PROBABILISTIC MODELS

 OF
SENSORY-MOTOR SYSTEMS

PIERRE BESSIÈRE, GABRIEL SYNNAEVE
E-MOTION TEAM AT INRIA GRENOBLE
CNRS - LPPA - COLLĖGE DE FRANCE

BAYESIAN-PROGRAMMING.ORG

INTELLIGENCE

WHO IS THE MOST CLEVER?

BARON WOLFGANG VON KEMPELEN (1769)

OVERVIEW

- How TO SURVIVE (PERCEIVE, REASON, LEARN, DECIDE AND ACT) WITH INCOMPLETE INFORMATION?
- PROBABILITY AS AN ALTERNATIVE TO LOGIC
- HOW TO DEVELOP BETTER ARTIFACTS USING BAYESIAN REASONING?
- BIOLOGICAL PLAUSIBILITY OF BAYESIAN REASONING AT A MACROSCOPIC LEVEL?
- BIOLOGICAL PLAUSIBILITY OF BAYESIAN REASONING AT A MICROSCOPIC LEVEL?

OVERVIEW

- HOW TO SURVIVE (PERCEIVE, REASON, LEARN, DECIDE AND ACT) WITH INCOMPLETE INFORMATION?
- PROBABILITY AS AN ALTERNATIVE TO LOGIC
- HOW TO DEVELOP BETTER ARTIFACTS USING BAYESIAN REASONING?
- BIOLOGICAL PLAUSIBILITY OF BAYESIAN REASONING AT A MACROSCOPIC LEVEL?
- BIOLOGICAL PLAUSIBILITY OF BAYESIAN REASONING AT A MICROSCOPIC LEVEL?

ProbABILITY
 AS ALTERNATIVE TO LOGIC

UNCERTAINTY IS NOT IN THINGS BUT IN OUR HEAD: UNCERTAINTY IS A LACK OF KNOWLEDGE.
JACOB BERNOUILLI, ARS CONJECTANDI (BERNOUILI, 1713)

PROBABILITY THEORY IS NOTHING ELSE THAN COMMON SENSE MADE CALCULUS.

MARQUIS PIERRE-SIMON DE LAPLACE, THÉORIE ANALYTIQUE DES PROBABILITÉS (LAPLACE 1812)

THE ACTUAL SCIENCE OF LOGIC IS CONVERSANT AT PRESENT ONLY WITH THINGS EITHER CERTAIN, IMPOSSIBLE, OR ENTIRELY DOUBTFUL, NONE OF WHICH (FORTUNATELY) WE HAVE TO REASON ON. THEREFORE THE TRUE LOGIC FOR THIS WORLD IS THE CALCULUS OF PROBABILITIES, WHICH TAKES ACCOUNT OF THE MAGNITUDE OF THE PROBABILITY WHICH IS, OR OUGHT TO BE, IN A REASONABLE MAN'S MIND .
JAMES CLERK MAXWELL (1850)

PROBABILITY AS ALTERNATIVE TO LOGIC

RANDOMNESS IS JUST THE MEASURE OF OUR IGNORANCE.
TO UNDERTAKE ANY PROBABILITY CALCULATION, AND EVEN FOR THIS
CALCULATION TO HAVE A MEANING, WE HAVE TO ADMIT, AS A STARTING POINT, AN HYPOTHESIS OR A CONVENTION, THAT ALWAYS COMPRISES A CERTAIN
AMOUNT OF ARBITRARINESS. IN THE CHOICE OF THIS CONVENTION, WE CAN BE GUIDED ONLY BY THE PRINCIPLE OF SUFFICIENT REASON.
FROM THIS POINT OF VIEW, EVERYTHING IN SCIENCE WOULD JUST BE UNCONSCIOUS APPLICATIONS OF THE CALCULUS OF PROBABILITIES.
CONDEMNING THIS CALCULUS WOULD BE CONDEMNING THE WHOLE SCIENCE.
HENRI POINCARÉ, LA SCIENCE ET L'HYPOTHÈSE (POINCARÉ, 1902)

BY INFERENCE WE MEAN SIMPLY: DEDUCTIVE REASONING WHENEVER ENOUGH INFORMATION IS AT HAND TO PERMIT IT; INDUCTIVE OR PROBABILISTIC REASONING WHEN - AS IS ALMOST INVARIABLY THE CASE IN REAL PROBLEMS ALL THE NECESSARY INFORMATION IS NOT AVAILABLE. THUS THE TOPIC OF « PROBABILITY AS LOGIC »IS THE OPTIMAL PROCESSING OF UNCERTAIN AND INCOMPLETE KNOWLEDGE.
E.T. JAYNES, PROBABILITY THEORY THEORY: THE LOGIC OF SCIENCE (JAYNES, 2003)

INCOMPLETENESS

PROBABILITY AS AN ALTERNATIVE TO LOGIC

INCOMPLETENESS
PRELIMINARY KNOWLEDGE $+$
EXPERIMENTAL DATA =
PROBABILISTIC REPRESENTATION
UNCERTAINTY

PROBABILITY AS AN ALTERNATIVE TO LOGIC

INCOMPLETENESS

PRELIMINARY KNOWLEDGE
LEARNING
EXPERIMENTAL DATA =
PROBABILISTIC REPRESENTATION
UnCERTAINTY

BAYESIAN INFERENCE

$$
\begin{gathered}
P(a)+P(\neg a)=1 \\
\begin{aligned}
P(a \wedge b) & =P(a) \times P(b \mid a) \\
& =P(b) \times P(a \mid b)
\end{aligned}
\end{gathered}
$$

