for micro-management [3], in which units
are attracted or repulsed by dynamic (goal, units, damages)
and static (terrain) influence maps, actually moves the units
in StarCraft. Other previous works on strategy prediction [4],
[5] allows us to infer the enemy tech tree and strategies from
incomplete information (due to the fog of war).

UnitGroupsUnitGroups

Incomplete Data

Opponent Strategy

Our TacticsOur Strategy Unit Groups

BayesianUnit
BayesianUnit
BayesianUnit
BayesianUnit

BayesianUnit
BayesianUnit
BayesianUnit
BayesianUnit

Production planner
and managers

Opponent Tactics Opponent Positions

Priors (can
evolve)

buildings, technologies units

opening, tech tree attacks: where, how

wanted: units,
buildings, tech

Goals

objectives, formations
units, tech order how,

where

constraints
values, decisions
distributions

O
pp

on
en

t
O

ur
 A

I

Fig. 2. Information centric view of the StarCraft bot player, the part
presented in this paper is inside dotted lines (tactics). Dotted arrows
represent constraints on what is possible, plain simple arrows represent
simple (real) values, either from data or decisions, and double arrows
represent probability distributions on possible values. The grayed surfaces
are the components actuators (passing orders to the game).

C. StarCraft Tactics

We worked on StarCraft: Brood War, which is a canon-
ical RTS game. It had been around since 1998, sold 9.5
millions licenses and was played professionally for more
than a decade. StarCraft (like most RTS) has a mechanism,
replays, to record every player’s actions such that the state
of the game can be deterministically re-simulated. Numerous
international competitions and professional gaming (mainly
in South Korea) produced a massive amount of data of
highly skilled human players, performing about 300 actions
per minute while following and adapting their strategies. In
StarCraft, there are two types of resources, often located
close together, minerals (at the base of everything) and gas
(at the base of advanced units and technologies). There are
3 factions (Protoss, Terran and Zerg) which have workers to
gather resources, and all other characteristics are different:
from military units to “tech trees”, gameplay styles.

Units have different abilities, which leads to different
possible tactics. Each faction has invisible (temporarily or
permanently) units, flying transport units, flying attack units
and ground units. Some units can only attack ground or air
units, some others have splash damage attacks, immobilizing
or illusion abilities. Fast and mobile units are not cost-
effective in head-to-head fights against slower bulky units.
We used the gamers’ vocabulary to qualify different types
of tactics: ground attacks (raids or pushes) are the most
normal kind of attacks, carried by basic units which cannot
fly. Then comes air attacks (air raids), which use flying units
mobility to quickly deal damage to undefended spots. Invis-
ible attacks exploit the weaknesses (being them positional
or technological) in detectors of the enemy to deal damage
without retaliation. Finally, drops are attacks using ground
units transported by air, combining flying units mobility
with cost-effectiveness of ground units, at the expense of
vulnerability during transit.

II. BACKGROUND

A. Related Works

Aha et al. [6] used case-based reasoning (CBR) to perform
dynamic tactical plan retrieval (matching) extracted from
domain knowledge in Wargus. Ontañó et al. [7] based their
real-time case-based planning (CBP) system on a plan de-
pendency graph which is learned from human demonstration
in Wargus. A case based behavior generator spawn missing
goals which are missing from the current state and plan
according to the recognized state. In [8], [9], they used a
knowledge-based approach to perform situation assessment
to use the right plan, performing runtime adaptation by
monitoring its performance. Sharma et al. [10] combined
CBR and reinforcement learning to enable reuse of tactical
plan components. Cadena and Garrido [11] used fuzzy CBR
(fuzzy case matching) for strategic and tactical planning.
Chung et al. [12] adapted Monte-Carlo tree search (MCTS)
to planning in RTS games and applied it to a capture-the-
flag mod of Open RTS. Balla and Fern [13] applied upper

confidence bounds on trees (UCT: a MCTS algorithm) to
tactical assault planning in Wargus.

In Starcraft, Weber et al. [14], [15] produced tactical goals
through reactive planning and goal-driven autonomy, finding
the more relevant goal(s) to follow in unforeseen situations.
Kabanza et al. [16] performs plan and intent recognition to
find tactical opportunities. On spatial and temporal reasoning,
Forbus et al. [17] presented a tactical qualitative description
of terrain for wargames through geometric and pathfinding
analysis. Perkins [18] automatically extracted choke points
and regions of StarCraft maps from a pruned Voronoi dia-
gram. We used this technique to extract our regions repre-
sentations. Wintermute et al. [19] used a cognitive approach
mimicking human attention for tactics and units control.
Ponsen et al. [20] developed an evolutionary state-based
tactics generator for Wargus. Finally, Avery et al. [21] and
Smith et al. [22] co-evolved influence map trees for spatial
(tactical) reasoning in RTS games.

