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Intelligence

Baron Wolfgang von Kempelen (1769) 

Who is the most clever?
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reasoning at a microscopic level?

Overview
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Probability 
as alternative to logic
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Uncertainty is not in things but in our head: uncertainty is a 
lack of knowledge.
 Jacob Bernouilli, Ars Conjectandi (Bernouili, 1713)

Probability theory is nothing else than common sense made 
calculus.
Marquis Pierre-Simon de Laplace, Théorie analytique des 
probabilités (Laplace 1812)

The actual science of logic is conversant at present only with 
things either certain, impossible, or entirely doubtful, none of 
which (fortunately) we have to reason on. Therefore the true 
logic for this world is the calculus of Probabilities, which 
takes account of the magnitude of the probability which is, or 
ought to be, in a reasonable man's mind .
James Clerk Maxwell (1850)
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Randomness is just the measure of our ignorance. 
To undertake any probability calculation, and even for this 
calculation to have a meaning, we have to admit, as a starting point, 
an hypothesis or a convention, that always comprises a certain 
amount of arbitrariness. In the choice of this convention, we can be 
guided only by the principle of sufficient reason. 
From this point of view, everything in science would just be 
unconscious applications of the calculus of probabilities. 
Condemning this calculus would be condemning the whole science.
Henri Poincaré, La science et l’hypothèse (Poincaré, 1902)

By inference we mean simply: deductive reasoning whenever enough 
information is at hand to permit it; inductive or probabilistic 
reasoning when - as is almost invariably the case in real problems - 
all the necessary information is not available. Thus the topic of « 
Probability as Logic » is the optimal processing of uncertain and 
incomplete knowledge.
E.T. Jaynes, Probability theory theory: the logic of science (Jaynes, 
2003)
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Incompleteness
Preliminary Knowledge

+
Experimental Data

=
Probabilistic Representation

Uncertainty

Bayesian inference

Decision

Learning

Entropy Principles

€ 

P a( ) +P ¬a( ) =1

€ 

P a∧b( ) = P(a)×P(b | a)
            = P(b)×P(a | b)
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Bayesian Programming
& ProBT®

main ()
{

  //Variables
  plFloat read_time;
  plIntegerType id_type(0,1);
  plFloat times[5] = {1,2,3,5,10};
  plSparseType time_type(5,times);
  plSymbol id("id",id_type);
  plSymbol time("time",time_type);

  //Parametrical forms
  //Construction of P(id)
  plProbValue id_dist[2] = {0.75,0.25};
  plProbTable P_id(id,id_dist);

  //Construction of P(time | id = john) 
  plProbValue t_john_dist[5] = {20,30,10,5,2};
  plProbTable P_t_john(time,t_john_dist);
  
  //Construction of P(time | id = bill) 
  plProbValue t_bill_dist[5] = {2,6,10,40,20};
  plProbTable P_t_bill(time,t_bill_dist);
  
   //Construction de P(time | id)
  plKernelTable Pt_id(time,id);
  plValues t_and_id(time^id);
  t_and_id[id] = 0;
  Pt_id.push(P_t_john,t_and_id);
  t_and_id[id] = 1;

  Pt_id.push(P_t_bill,t_and_id); 
  //Decomposition
  // P(time id) = P(id) P(time | id)
  plJointDistribution jd(time^id,P_id*Pt_id);
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  plProbTable P_t_bill(time,t_bill_dist);
  
   //Construction de P(time | id)
  plKernelTable Pt_id(time,id);
  plValues t_and_id(time^id);
  t_and_id[id] = 0;
  Pt_id.push(P_t_john,t_and_id);
  t_and_id[id] = 1;

  Pt_id.push(P_t_bill,t_and_id); 
  //Decomposition
  // P(time id) = P(id) P(time | id)
  plJointDistribution jd(time^id,P_id*Pt_id);

  

  //Question
  //Getting the question P(id | time)
  plCndKernel Pid_t;
  jd.ask(Pid_t,id,time);

  //Read a time from the key board
  cout<<"P(id,time)= "<<Pid_t<<"\n";
  cout<<"Time? : ";
  cin>>read_time;

  //Getting P(id | time = read_time)
  plKernel Pid_readTime;
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Olivier Lebeltel’s Ph.D
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Carla Koike’s Ph.D 
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Kamel Mekhnacha’s Ph.D
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Ronan Le Hy’s Ph.D
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Bayesian Occupancy Filter (BOF)
for Avanced Driver Assist. Syst.