DECISION

Bayesian Programming \& PROBT®

BAYESIAN PROGRAMMING \& PROBT®

BAYESIAN PROGRAMMING \& PROBT®

BAYESIAN PROGRAMMING \& ProbT®

PROBAYES.COM
BAYESIAN-PROGRAMMING.ORG

BAYESIAN PROGRAMMING
 RELATED FORMALISMS

OVERVIEW

- HOW TO SURVIVE (PERCEIVE, REASON, LEARN, DECIDE AND ACT) WITH INCOMPLETE INFORMATION?
- Probability as an allternative to logic
- HOW TO DEVELOP BETTER ARTIFACTS USING BAYESIAN REASONING?
- BIOLOGICAL PLAUSIBILITY OF BAYESIAN REASONING AT A MACROSCOPIC LEVEL?
- BIOLOGICAL PLAUSIBILITY OF BAYESIAN REASONING AT A MICROSCOPIC LEVEL?

OLIVIER LEBELTEL's PH.D

CARLA KOIKE's Ph.D

KAMEL MEKHNACHA'S PH.D

RUBEN GARCIA's Ph.D

RONAN LE HY's Ph.D

Bayesian Occupancy Filter (BOF') FOR AVANCED DRIVER ASSIST. SYST.

- Take uncertainty into account explicitly
- No "data association problem"
- Robustness to object occlusions/disappearances
- Can be implemented on dedicated hardware (GPU or even DSP)

PHD THESIS OF
CHRISTOPHE COUÉ

Coué, C., Pradalier, C., Laugier, C., Fraichard, T. \&
Bessière, P. (2006) Bayesian Programming multi-target
tracking: an automotive application; IJRR (International
Journal of Robotic Research); Vol. 25, № 1, pp. 19-30

Coué, C. (2003) Fusion d'information capteur pour l'aide à
la conduite automobile; PhD thesis, INPG

1 SENSOR - 1 OBJECT

1 SENSOR - 1 OBJECT

1 SENSOR - 1 OBJECT

$$
z=(5,2,0,0)
$$

$$
\begin{gathered}
\mathrm{P}\left(\left[E_{c}=1\right] \mid z c\right) \\
c=[x, y, 0,0]
\end{gathered}
$$

1 SENSOR - 1 OBJECT

$$
\begin{gathered}
\mathrm{P}\left(\left[E_{c}=1\right] \mid z c\right) \\
c=[x, y, 0,0]
\end{gathered}
$$

1 SENSOR - 1 OBJECT

- Occupied space

$$
\begin{gathered}
\mathrm{P}\left(\left[E_{c}=1\right] \mid z c\right) \\
c=[x, y, 0,0]
\end{gathered}
$$

1 SENSOR - 1 OBJECT

- Occupied space

$$
\begin{gathered}
\mathrm{P}\left(\left[E_{c}=1\right] \mid z c\right) \\
c=[x, y, 0,0]
\end{gathered}
$$

1 SENSOR - 1 OBJECT

- Occupied space
- Free space

$$
\begin{gathered}
\mathrm{P}\left(\left[E_{c}=1\right] \mid z c\right) \\
c=[x, y, 0,0]
\end{gathered}
$$

1 SENSOR - 1 OBJECT

- Occupied space
- Free space

$$
\begin{gathered}
\mathrm{P}\left(\left[E_{c}=1\right] \mid z c\right) \\
c=[x, y, 0,0]
\end{gathered}
$$

1 SENSOR - 1 OBJECT

- Occupied space
- Free space
- Nonobservable space

$$
\begin{gathered}
\mathrm{P}\left(\left[E_{c}=1\right] \mid z c\right) \\
c=[x, y, 0,0]
\end{gathered}
$$

1 SENSOR - 1 OBJECT

- Occupied space
- Free space
- Nonobservable space

$$
\begin{gathered}
\mathrm{P}\left(\left[E_{c}=1\right] \mid z c\right) \\
c=[x, y, 0,0]
\end{gathered}
$$

1 SENSOR - 1 OBJECT

- Occupied space
- Free space
- Nonobservable space
- Occultated space

$$
\begin{gathered}
\mathrm{P}\left(\left[E_{c}=1\right] \mid z c\right) \\
c=[x, y, 0,0]
\end{gathered}
$$

1 SENSOR - 1 OBJECT

- Occupied space
- Free space
- Nonobservable space
- Occultated space

$$
\begin{gathered}
\mathrm{P}\left(\left[E_{c}=1\right] \mid z c\right) \\
c=[x, y, 0,0]
\end{gathered}
$$

1 SENSOR - MULTIPLE TARGET

1 SENSOR - MULTIPLE TARGET

1 SENSOR - MULTIPLE TARGET

$$
\begin{aligned}
& z_{1}=(8.3,-4,0,0) \\
& z_{2}=(7.3,1.9,0,0.8) \\
& z_{3}=(5,3,0,0)
\end{aligned}
$$

$$
\begin{gathered}
\mathrm{P}\left(\left[E_{c}=1\right] \mid z_{1} z_{2} z_{3} c\right) \\
c=[x, y, 0,0]
\end{gathered}
$$