Our approach (and bot architecture, depicted in Fig. 2)
can be seen as goal-driven autonomy [14] dealing with
multi-level reasoning by passing distributions (without any
assumption about how they were obtained) on the module
input. Using distributions as messages between specialized
modules makes dealing with uncertainty first class, this way
a given model do not care if the uncertainty comes from
incompleteness in the data, a complex and biased heuristic,
or another probabilistic model. We then take a decision by
sampling or taking the most probable value in the output
distribution. Another particularity of our model is that it
allows for prediction of the enemy tactics using the same
model with different inputs. Finally, our approach is not
exclusive to most of the techniques presented above, and it
could be interesting to combine it with UCT [13] and more
complex/precise tactics generated through planning.

B. Bayesian Programming

Probability is used as an alternative to classical logic
and we transform incompleteness (in the experiences, ob-
servations or the model) into uncertainty [23]. We introduce
Bayesian programs (BP), a formalism that can be used to
describe entirely any kind of Bayesian model, subsuming
Bayesian networks and Bayesian maps, equivalent to prob-
abilistic factor graphs [24]. There are mainly two parts in a
BP, the description of how to compute the joint distribution,
and the question(s) that it will be asked.

The description consists in explaining the relevant vari-
ables {X1, . . . , Xn} and explain their dependencies by
decomposing the joint distribution P(X1 . . . Xn|δ, π) with
existing preliminary knowledge π and data δ. The forms
of each term of the product specify how to compute their
distributions: either parametric forms (laws or probability
tables, with free parameters that can be learned from data
δ) or recursive questions to other Bayesian programs.

Answering a question is computing the distribution
P(Searched|Known), with Searched and Known two

disjoint subsets of the variables. P(Searched|Known)

=

∑
Free P(Searched, Free, Known)

P(Known)

=
1

Z
×
∑
Free

P(Searched, Free, Known)

BP


Desc.


Spec.(π)


V ariables

Decomposition

Forms (Parametric or Program)

Identification (based on δ)

Question

Bayesian programming originated in robotics [25] and
evolved to all sensory-motor systems [26]. For its use in
cognitive modeling, see [27] and for its first use in video
games (FPS, Unreal Tournament), see [28]; for Massively
Multi-Player Online Role-Playing Games, see [29].

III. METHODOLOGY

A. Dataset

We downloaded more than 8000 replays to keep 7649
uncorrupted, 1v1 replays of very high level StarCraft games
(pro-gamers leagues and international tournaments) from
specialized websites234, we then ran them using BWAPI5 and
dumped units positions, pathfinding and regions, resources,
orders, vision events, for attacks (we trigger an attack track-
ing heuristic when one unit dies and there are at least two
military units around): types, positions, outcomes. Basically,
every BWAPI event was recorded, the dataset and its source
code are freely available6.

We used two kinds of regions: BroodWar Terrain Anal-
yser (BWTA) regions and choke-dependent (choke-centered)
regions. BWTA regions are obtained from a pruned Voronoi
diagram on walkable terrain [18] and gives regions for
which chokes are the boundaries. As battles often happens
at chokes, choke-dependent regions are created by doing an
additional (distance limited) Voronoi tesselation spawned at
chokes, its regions set is (regions\chokes)∪chokes. Results
for choke-dependent regions are not fully detailed.

B. Tactical Model

The idea is to have (most probably biased) lower-level
heuristics from units observations which produce information
exploitable at the tactical level, and take some advantage of
strategic inference too. The advantages are that 1) learning
will de-skew the model output from biased heuristic inputs
2) the model is agnostic to where input variables’ values
come from 3) the updating process is the same for supervised
learning and for reinforcement learning.

We note sa or d
unit type(r) for the balanced score of units from

attacker or defender (a or b) of a given type in region r.

2http://www.teamliquid.net
3http://www.gosugamers.net
4http://www.iccup.com
5http://code.google.com/p/bwapi/
6http://snippyhollow.github.com/bwrepdump/

The balanced score of units is just the sum on all units
of each unit score (= minerals value + 4

3gas value +
50supply value). The heuristics we used in our benchmarks
(which we could change) are:

economical scored(r) =
sdworkers(r)∑

i∈regions s
d
workers(i)

tactical scored(r) =
∑

i∈regions
sdarmy(i)× dist(i, r)−1.5

We used −1.5 such that the tactical value of a region in
between two halves of an army, each at distance 2, would
be higher than the tactical value of a region at distance 4 of
the full (same) army. For flying units, dist is the Euclidean
distance, while for ground units it takes pathfinding into
account.

ground defensed(r) =
sdcan attack ground(r)

saground units(r)

air defensed(r) =
sdcan attack air(r)

saair units(r)

invis defensed(r) = numberddetectors

We preferred to discretize continuous values to enable
quick complete computations. An other strategy would keep
more values and use Monte Carlo sampling for computation.
We think that discretization is not a concern because 1)
heuristics are simple and biased already 2) we often rea-
son about imperfect information and this uncertainty tops
discretization fittings.

1) Variables: With n regions, we have:
• A1:n ∈ {true, false}, Ai: attack in region i or not?
• E1:n ∈ {no, low, high}, Ei is the discretized economi-

cal value of the region i for the defender. We choose 3
values: no workers in the regions, low: a small amount
of workers (less than half the total) and high: more than
half the total of workers in this region i.

• T1:n ∈ discrete levels, Ti is the tactical value of the
region i for the defender, see above for an explanation of
the heuristic. Basically, T is proportional to the proxim-
ity to the defender’s army. In benchmarks, discretization
steps are 0, 0.05, 0.1, 0.2, 0.4, 0.8 (log2 scale).

• TA1:n ∈ discrete levels, TAi is the tactical value of
the region i for the attacker (see above).

• B1:n ∈ {true, false}, Bi tells if the region belongs (or
not) to the defender. P(Bi = true) = 1 if the defender
has a base in region i and P(Bi = false) = 1 if the
attacker has one. Influence zones of the defender can
be measured (with uncertainty) by P(Bi = true) ≥ 0.5
and vice versa.

• H1:n ∈ {ground, air, invisible, drop}, Hi: in predic-
tive mode: how we will be attacked, in decision-making:
how to attack, in region i.

• GD1:n ∈ {no, low,med, high}: ground defense (rel-
ative to the attacker power) in region i, result from a
heuristic. no defense if the defender’s army is ≥ 1/10th

of the attacker’s, low defense above that and under half
the attacker’s army, medium defense above that and
under comparable sizes, high if the defender’s army is
bigger than the attacker.

• AD1:n ∈ {no, low,med, high}: same for air defense.
• ID1:n ∈ {no detector, one detector, several}: invisi-

ble defense, equating to numbers of detectors.
• TT ∈ [∅, building1, building2, building1 ∧
building2, techtrees, . . .]: all the possible
technological trees for the given race. For instance
{pylon, gate} and {pylon, gate, core} are two different
T ech T rees.

• HP ∈ {ground, ground ∧ air, ground ∧
invis, ground∧ air∧ invis, ground∧ drop, ground∧
air ∧ drop, ground ∧ invis ∧ drop, ground ∧ air ∧
invis ∧ drop}: how possible types of attacks, directly
mapped from TT information. In prediction, with this
variable, we make use of what we can infer on the
opponent’s strategy [5], [4], in decision-making, we
know our own possibilities (we know our tech tree as
well as the units we own).

Finally, for some variables, we take uncertainty into account
with “soft evidences”: for instance for a region in which
no player has a base, we have a soft evidence that it
belongs more probably to the player established closer. In
this case, for a given region, we introduce the soft evidence
variable(s) B′ and the coherence variable λB and impose
P(λB = 1|B,B′) = 1.0 iff B = B′, else P(λB =
1|B,B′) = 0.0; while P(λB |B,B′)P(B′) is a new factor
in the joint distribution. This allows to sum over P(B′)
distribution (soft evidence).

2) Decomposition: The joint distribution of our model
contains soft evidence variables for all input family variables
(E, T, TA,B,GD,AD, ID, P) to be as general as possible,
i.e. to be able to cope with all possible uncertainty (from
incomplete information) that may come up in a game. To
avoid being too verbose, we explain the decomposition
only with the soft evidence for the family of variables B,
the principle holds for all other soft evidences. For the n
considered regions, we have:

P(A1:n, E1:n, T1:n, TA1:n, B1:n, B
′
1:n, λB,1:n,

H1:n, GD1:n, AD1:n, ID1:n, P, TT)

=

n∏
i=1

[
P(Ai)P(Ei, Ti, TAi, Bi|Ai) (1)

P(λB,i|B1:n, B
′
1:n)P(B

′
1:n)

P(ADi, GDi, IDi|Hi)P(Hi|HP)
]
P(HP |TT)P(TT)

3) Forms and Learning: We will explain the forms for a
given/fixed i region number:

• P(A) is the prior on the fact that the player at-
tacks in this region, in our evaluation we set it to
nbattles/(nbattles + nnot battles). In a given match it
should be initialized to uniform and progressively learn
the preferred attack regions of the opponent for pre-

dictions, learn the regions in which our attacks fail or
succeed for decision-making.

• P(E, T, TA,B|A) is a covariance table of the econom-
ical, tactical (both for the defender and the attacker),
belonging scores where an attacks happen. We just use
Laplace succession law (“add one” smoothing) [23]
and count the co-occurrences, thus almost performing
maximum likelihood learning of the table.

• P(λB |B,B′) = 1.0 iff B = B′ is just a coherence
constraint.

• P(AD,GD, ID|H) is a covariance table of the air,
ground, invisible defense values depending on how the
attack happens. As for P(E, T, TA,B|A), we use a
Laplace’s law of succession to learn it.

• P(H|HP) is the distribution on how the attack hap-
pens depending on what is possible. Trivially P(H =
ground|HP = ground) = 1.0, for more complex
possibilities we have different maximum likelihood
multinomial distributions on H values depending on
HP .

• P(HP |TT) is the direct mapping of what the tech tree
allows as possible attack types: P(HP = hp|TT) = 1
is a function of TT (all P(HP 6= hp|TT) = 0).