2 SENSOR - 3 TARGETS

2 SENSOR - 3 TARGETS

2 SENSOR - 3 TARGETS

$$
\begin{array}{ll}
z_{1, l}=(5.5,-4,0,0) & z_{1,2}=(5.5,1,0,0) \\
z_{2,1}=(11,-1,0,0) & z_{2,2}=(5.4,1.1,0,0)
\end{array}
$$

2 SENSOR - 3 TARGETS

$z_{1,1}=(5.5,-4,0,0) \quad z_{1,2}=(5.5,1,0,0)$
$z_{2,1}=(11,-1,0,0) \quad z_{2,2}=(5.4,1.1,0,0)$

$\mathrm{P}\left(\left[E_{c}=1\right] \mid z_{l, l} z_{1,2} z_{2,1} z_{2,2} c\right)$
$c=[x, y, 0,0]$

$$
c=[x, y, 0,0]
$$

BAYESIAN FiLter

Program

BAYESIAN FILTER

$$
\begin{aligned}
& \bar{\circ} \\
& \stackrel{0}{5} \\
& 0 \\
& \frac{0}{3}
\end{aligned}
$$

BAYESIAN FILTER

BAYESIAN FILTER

BAYESIAN FILTER

BAYESIAN FILTER

BAYESIAN FILTER

Specification

- Variables

$$
S^{0}, \ldots \ldots, S^{t}, O^{0}, \ldots \ldots, O^{t}
$$

- Decomposition (Conditional Independance Hypothesis)

$$
\mathbf{P}\left(S^{0} \wedge \ldots \ldots \wedge S^{t} \wedge O^{0} \wedge \ldots \ldots \wedge O^{t}\right)=\mathbf{P}\left(S^{0}\right) \times \mathbf{P}\left(O^{0} \mid S^{0}\right) \times \prod_{i=2}^{t}\left[\mathbf{P}\left(S^{i} \mid S^{i-1}\right) \times \mathbf{P}\left(O^{i} \mid S^{i}\right)\right]
$$

Program
 Identification

BAYESIAN FILTER

Specification

- Variables

$$
S^{0}, \ldots \ldots, S^{t}, O^{0}, \ldots \ldots, O^{t}
$$

- Decomposition (Conditional Independance Hypothesis)

$$
\mathbf{P}\left(S^{0} \wedge \ldots \ldots \wedge S^{t} \wedge O^{0} \wedge \ldots \ldots \wedge O^{t}\right)=\mathbf{P}\left(S^{0}\right) \times \mathbf{P}\left(O^{0} \mid S^{0}\right) \times \prod_{i=2}^{t}\left[\mathbf{P}\left(S^{i} \mid S^{i-1}\right) \times \mathbf{P}\left(O^{i} \mid S^{i}\right)\right]
$$

	$\stackrel{0}{\square}$ $\stackrel{1}{0}$ $\stackrel{y}{\omega}$ 0 0 0	- Parametric or Bayesia Identification

BAYESIAN FILTER

Specification

- Variables

$$
S^{0}, \ldots \ldots, S^{t}, O^{0}, \ldots \ldots, O^{t}
$$

- Decomposition (Conditional Independance Hypothesis)

$$
\mathbf{P}\left(S^{0} \wedge \ldots \ldots \wedge S^{t} \wedge O^{0} \wedge \ldots \ldots \wedge O^{t}\right)=\mathbf{P}\left(S^{0}\right) \times \mathbf{P}\left(O^{0} \mid S^{0}\right) \times \prod_{i=2}^{t}\left[\mathbf{P}\left(S^{i} \mid S^{i-1}\right) \times \mathbf{P}\left(O^{i} \mid S^{i}\right)\right]
$$

Program
 - Parametric Forms

or Bayesian Subroutines

$$
\begin{aligned}
& \mathbf{P}\left(S^{0}\right) \equiv \mathbf{G}\left(S^{0}, \mu, \sigma\right) \\
& \mathbf{P}\left(S^{i} \mid S^{i-1}\right) \equiv \mathbf{G}\left(S^{i}, A \cdot S^{i-1}, Q\right) \\
& \mathbf{P}\left(O^{i} \mid S^{i}\right) \equiv \mathbf{G}\left(O^{i}, H \cdot S^{i}, R\right)
\end{aligned}
$$

BAYESIAN FILTER

Specification

- Variables

$$
S^{0}, \ldots \ldots, S^{t}, O^{0}, \ldots \ldots, O^{t}
$$

- Decomposition (Conditional Independance Hypothesis)
$\mathbf{P}\left(S^{0} \wedge \ldots \ldots \wedge S^{t} \wedge O^{0} \wedge \ldots \ldots \wedge O^{t}\right)=\mathbf{P}\left(S^{0}\right) \times \mathbf{P}\left(O^{0} \mid S^{0}\right) \times \prod_{i=2}^{t}\left[\mathbf{P}\left(S^{i} \mid S^{i-1}\right) \times \mathbf{P}\left(O^{i} \mid S^{i}\right)\right]$