• P(TT): if we are sure of the tech tree (prediction
without fog of war, or in decision-making mode),
P(TT = k) = 1 and P(TT 6= k) = 0; otherwise, it
allows us to take uncertainty about the opponent’s tech
tree and balance P(HP |TT). We obtain a distribution
on what is possible (P(HP)) for the opponent’s attack
types.

There are two approaches to fill up these probability tables,
either by observing games (supervised learning), as we did in
the evaluation section, or by acting (reinforcement learning).
In match situation against a given opponent, for inputs that
we can unequivocally attribute to their intention (style and
general strategy), we also refine these probability tables
(with Laplace’s rule of succession). To keep things simple,
we just refine

∑
E,T,TA P(E, T, TA,B|A) corresponding to

their aggressiveness (aggro) or our successes and failures,
and equivalently for P(H|HP). Indeed, if we sum over E,
T and TA, we consider the inclination of our opponent to
venture into enemy territory or the interest that we have to
do so by counting our successes with aggressive or defensive
parameters. In P(H|HP), we are learning the opponent’s
inclination for particular types of tactics according to what
is available to their, or for us the effectiveness of our attack
types choices.

The model is highly modular, and some parts are more
important than others. We can separate three main parts:
P(E, T, TA,B|A), P(AD,GD, ID|H) and P(H|HP). In
prediction, P(E, T, TA,B|A) uses the inferred (uncertain)
economic (E), tactical (T) and belonging (B) scores
of the opponent while knowing our own tactical posi-
tion fully (TA). In decision-making, we know E, T,B
(for us) and estimate TA. In our prediction benchmarks,
P(AD,GD, ID|H) has the lesser impact on the results of

the three main parts, either because the uncertainty from
the attacker on AD,GD, ID is too high or because our
heuristics are too simple, though it still contributes positively
to the score. In decision-making, it allows for reinforcement
learning to have pivoting tuple values for AD,GD, ID at
which to switch attack types. In prediction, P(H|HP) is
used to take P(TT) (coming from strategy prediction [4])
into account and constraints H to what is possible. For the
use of P(H|HP)P(HP |TT)P(TT) in decision-making, see
the Results sections.

4) Questions: For a given region i, we can ask the
probability to attack here,

P(Ai = ai|ei, ti, tai, λB,i = 1)

=

∑
Bi,B

′
i
P(ei, ti, tai, Bi|ai)P(ai)P(B′

i).P (λB,i|Bi, B
′
i)∑

Ai,Bi,B
′
i
P(ei, ti, tai, Bi|Ai)P(Ai)P(B′

i)P(λB,i|Bi, B′
i)

∝
∑
Bi,B′

i

P(ei, ti, tai, Bi|ai)P(ai)P(B′i)P(λB,i|Bi, B
′
i)

and the mean by which we should attack,

P(Hi = hi|adi, gdi, idi)
∝

∑
TT,P

[
P(adi, gdi, idi|hi)P(hi|P)P(HP |TT)P(TT)

]
For clarity, we omitted some variables couples on which we
have to sum (to take uncertainty into account) as for B (and
B′) above. We always sum over estimated, inferred variables,
while we know the one we observe fully. In prediction mode,
we sum over TA,B, TT, P ; in decision-making, we sum
over E, T,B,AD,GD, ID. The complete question that we
ask our model is P(A,H|FullyObserved). The maximum
of P(A,H) may not be the same as the maximum of P(A) or
P(H), for instance think of a very important economic zone
that is very well defended, it may be the maximum of P(A),
but not once we take P(H) into account. Inversely, some
regions are not defended against anything at all but present
little or no interest. Our joint distribution (1) can be rewritten:
P(Searched, FullyObserved,Estimated), so we ask:

P(A1:n, H1:n|FullyObserved) (2)

∝
∑

Estimated

P(A1:n, H1:n, Estimated, FullyObserved)

IV. RESULTS

A. Learning

To measure fairly the prediction performance of such a
model, we applied “leave-100-out” cross-validation from our
dataset: as we had many games (see Table. I), we set aside
100 games of each match-up for testing (with more than
1 battle per match: rather u 15 battles/match) and train our
model on the rest. We write match-ups XvY with X and Y the
first letters of the factions involved (Protoss, Terran, Zerg).
Note that mirror match-ups (PvP, TvT, ZvZ) have less games
but twice as many attacks from a given faction. Learning
was performed as explained in III.B.3: for each battle in r
we had one observation for: P(er, tr, tar, br|A = true), and

#regions − 1 observations for the i regions which were
not attacked: P(ei6=r, ti 6=r, tai 6=r, bi 6=r|A = false). For each
battle of type t we had one observation for P (ad, gd, id|H =
t) and P (H = t|p). By learning with a Laplace’s law of
succession [23], we allow for unseen event to have a non-
null probability.

An exhaustive presentation of the learned tables is out of
the scope of this paper, but we displayed interesting cases
in which the learned probability tables meet concur with
human expertise in Figures 3,4,5. In Fig. 3, we see that air
raids/attacks are quite risk averse and it is two times more
likely to attack a region with less than 1/10th of the flying
force in anti-aircraft warfare than to attack a region with
up to one half of our force. We can also notice than drops
are to be preferred either when it is safe to land (no anti-
aircraft defense) or when there is a large defense (harassment
tactics). In Fig. 4 we can see that, in general, there are as
many ground attacks at the sum of other types. The two
top graphs show cases in which the tech of the attacker
was very specialized, and, in such cases, the specificity
seems to be used. In particular, the top right graphic may
be corresponding to a “fast Dark Templars rush”. Finally,
Fig. 5 shows the transition between two types of encounters:
tactics aimed at engaging the enemy army (a higher T value
entails a higher P(A)) and tactics aimed at damaging the
enemy economy (at high E, we look for opportunities to
attack with a small army where T is lower).

Fig. 3. P(H = air) and P(H = drop) for varying values of AD
(summed on other variables), for Terran in TvP.

Fig. 4. P(H|HP) for varying values H and for different values of P
(derived from inferred TT), for Protoss in PvT.

Fig. 5. P(A) for varying values of E and T , summed on the other variables,
for Terran in TvT.

B. Prediction Performance

We learned and tested one model for each race and each
match-up. As we want to predict where (P(A1:n)) and how
(P(Hbattle)) the next attack will happen to us, we used
inferred enemy TT (to produce P) and TA, our scores being
fully known: E, T , B, ID. We consider GD, AD to be
fully known even though they depend on the attacker force,
we should have some uncertainty on them, but we tested
that they accounted (being known instead of fully unknown)
for 1 to 2% of P(H) accuracy (in prediction) once P was
known. We should point that pro-gamers scout very well and
so it allows for a highly accurate TT estimation with [4].
Training requires to recreate battle states (all units positions)
and count parameters for 5,000 to 30,000 battles. Once that
is done, inference is very quick: a look-up in a probability
table for known values and #F look-ups for free variables
F on which we sum. We chose to try and predict the next
battle 30 seconds before it happens, 30 seconds being an
approximation of the time needed to go from the middle
of a map (where the entropy on “next battle position” is
maximum) to any region by ground, so that the prediction is
useful for the defender (they can position their army).

The model code7 (for learning and testing) as well as
the datasets (see above) are freely avaible. Raw results of
predictions of positions and types of attacks 30 seconds
before they happen are presented in Table. I: for instance
the bold number (38.0) corresponds to the percentage of
good positions (regions) predictions (30 sec before event)
which were ranked 1st in the probabilities on A1:n for
Protoss attacks against Terran (PvT). The measures on where
corresponds to the percentage of good prediction and the
mean probability for given ranks in P(A1:n) (to give a sense
of the shape of the distribution). As the most probable The
measures on how corresponds to the percentage of good
predictions for the most probable P(Hbattle) and the number

7https://github.com/SnippyHolloW/AnalyzeBWData

of such battles seen in the test set for given attack types. We
particularly predict well ground attacks (trivial in the early
game, less in the end game) and, interestingly, Terran and
Zerg drop attacks. The where & how row corresponds to the
percentage of good predictions for the maximal probability in
the joint P(A1:n, H1:n): considering only the most probable
attack (more information is in the rest of the distribution, as
shown for where!) according to our model, we can predict
where and how an attack will occur in the next 30 seconds u
1/4th of the time. Finally, note that scores are not ridiculous
60 seconds before the attack neither (obviously, TT , and
thus P , are not so different, nor are B and E): PvT where
top 4 ranks are 35.6, 8.5, 7.7, 7.0% good versus 38.0,
16.3, 8.9, 6.7% 30 seconds before; how total precision 60
seconds before is 70.0% vs. 72.4%, where & how maximum
probability precision is 19.9% vs. 23%.

When we are mistaken, the mean ground distance
(pathfinding wise) of the most probable predicted region to
the good one (where the attack happens) is 1223 pixels (38
build tiles, or 2 screens in StarCraft’s resolution), while the
mean max distance on the map is 5506 (172 build tiles).
Also, the mean number of regions by map is 19, so a
random where (attack destination) picking policy would have
a correctness of 1/19 (5.23%). For choke-centered regions,
the numbers of good where predictions are lower (between
24% and 32% correct for the most probable) but the mean
number of regions by map is 42. For where & how, a random
policy would have a precision of 1/(19*4), and even a random
policy taking the high frequency of ground attacks into
account would at most be u 1/(19*2) correct. For the location
only (where question), we also counted the mean number of
different regions which were attacked in a given game, the
ratio over these means would give the best (consider only
attacks that happened instead of threats) prediction rate we
could expect from a baseline heuristic based solely on the
location data and would yield (depending on the match-up)
prediction rates between 20.5 and 25.2% for regions, versus
our 32.8 to 40.9%, and between 16.1% and 19.5% for choke-
dependent regions, versus our 24% to 32%.