BAYESIAN FILTER

Specification

- Variables

$$
S^{0}, \ldots \ldots, S^{t}, O^{0}, \ldots \ldots, O^{t}
$$

- Decomposition (Conditional Independance Hypothesis)
$\mathbf{P}\left(S^{0} \wedge \ldots \ldots \wedge S^{t} \wedge O^{0} \wedge \ldots \ldots \wedge O^{t}\right)=\mathbf{P}\left(S^{0}\right) \times \mathbf{P}\left(O^{0} \mid S^{0}\right) \times \prod_{i=2}^{t}\left[\mathbf{P}\left(S^{i} \mid S^{i-1}\right) \times \mathbf{P}\left(O^{i} \mid S^{i}\right)\right]$

- Learning from instances
$\mathbf{P}\left(S^{t} \mid O^{0} \wedge \ldots \ldots . \wedge O^{t}\right)$

BAYESIAN FILTER

$$
P\left(S^{\prime} \mid O^{0,-1}\right)=\sum_{2=1}\left[P\left(S^{\prime} \mid S^{-1-1}\right) \times P\left(S^{-1-1} \mid O^{0,-1}\right)\right]
$$

$$
P\left(S^{\prime} \mid O^{o \prime \prime}\right)=P\left(O^{\prime} \mid S^{\prime}\right) \times P\left(S^{\prime} \mid O^{o 0^{\prime-1}}\right)
$$

BAYESIAN Filter

BAYESIAN FiLter

WIthout vs with filtering

(VIDEOS)

REAL TIME FILTERING

REAL TIME FILTERING

OVERVIEW

- HOW TO SURVIVE (PERCEIVE, REASON, LEARN, DECIDE AND ACT) WITH INCOMPLETE INFORMATION?
- PROBABILITY AS AN ALLTERNATIVE TO LOGIC
- HOW TO DEVELOP BETTER ARTIFACTS USING BAYESIAN REASONING?
- BIOLOGICAL PLAUSIBILITY OF BAYESIAN REASONING AT A MACROSCOPIC LEVEL?
- BIOLOGICAL PLAUSIBILITY OF BAYESIAN REASONING AT A MICROSCOPIC LEVEL?

MODELING BEHAVIORS

PhD Jihene Serkhane

PhD Francis Colas

PhD C. Moulin-Frier

PostDoc Francis Colas

Bayesian Action Perception:

HANDWRITING EXPERIMENTS

Ph.D Estelle Gilet

Gilet E, Diard J, Bessière P, 2011 Bayesian Action-Perception Computational Model: Interaction of Production and Recognition of Cursive Letters.PLoS ONE 6(6): e20387. doi:10.1371/journal.pone. 0020387

TRINRIA

```
INSTITUT NATIONAL
```

INSTITUT NATIONAL
DE GECHERGHE
DE GECHERGHE
EN IMFORMATIQUE
EN IMFORMATIQUE
ET EN AUTOMATIQUE
DE RECHERCHE

```
    DE RECHERCHE
```


MOTOR EQUIVALENCE?

MOTOR EQUIVALENCE?

- Alk was A se a saw Elba
- Able waste ere \& saw Elba
- Able was a ere \& saw Elba
- Ale was surely saw Elba
- Writer "style" $>$ [Wright90]
- Common activated motor areas
$>$ [Wing00]
- asl words ere st saw Elba
[Serratrice93]

SIMULATION OF ACTION DURING PERCEPTION?

READING

- OCR
$>$ [Meulenbroek96]
$>$ [Flash95]
- Human models
$>$ [Crettez98]
$>$ [Vuori02]
$>$ [Dehaene07]

Writing

- [Hinton05]
 - [Meulenbroek96]
 - [Flash95]

BAP MODEL

FROM MOTOR PERCEPTION THEORY
TO BAYESIAN ACTION PERCEPTION

FROM MOTOR PERCEPTION THEOR to BAYESIAN ACtIon Perception

Motor perception theory [Liberman57]

Perception for action control theory
[Schwartz01]

A COMMON SPACE FOR MOTOR AND PERCEPTION INTERNAL REPRESENTATION

COMMON FEATURES FOR BOTH REPRESENTATIONS

$$
\frac{d x}{d t}(t)=0 \quad \vee \quad \frac{d y}{d t}(t)=0
$$

Here come the probabilities

LEARNING SUCCESSION OF CONTROL POINTS

$$
P\left(C_{L x}^{3} \mid\left[C_{L x}^{2}=15\right][L=\nearrow][W=\text { Julienne }]\right)=\frac{p_{i}+\alpha}{N+k \alpha} .
$$

LEARNING SUCCESSION OF CONTROL POINTS

$$
\begin{equation*}
P\left(C_{L x}^{3} \mid C_{L x}^{2}[L=I][W=\text { Julienne }]\right) \tag{2}
\end{equation*}
$$

LEARNING SUCCESSION OF CONTROL POINTS

$$
\begin{equation*}
P\left(C_{L x}^{3} \mid C_{L x}^{2}[L=I][W=\text { Julienne }]\right) \tag{2}
\end{equation*}
$$

LEARNING SUCCESSION OF CONTROL POINTS

$$
\begin{equation*}
P\left(C_{L x}^{3} \mid C_{L x}^{2}[L=I][W=\text { Julienne }]\right) \tag{2}
\end{equation*}
$$

LEARNING SUCCESSION OF CONTROL POINTS

$$
\begin{equation*}
P\left(C_{L x}^{3} \mid C_{L x}^{2}[L=I][W=\text { Julienne }]\right) \tag{2}
\end{equation*}
$$

LEARNING SUCCESSION OF CONTROL POINTS

$$
\begin{equation*}
P\left(C_{L x}^{3} \mid C_{L x}^{2}[L=I][W=\text { Julienne }]\right) \tag{2}
\end{equation*}
$$