Note that our current model consider a uniform prior on
regions (no bias towards past battlefields) and that we do not
incorporate any derivative of the armies’ movements. There
is no player modeling at all: learning and fitting the mean
player’s tactics is not optimal, so we should specialize the
probability tables for each player. Also, we use all types of
battles in our training and testing. Short experiments showed
that if we used only attacks on bases, the probability of good
where predictions for the maximum of P(A1:n) goes above
50% (which is not a surprise, there are far less bases than
regions in which attacks happen). To conclude on tactics
positions prediction: if we sum the 2 most probable regions
for the attack, we are right at least half the time; if we sum the
4 most probable (for our robotic player, it means it prepares
against attacks in 4 regions as opposed to 19), we are right
u 70% of the time.

Mistakes on the type of the attack are high for invisi-

TABLE I
RESULTS SUMMARY FOR MULTIPLE METRICS AT 30 SECONDS BEFORE ATTACK. THE NUMBER IN BOLD (38.0) IS READ AS “38% OF THE TIME, THE

REGION i WITH PROBABILITY OF RANK 1 IN P(Ai) IS THE ONE IN WHICH THE ATTACK HAPPENED 30 SECONDS LATER”.

%: good predictions Protoss Terran Zerg
Pr: mean probability P T Z P T Z P T Z

total # games 1336 7225 6082 7225 1384 6322 6082 6322 598
measure rank % Pr % Pr % Pr % Pr % Pr % Pr % Pr % Pr % Pr

1 40.9 .334 38.0 .329 34.5 .304 35.3 .299 34.4 .295 39.0 0.358 32.8 .31 39.8 .331 37.2 .324

w
he

re

2 14.6 .157 16.3 .149 13.0 .152 14.3 .148 14.7 .147 17.8 .174 15.4 .166 16.6 .148 16.9 .157
3 7.8 .089 8.9 .085 6.9 .092 9.8 .09 8.4 .087 10.0 .096 11.3 .099 7.6 .084 10.7 .100
4 7.6 .062 6.7 .059 7.9 .064 8.6 .071 6.9 .063 7.0 .062 8.9 .07 7.7 .064 8.6 .07

measure type % N % N % N % N % N % N % N % N % N
G 97.5 1016 98.1 1458 98.4 568 100 691 99.9 3218 76.7 695 86.6 612 99.8 567 67.2 607

ho
w A 44.4 81 34.5 415 46.8 190 40 5 13.3 444 47.1 402 14.2 155 15.8 19 74.2 586

I 22.7 225 49.6 337 12.9 132 NA NA NA NA 36.8 326 32.6 227 NA NA NA NA
D 55.9 340 42.2 464 45.2 93 93.5 107 86 1183 62.8 739 67.7 535 81.4 86 63.6 588

total 76.3 1662 72.4 2674 71.9 983 98.4 806 88.5 4850 60.4 2162 64.6 1529 94.7 674 67.6 1802
where & how (%) 32.8 23 23.8 27.1 23.6 30.2 23.3 30.9 26.4

ble attacks: while these tactics can definitely win a game,
the counter is strategic (it is to have detectors technology
deployed) more than positional. Also, if the maximum of
P(Hbattle) is wrong, it doesn’t mean than P(Hbattle =
good) = 0.0 at all! The result needing improvements the
most is for air tactics, because countering them really is
positional, see our discussion in the conclusion.

C. In Game Decision-Making

In a StarCraft game, our bot has to make decisions about
where and how to attack or defend, it does so by reasoning
about opponent’s tactics, bases, its priors, and under strategic
constraints (Fig. 2). Once a decision is taken, the output of
the tactical model is an offensive or defensive goal. There are
different military goal types (base defense, ground attacks,
air attacks, drops...), and each type of goal has pre-requisites
(for instance: a drop goal needs to have the control of a
dropship and military units to become active). The spawned
goal then autonomously sets objectives for Bayesian units
[3], sometimes procedurally creating intermediate objectives
or canceling itself in the worst cases.

The destinations of goals are from P(A), while the type
of the goal comes from P(H). In input, we fully know
tactical scores of the regions according to our military units
placement TA (we are the attacker), what is possible for us
to do P (according to units available) and we estimate E, T ,
B, ID, GD, AD from past (partial) observations. Estimating
T is the most tricky of all because it may be changing fast,
for that we use a units filter which just decays probability
mass of seen units. An improvement would be to use a
particle filter [2], with a learned motion model. From the joint
(2) P(A1:n, H1:n|ta, p, tt) may arise a couple i,Hi more
probable than the most probables P(Ai) and P(Hj) taken
separately (the case of an heavily defended main base and a
small unprotected expand for instance). Fig. 6 displays the
mean P(A,H) for Terran (in TvZ) attacks decision-making
for the most 32 probable type/region tactical couples. It is in
this kind of landscape (though more steep because Fig. 6 is
a mean) that we sample (or pick the most probable couple)
to take a decision. Also, we may spawn defensive goals

countering the attacks that we predict from the opponent.

Fig. 6. Mean P(A,H) for all H values and the top 8 P(Ai, Hi) values,
for Terran in TvZ. The larger the white square area, the higher P(Ai, Hi).

Finally, we can steer our technological growth towards
the opponent’s weaknesses. A question that we can ask our
model (at time t) is P(TT), or, in two parts: we first find
i, hi which maximize P(A,H) at time t+1, and then ask a
more directive:

P(TT |hi) ∝
∑
P

P(hi|HP)P(HP |TT)P(TT)

so that it gives us a distribution on the tech trees (TT) needed
to be able to perform the wanted attack type. To take a
decision on our technology direction, we can consider the
distances between our current ttt and all the probable values
of TT t+1.

V. CONCLUSIONS

A. Possible Improvements

There are three main research directions for possible
improvements: improving the underlying heuristics, improv-
ing the dynamic of the model and improving the model
itself. The heuristics presented here are quite simple but
they may be changed, and even removed or added, for
another RTS or FPS, or for more performance. In particular,
our “defense against invisible” heuristic could take detector
positioning/coverage into account. Our heuristic on tactical
values can also be reworked to take terrain tactical values
into account (chokes and elevation in StarCraft). For the
estimated position of enemy units, we could use a particle

filter [2] with a motion model (at least one for ground units
and one for flying units). There is room to improve the
dynamics of the model: considering the prior probabilities
to attack in regions given past attacks and/or considering
evolutions of the T ,TA,B,E values (derivatives) in time. The
discretizations that we used may show their limits, though
if we want to use continuous values, we need to setup a
more complicated learning and inference process (MCMC
sampling). Finally, one of the strongest assumptions (which
is a drawback particularly for prediction) of our model is
that the attacking player is always considered to attack in this
most probable regions. While this would be true if the model
was complete (with finer army positions inputs and a model
of what the player thinks), we believe such an assumption of
completeness is far fetched. Instead we should express that
incompleteness in the model itself and have a “player deci-
sion” variable D ∼Multinomial(P(A1:n, H1:n), player).

B. Final Words

We have presented a Bayesian tactical model for RTS
AI, which allows both for opposing tactics prediction and
autonomous tactical decision-making. Being a probabilistic
model, it deals with uncertainty easily, and its design allows
easy integration into multi-granularity (multi-scale) AI sys-
tems as needed in RTS AI. Without any temporal dynamics,
its exact prediction rate of the joint position and tactical
type is in [23-32.8]% (depending on the match-up), and
considering the 4 most probable regions it goes up to u
70%. More importantly, it allows for tactical decision-making
under (technological) constraints and (state) uncertainty. It
can be used in production thanks to its low CPU and memory
footprint. The dataset, its documentation8, as well as our
model implementation9 (and other data-exploration tools) are
free software and can be found online. We plan to use this
model in our StarCraft AI competition entry bot as it gives
our bot tactical autonomy and a way to adapt to our opponent.

REFERENCES

[1] J. Hagelbäck and S. J. Johansson, “A Study on Human like Charac-
teristics in Real Time Strategy Games,” in CIG (IEEE), 2010.

[2] B. G. Weber, M. Mateas, and A. Jhala, “A Particle Model for State
Estimation in Real-Time Strategy Games,” in Proceedings of AIIDE,
AAAI Press. Stanford, Palo Alto, California: AAAI Press, 2011, p.
103–108.

[3] G. Synnaeve and P. Bessière, “A Bayesian Model for RTS Units
Control applied to StarCraft,” in Proceedings of IEEE CIG 2011,
Seoul, South Korea, Sep. 2011.

[4] G. Synnaeve and P. Bessière, “A Bayesian Model for Plan Recognition
in RTS Games applied to StarCraft,” in Proceedings of the Seventh Ar-
tificial Intelligence and Interactive Digital Entertainment Conference
(AIIDE 2011), ser. Proceedings of AIIDE, AAAI, Ed., Palo Alto, CA,
USA, Oct. 2011, pp. 79–84.

[5] G. Synnaeve and P. Bessière, “A Bayesian Model for Opening Pre-
diction in RTS Games with Application to StarCraft,” in Proceedings
of 2011 IEEE CIG, Seoul, South Korea, Sep. 2011.

[6] D. W. Aha, M. Molineaux, and M. J. V. Ponsen, “Learning to Win:
Case-Based Plan Selection in a Real-Time Strategy Game,” in ICCBR,
2005, pp. 5–20.

8http://snippyhollow.github.com/bwrepdump/
9https://github.com/SnippyHolloW/AnalyzeBWData

[7] S. Ontañón, K. Mishra, N. Sugandh, and A. Ram, “Case-based
planning and execution for real-time strategy games,” in Proceedings
of the 7th international conference on Case-Based Reasoning: Case-
Based Reasoning Research and Development, ser. International Joint
Conference on Neural Networks (ICCBR-07). Springer-Verlag, 2007,
pp. 164–178.