BAP MODEL

BAP MODEL

BAP MODEL

BAP MODEL

$$
P\left(\begin{array}{l|l|l|l|l|l|l|l|l|l}
\hline C_{L V} & C_{L P} & C_{L S} & C_{V} & \lambda_{P} & \lambda_{V} & \lambda_{s} & \lambda_{I} & E \\
\hline C_{P} & C_{S} & V & P & L & W & S & & & \\
\end{array}\right)
$$

BAP MODEL

BAP MODEL

$$
P\left(\begin{array}{l|l|l|l|l|l|l|l|l|l}
\hline C_{L V} & C_{L P} & C_{L S} & C_{V} & \lambda_{P} & \lambda_{V} & \lambda_{s} & \lambda_{I} & E \\
\hline C_{P} & C_{S} & V & P & L & W & S & & & \\
\end{array}\right)
$$

LETTER RECOGNITION

 KNOWING THE SCRIPTER$$
P\left(L \mid\left[V_{x}^{0: M}=v_{x}^{0: M}\right]\left[V_{Y}^{0: M}=v_{y}^{0: M}\right][W=w]\left[\lambda_{V}=1\right]\right)
$$

LETTER RECOGNITION

KNOWING THE SCRIPTER

$$
\begin{aligned}
& P\left(L \mid\left[V_{X}^{0: M}=v_{x}^{0: M}\right]\left[V_{Y}^{0: M}=v_{y}^{0: M}\right][W=w]\left[\lambda_{V}=1\right]\right) \\
& \propto\left(\begin{array}{l}
P\left(\left[C_{L V_{x}}^{0}=f\left(v_{x}^{0: M}, v_{y}^{0: M}\right)\right] \mid L[W=w]\right) \\
P\left(\left[C_{L V_{y}}^{0}=f\left(v_{x}^{0: M}, v_{y}^{00} M\right)\right] \mid L[W=w]\right) \\
P\left(\left[C_{L V \dot{x}}^{0}=f\left(v_{x}^{0: M}, v_{y}^{0 . M}\right)\right] \mid L[W=w]\right) \\
P\left(\left[C_{L V \dot{y}}^{0}=f\left(v_{x}^{0: M}, v_{y}^{0} M\right)\right] \mid L[W=w]\right)
\end{array}\right)
\end{aligned}
$$

LETTER RECOGNITION

KNOWING THE SCRIPTER

	a	b	c	d	e	f	5	h	k	1	m	n	a	p	4	I	a	u	v	w	y	\pm	a
a	0.96	0	0	D	D	1	0	0	D	D	I)	I)	0	0	D	10	I)	0	0	0	0	D	0.05
b	0	0.72	0	0	0.05	0	0	0.12	0.03	0.05	0	0	0	0	0	0	0	0	0	0	0	0	0.03
c	0	0	0.92	0	0	0	0	0	0	0	0	0	0.08	0	0	0	0	0	0	0	0	0	0.03
d	0.03	0	0	0.94	0	0	0	0	0	0	0	0	0	0	0.03	0	0	0	0	0	0	0	0
e	0	0	0	D	0.87	0	0	0	D	D	0	0	0	0	D	0.10	0	0	0	0	0	0	0.03
1	0	0	0	0	D	0.87	0	0.03	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$\underline{1}$	0	0	0	0	0	0	0.80	0	0	0	0	0	0	0	0.10	0	0	0	0	0	0	0	0
h	0	0.03	0	0	0	0.03	0	0.91	0	0.03	0	0	0	0	0	0	0	0	0	0	0	0	0
k	0	0	0	D	0	0	0	0	0.97	0.08	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0.10	0	0	D	0	0	0.08	D	0.82	0	10	0	0	0	0	0	0	0	0	0	D	0
m	0	0	0	0	0	0	0	0	0	0	0.97	0	0	0	0	0	0	0	0	0.03	0	0	0
n	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	$\overline{0}$	0	0	0	0	0
\bigcirc	0	0	0	D	D	0	0	0	D	0	0	0	1	0	0	0	10	0	0	0	0	0	0
p	0	0	0	0	0	0	0	0	D	0	0	0	0	0.94	0	0	0.03	0	0	0	0	D	0.03
9	0	0	0	0	0	0	0.15	0	0	0	0	0	0	0	0.85	0	0	0	0	0	0	0	0
I	0	0	0	0	0	0	0	0	0	0	0	0.03	0	0.03	0	0.86	0	0.05	0.08	0	0	0	0
a	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
u	0	0	0	0	0	0	0	0	D	0	0	0	0	0	0	0	0	1	0	0	0	D	0
v	0	0	0	D	D	0	0	0	0	D	0	0	0	0	D	0	0	0	1	0	0	D	0
w	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
y	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
x	0	0	0	D	D	0	0	0	D	D	0	0	0	0	D	0	0	0	0	0	0	0.95	0.05

93,36\%

SCRIPTER RECOGNITION KNOWING THE LETTER

$$
P\left(W \mid\left[V_{X}^{0: M}=v_{x}^{0: M}\right]\left[V_{Y}^{0: M}=v_{y}^{0: M}\right][L=l]\left[\lambda_{V}=1\right]\right)
$$

	Estelle	Julienne	Jean-Louis	Christophe
Estelle	0.76	0.03	0.07	0.14
Julienne	0.02	0.80	0.07	0.11
Jean-Louis	0	0	1	0
Christophe	0.10	0.14	0.13	0.62

79,5\%

MOTOR CONTROL

$$
P\left(\ddot{\theta}_{1}^{0: T} \ddot{\theta}_{2}^{0: T} \mid[L=I][W=w]\left[\lambda_{P}=1\right]\right)
$$

MOTOR CONTROL

INTER SCRIPTER VARIABILITY

$$
\begin{array}{rr}
P\left(\ddot{\theta}_{1}^{0: T} \ddot{\theta}_{2}^{0: T} \mid[L=l][W=w]\left[\lambda_{P}=1\right]\right) \\
\text { Estelle } & \text { Christophe }
\end{array}
$$

MOTOR EQUIVALENCE

MOTOR EQUIVALENCE

$$
W=\text { Estelle } \quad W=\text { Christophe } \quad W=\text { Julienne }
$$

Bras simulé

Bras robotique

Robot holonome

COPY

$P\left(\ddot{\theta}_{1}^{00 T} \ddot{\theta}_{2}^{0: T} \mid V_{x}^{0: M} v_{y}^{0: M}\left[\lambda_{v}=1\right]\left[\lambda_{I}=1\right]\left[\lambda_{P}=1\right]\right)$

$$
P\left(\ddot{\theta}_{1}^{0 \cdot T} \ddot{\theta}_{2}^{0 \cdot T} \mid V_{x}^{0: M} V_{y}^{0 \cdot M}\left[\lambda_{v}=1\right]\left[\lambda_{p}=1\right][W=w]\right)
$$

Trace copy

LETTER RECOGNITION WITH MOTOR SIMULATION

$$
P\left(L \mid\left[V_{\boldsymbol{x}}^{0: M}=v_{\boldsymbol{x}}^{0: M}\right]\left[V_{\boldsymbol{Y}}^{0: M}=v_{\boldsymbol{y}}^{0: M}\right][W=w]\left[\lambda_{\boldsymbol{V}}=1\right]\left[\lambda_{L}=1\right]\left[\lambda_{P}=1\right]\left[\lambda_{\boldsymbol{S}}=1\right]\right)
$$

LETTER RECOGNITION WITH MOTOR SIMULATION

LETTER RECOGNITION WITH MOTOR SIMULATION

LETTER RECOGNITION WITH MOTOR SIMULATION

RESULTS

			f	g	h	k	I	m	n	0	p	q	r
	11	With motor simulation	0	0	0	0	0	0	0	0	0	1	0
∞	-	Without motor simulation	0	0.9	0	0	0	0	0	0	0	0.1	0
12		Extracts of the the reading task when presente doi:10.1371/jou	rob with wit al.	ility (top the t ne. 00		utio and ed 7.t00	s ith sho	lett (b n Fig	$\begin{aligned} & \mathrm{rs}, \\ & \text { ton } \\ & 23 \end{aligned}$	row	moto	solutior simu	ons to ation,

PERSPECTIVES

SPEECH? (PH.D IN PROGRESS)

OVERVIEW

- HOW TO SURVIVE (PERCEIVE, REASON, LEARN, DECIDE AND ACT) WITH INCOMPLETE INFORMATION?
- Probability as an allternative To Locic
- HOW TO DEVELOP BETTER ARTIFACTS USING BAYESIAN REASONING?
- BIOLOGICAL PLAUSIBILITY OF BAYESIAN REASONING AT A MACROSCOPIC LEVEL?
- BIOLOGICAL PLAUSIBILITY OF BAYESIAN REASONING AT A MICROSCOPIC LEVEL?

Amoeba

HOW IS IT PERFORMING PROBABILISTIC INFERENCE?

Amoeba

HOW IS IT PERFORMING PROBABILISTIC INFERENCE?