[8] K. Mishra, S. Ontañón, and A. Ram, “Situation Assessment for Plan
Retrieval in Real-Time Strategy Games,” in ECCBR, 2008, pp. 355–
369.

[9] M. Meta, S. Ontañón, and A. Ram, “Meta-Level Behavior Adaptation
in Real-Time Strategy Games,” in ICCBR-10 Workshop on Case-Based
Reasoning for Computer Games, Alessandria, Italy, 2010.

[10] M. Sharma, M. Holmes, , J. Santamaria, A. Irani, C. L. Isbell, and
A. Ram, “Transfer Learning in Real-Time Strategy Games Usinging
Hybrid CBR/RL,” in International Joint Conference of Artificial Intel-
ligence, IJCAI, 2007.

[11] P. Cadena and L. Garrido, “Fuzzy Case-Based Reasoning for Manag-
ing Strategic and Tactical Reasoning in StarCraft,” in MICAI (1), ser.
Lecture Notes in Computer Science, I. Z. Batyrshin and G. Sidorov,
Eds., vol. 7094. Springer, 2011, pp. 113–124.

[12] M. Chung, M. Buro, and J. Schaeffer, “Monte Carlo Planning in RTS
Games,” in CIG. IEEE, 2005.

[13] R. krishna Balla and A. Fern, “UCT for Tactical Assault Planning in
Real-Time Strategy Games,” in IJCAI, 2009.

[14] B. G. Weber, M. Mateas, and A. Jhala, “Applying Goal-Driven Au-
tonomy to StarCraft,” in Artificial Intelligence and Interactive Digital
Entertainment (AIIDE), 2010.

[15] B. G. Weber, P. Mawhorter, M. Mateas, and A. Jhala, “Reactive
Planning Idioms for Multi-Scale Game AI,” in CIG (IEEE), 2010.

[16] F. Kabanza, P. Bellefeuille, F. Bisson, A. R. Benaskeur, and H. Iran-
doust, “Opponent Behaviour Recognition for Real-Time Strategy
Games,” in AAAI Workshops, 2010.

[17] K. D. Forbus, J. V. Mahoney, and K. Dill, “How qualitative
spatial reasoning can improve strategy game ais,” IEEE Intelligent
Systems, vol. 17, pp. 25–30, July 2002. [Online]. Available:
http://dx.doi.org/10.1109/MIS.2002.1024748

[18] L. Perkins, “Terrain Analysis in Real-Time Strategy Games: An
Integrated Approach to Choke Point Detection and Region Decom-
position,” in AIIDE, G. M. Youngblood and V. Bulitko, Eds. The
AAAI Press, 2010.

[19] S. Wintermute, J. Z. Joseph Xu, and J. E. Laird, “SORTS: A Human-
Level Approach to Real-Time Strategy AI,” in AIIDE, 2007, pp. 55–60.

[20] M. J. V. Ponsen, H. Muñoz-Avila, P. Spronck, and D. W. Aha, “Au-
tomatically Generating Game Tactics through Evolutionary Learning,”
AI Magazine, vol. 27, no. 3, pp. 75–84, 2006.

[21] P. Avery, S. Louis, and B. Avery, “Evolving Coordinated
Spatial Tactics for Autonomous Entities using Influence
Maps,” in Proceedings of the 5th international conference on
Computational Intelligence and Games, ser. CIG’09. Piscataway,
NJ, USA: IEEE Press, 2009, pp. 341–348. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1719293.1719350

[22] G. Smith, P. Avery, R. Houmanfar, and S. Louis, “Using Co-evolved
RTS Opponents to Teach Spatial Tactics,” in CIG (IEEE), 2010.

[23] E. T. Jaynes, Probability Theory: The Logic of Science. Cambridge
University Press, June 2003.

[24] J. Diard, P. Bessière, and E. Mazer, “A Survey of Probabilistic
Models Using the Bayesian Programming Methodology as a Unifying
Framework,” in Conference on Computational Intelligence, Robotics
and Autonomous Systems, CIRAS, 2003.

[25] O. Lebeltel, P. Bessière, J. Diard, and E. Mazer, “Bayesian Robot
Programming,” Autonomous Robots, vol. 16, no. 1, pp. 49–79, 2004.

[26] P. Bessière, C. Laugier, and R. Siegwart, Probabilistic Reasoning
and Decision Making in Sensory-Motor Systems, 1st ed. Springer
Publishing Company, Incorporated, 2008.

[27] F. Colas, J. Diard, and P. Bessière, “Common Bayesian Models for
Common Cognitive Issues,” Acta Biotheoretica, vol. 58, pp. 191–216,
2010.

[28] R. Le Hy, A. Arrigoni, P. Bessière, and O. Lebeltel, “Teaching
Bayesian behaviours to video game characters,” Robotics and Au-
tonomous Systems, vol. 47, pp. 177–185, 2004.

[29] G. Synnaeve and P. Bessière, “Bayesian Modeling of a Human
MMORPG Player,” in 30th international workshop on Bayesian In-
ference and Maximum Entropy, Chamonix, France, Jul. 2010.