CELL SIGNALING

8 ALLOSTERIC STATES 2 MESSENGERS

$$
\begin{aligned}
& \mathrm{S}_{000}+\mathrm{M}_{1} \rightarrow \mathrm{~S}_{1005} \cdot \mathrm{P}_{000} \rightarrow 100 \\
& \mathrm{~S}_{000}+\mathrm{M}_{2} \rightarrow \mathrm{~S}_{010} \cdot \mathrm{P}_{0000} \rightarrow 010 \\
& \mathrm{~S}_{010}+\mathrm{M}_{1} \rightarrow \mathrm{~S}_{110} \cdot \mathrm{P}_{010 \rightarrow 110} \\
& \mathrm{~S}_{100}+\mathrm{M}_{2} \rightarrow \mathrm{~S}_{110} \cdot \mathrm{P}_{100 \rightarrow 110} \\
& \mathrm{~S}_{001}+\mathrm{M}_{1} \rightarrow \mathrm{~S}_{1011} \cdot \mathrm{P}_{0001} \rightarrow 101 \\
& \mathrm{~S}_{001}+\mathrm{M}_{2} \rightarrow \mathrm{~S}_{011} \cdot \mathrm{P}_{001 \rightarrow 011} \\
& \mathrm{~S}_{011}+\mathrm{M}_{1} \rightarrow \mathrm{~S}_{111} \cdot \mathrm{P}_{011 \rightarrow 111} \\
& \mathrm{~S}_{101}+\mathrm{M}_{2} \rightarrow \mathrm{~S}_{111} \cdot \mathrm{P}_{101} \rightarrow 111 \\
& \mathrm{~S}_{000} \rightarrow \mathrm{~S}_{001} \cdot \mathrm{P}_{000} \rightarrow 001 \\
& S_{010} \rightarrow S_{011} \cdot P_{010 \rightarrow 011} \\
& \mathrm{~S}_{100} \rightarrow \mathrm{~S}_{101} \cdot \mathrm{P}_{100} \rightarrow 101 \\
& \mathrm{~S}_{110} \rightarrow \mathrm{~S}_{111} \cdot \mathrm{P}_{100 \rightarrow} \rightarrow \mathrm{III} \\
& \mathrm{~S}_{100} \rightarrow \mathrm{~S}_{0000}+\mathrm{M}_{1} \cdot \mathrm{P}_{100 \rightarrow \infty} \\
& \mathrm{~S}_{010} \rightarrow \mathrm{~S}_{000}+\mathrm{M}_{2} \cdot \mathrm{P}_{010 \rightarrow \infty} \\
& \mathrm{~S}_{110} \rightarrow \mathrm{~S}_{010}+\mathrm{M}_{1} \cdot \mathrm{P}_{110 \rightarrow 010} \\
& \mathrm{~S}_{110} \rightarrow \mathrm{~S}_{100}+\mathrm{M}_{2} \cdot \mathrm{p}_{110 \rightarrow 100} \\
& \mathrm{~S}_{101} \rightarrow \mathrm{~S}_{001}+\mathrm{M}_{1} \cdot \mathrm{P}_{101} \rightarrow \infty \\
& \mathrm{~S}_{011} \rightarrow \mathrm{~S}_{001}+\mathrm{M}_{2}, \mathrm{P}_{011} \rightarrow \infty \\
& \mathrm{~S}_{111} \rightarrow \mathrm{~S}_{011}+\mathrm{M}_{1} \cdot \mathrm{p}_{111} \rightarrow 011 \\
& \mathrm{~S}_{111} \rightarrow \mathrm{~S}_{101}+\mathrm{M}_{2} \cdot \mathrm{P}_{111 \rightarrow 101} \\
& \mathrm{~S}_{001} \rightarrow \mathrm{~S}_{0000} \mathrm{P}_{0001 \rightarrow 000} \\
& \mathrm{~S}_{011} \rightarrow \mathrm{~S}_{010} \mathrm{P}_{011 \rightarrow 010} \\
& \mathrm{~S}_{101} \rightarrow \mathrm{~S}_{1000} \mathrm{P}_{101 \rightarrow 100} \\
& \mathrm{~S}_{111} \rightarrow \mathrm{~S}_{110} \mathrm{P}_{111} \rightarrow 110
\end{aligned}
$$

8 ALLOSTERIC STATES 2 MESSENGERS

$$
\begin{gathered}
P\left(\left[\Omega_{1}=0\right] \wedge\left[\Omega_{2}=0\right] \wedge\left[\Omega_{3}=0\right]\right)=\frac{1}{\mathrm{D}} \\
P\left(\left[\Omega_{1}=0\right] \wedge\left[\Omega_{2}=1\right] \wedge\left[\Omega_{3}=0\right]\right)=\frac{\mathbf{k}_{000 \rightarrow \rightarrow 010} \times m_{2}}{\mathrm{D}} \\
P\left(\left[\Omega_{1}=1\right] \wedge\left[\Omega_{2}=0\right] \wedge\left[\Omega_{3}=0\right]\right)=\frac{\mathbf{k}_{000 \rightarrow \rightarrow 100} \times m_{1}}{\mathrm{D}} \\
P\left(\left[\Omega_{1}=1\right] \wedge\left[\Omega_{2}=1\right] \wedge\left[\Omega_{3}=0\right]\right)=\frac{\mathbf{k}_{000 \rightarrow 010} \times \mathbf{k}_{010 \rightarrow 110} \times \mathrm{m}_{1} \times m_{2}}{\mathrm{D}} \\
P\left(\left[\Omega_{1}=0\right] \wedge\left[\Omega_{2}=0\right] \wedge\left[\Omega_{3}=1\right]\right)=\frac{\mathbf{k}_{000 \rightarrow 001}}{\mathrm{D}} \\
P\left(\left[\Omega_{1}=0\right] \wedge\left[\Omega_{2}=1\right] \wedge\left[\Omega_{3}=1\right]\right)=\frac{\mathbf{k}_{000 \rightarrow 010} \times \mathbf{k}_{010 \rightarrow 011} \times m_{2}}{\mathrm{D}} \\
P\left(\left[\Omega_{1}=1\right] \wedge\left[\Omega_{2}=0\right] \wedge\left[\Omega_{3}=1\right]\right)=\frac{\mathbf{k}_{000 \rightarrow 100} \times \mathbf{k}_{100 \rightarrow 101} \times m_{1}}{\mathrm{D}} \\
P\left(\left[\Omega_{1}=1\right] \wedge\left[\Omega_{2}=1\right] \wedge\left[\Omega_{3}=1\right]\right)=\frac{k_{000 \rightarrow 010} \times k_{010 \rightarrow 110} \times \mathbf{k}_{110 \rightarrow 111} \times m_{1} \times m_{2}}{\mathrm{D}}
\end{gathered}
$$

8 ALLOSTERIC STATES 2 MESSENGERS

$$
\mathrm{O}\left(\left[\Omega_{3}\right]\right)=\frac{\binom{\mathrm{k}_{000 \rightarrow 001}+\mathrm{k}_{000 \rightarrow 100} \times \mathrm{k}_{100 \rightarrow 101} \times \mathrm{m}_{1}}{+\mathrm{k}_{000 \rightarrow 010} \times \mathrm{k}_{010 \rightarrow 011} \times \mathrm{m}_{2}+\mathrm{k}_{000 \rightarrow 010} \times \mathrm{k}_{010 \rightarrow 110} \times \mathrm{k}_{110 \rightarrow 111} \times \mathrm{m}_{1} \times \mathrm{m}_{2}}}{1+\mathrm{k}_{000 \rightarrow 100} \times \mathrm{m}_{1}+\mathrm{k}_{000 \rightarrow 010} \times \mathrm{m}_{2}+\mathrm{k}_{000 \rightarrow 010} \times \mathrm{k}_{010 \rightarrow 110} \times \mathrm{m}_{1} \times \mathrm{m}_{2}}
$$

BAYESIAN GATE

$$
\begin{aligned}
& \Sigma=\frac{P([S=1] \mid \phi 1 \phi 2[\lambda 1=1][\lambda 2=1])}{P([S=0] \mid \phi 1 \phi 2[\lambda 1=1][\lambda 2=1])} \\
& =\frac{P([f 1=0][f 2=0][S=1])+P(011) \phi 2+P(101) \phi 1+P(111) \phi 1 \phi 2}{P(000)+P(010) \phi 2+P(100) \phi 1+P(110) \phi 1 \phi 2}
\end{aligned}
$$

BAYESIAN GATE

$$
\mathrm{O}\left(\left[\Omega_{3}\right]\right)=\frac{\binom{\mathrm{k}_{000 \rightarrow 001}+\mathrm{k}_{000 \rightarrow 100} \times \mathrm{k}_{100 \rightarrow 101} \times \mathrm{m}_{1}}{+\mathrm{k}_{000 \rightarrow 010} \times \mathrm{k}_{010 \rightarrow 011} \times \mathrm{m}_{2}+\mathrm{k}_{000 \rightarrow 010} \times \mathrm{k}_{010 \rightarrow 110} \times \mathrm{k}_{110 \rightarrow 111} \times \mathrm{m}_{1} \times \mathrm{m}_{2}}}{1+\mathrm{k}_{000 \rightarrow 100} \times \mathrm{m}_{1}+\mathrm{k}_{000 \rightarrow 010} \times \mathrm{m}_{2}+\mathrm{k}_{000 \rightarrow 010} \times \mathrm{k}_{010 \rightarrow 110} \times \mathrm{m}_{1} \times \mathrm{m}_{2}}
$$

$$
\begin{aligned}
& \Sigma=\frac{P([S=1] \mid \phi 1 \phi 2[\lambda 1=1][\lambda 2=1])}{P([S=0] \mid \phi 1 \phi 2[\lambda 1=1][\lambda 2=1])} \\
& =\frac{P([f 1=0][f 2=0][S=1])+P(011) \phi 2+P(101) \phi 1+P(111) \phi 1 \phi 2}{P(000)+P(010) \phi 2+P(100) \phi 1+P(110) \phi 1 \phi 2}
\end{aligned}
$$

BAYESIAN BIOCHEMISTRY: BASIC IDEAS

Q BAYESIAN VALUES -> CONCENTRATION OF MESSENGERS, MEMBRANE POTENTIAL \& SPIKE FREQUENCY

Q BAYESIAN GATES -> EQUILIBRIUM BETWEEN ALLOSTERIC MACROMOLECULES \& MESSENGERS

Q BAYESIAN INFERENCE -> SIGNAL TRANSDUCTION.

QTHE INTERPLAY BETWEEN LOCAL BIOCHEMICAL MECHANISMS AND DISTANT ELECTRICAL PROPAGATION IN NEURONS IS THE KEY LEVEL TO UNDERSTAND BRAIN COMPUTATION

BAYESIAN BIOCHEMISTRY: OPEN QUESTIONS

Q HOW IS INFORMATION ENCODED AT THE DIFFERENT SCALES (MOLECULAR, INTRA-CELLULAR, CELLULAR, INTER-CELLULAR, POPULATION, SYSTEM)?

Q HOW IS INFORMATION PROCESSED AT THESE DIFFERENT SCALES?

Q HOW IS INFORMATION MEMORIZED AT THESE DIFFERENT SCALES?

Q What is meant by Learning and adaptation at these DIFFERENT SCALES?

Q DO SENSORY-MOTOR SYSTEMS PERCEIVE VALUES OR PROBABILITIES OF VALUES?
Q HOW DO THEY MAKE DECISIONS ON THE ACTIONS TO PERFORM?

WANT TO KNOW MORE?

SAYESMAN-PROCRAMMHNC. RC

BAYESIANTPROGRAMMINGOORG
BAM

D
3

$=$ \qquad

3

$\frac{2}{2}+$
\qquad

somoor macts in advanced robours es Christian Laugier Roland Siegwart (Edz)

Probabilistic Reasoning and Decision Making in Sensory-Motor C
in.

Systems
s
\qquad

\square

듲․․․

[^0]er $+$

[^0]: I-FRANCE.FR