PhD thesis of 
Christophe Coué
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Coué, C., Pradalier, C., Laugier, C., Fraichard, T. & 
Bessière, P. (2006) Bayesian Programming  multi-target 
tracking: an automotive application; IJRR (International 
Journal of Robotic Research); Vol. 25, N° 1, pp. 19-30

Coué, C. (2003) Fusion d’information capteur pour l’aide à 
la conduite automobile; PhD thesis, INPG

- Take uncertainty into account explicitly
- No “data association problem”
- Robustness to object occlusions/disappearances
- Can be implemented on dedicated hardware (GPU 
or even DSP)



1 sensor - 1 object
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1 sensor - 1 object
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P( [Ec=1] | z c)
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1 sensor - multiple target
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1 sensor - multiple target
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z1 = ( 8.3, -4, 0, 0)
z2 = ( 7.3, 1.9, 0, 0.8)
z3 = ( 5, 3, 0, 0)



1 sensor - multiple target
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P([Ec=1] | z1 z2 z3 c)
c = [x, y, 0, 0]

z1 = ( 8.3, -4, 0, 0)
z2 = ( 7.3, 1.9, 0, 0.8)
z3 = ( 5, 3, 0, 0)



2 sensor - 3 targets
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2 sensor - 3 targets
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z1,1 = (5.5, -4, 0, 0)   z1,2 = (5.5, 1, 0, 0)
z2,1 = (11, -1, 0, 0)    z2,2 = (5.4, 1.1, 0,0)



2 sensor - 3 targets
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z1,1 = (5.5, -4, 0, 0)   z1,2 = (5.5, 1, 0, 0)
z2,1 = (11, -1, 0, 0)    z2,2 = (5.4, 1.1, 0,0)

P([Ec=1] | z1,1 z1,2 z2,1 z2,2 c)
c = [x, y, 0, 0]
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Bayesian Filter
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Without vs with filtering
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(Videos)



Real time filtering
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Real time filtering
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Modeling behaviors
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288 Laurens Jean and Droulez Jacques

Fig. 1. Presentation of the vestibular system and simple psychophysical results: a:
schematic drawing of the vestibular system, after Gray. b: geometrical conventions
for egocentric coordinates and for rotations, and illustration of the gravito-inertial
ambiguity. c: typical dynamic of the vestibulo-ocular reflex (VOR) during a constant-
velocity rotation followed by a stop, of the Optokinetic nystagmus (OKN) during
visual stimulation and of the Optokinetic After-Nystagmus (OKAN) after a visual
stimulation. d: somatogravic effect illustrated by eye movements recordings in the
monkey. Roll tilt at high or low frequency elicits compensatory eye movements (oc-
ular counterrolling). Lateral acceleration create an otolithic input similar to the
one elicited by rolling. High-frequency acceleration creates a horizontal eye response
whereas low-frequency acceleration elicits counterrolling.

PhD  C. Moulin-Frier

PhD Jihene Serkhane

PhD Olivier Lebeltel

PhD Olivier Lebeltel PhD Jean Laurens

PhD Francis Colas

PostDoc Francis Colas



Bayesian Action Perception:
Handwriting experiments

Ph.D Estelle Gilet
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Gilet E, Diard J, Bessière P, 2011 Bayesian Action–Perception Computational Model: Interaction of 
Production and Recognition of Cursive Letters.PLoS ONE 6(6): e20387. doi:10.1371/journal.pone.0020387
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Motor Equivalence?
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[Serratrice93]

• Writer “style”
[Wright90]

• Common activated 
motor areas
[Wing00]



Simulation of action during 
perception?
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[Longcamp03]

Writing

Pseudo letter reading Letter reading



Reading
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• OCR
[Meulenbroek96]
[Flash95]

• Human models
[Crettez98]
[Vuori02]
[Dehaene07]



Writing
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• [Hinton05]
• [Meulenbroek96]
• [Flash95]



BAP model
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From motor perception theory
to Bayesian Action Perception
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From motor perception theory
to Bayesian Action Perception
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Motor perception theory
[Liberman57]

Perception for action control theory
[Schwartz01]



A common space for motor and perception 
internal representation
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Common features for both representations
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Here come the probabilities
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Learning succession of control points
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Learning succession of control points
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BAP model

43



BAP model
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BAP model
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BAP model
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BAP model
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Letter recognition 
knowing the scripter
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Letter recognition 
knowing the scripter
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Letter recognition 
knowing the scripter
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93,36%



Scripter recognition 
knowing the letter
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79,5%



Motor control
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Motor control
Inter scripter variability
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Motor equivalence
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Motor equivalence
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Copy

57

Trace copy Letter copy



Letter recognition 
with motor simulation
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Results
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Perspectives
Speech? (Ph.D in progress)
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Amoeba

How is it performing probabilistic inference?
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Cell signaling



8 allosteric states
2 messengers
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Bayesian gate
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S

F1

F2

Φ

Φ
Σ

€ 

Σ =
P( S = 1[ ] | φ1φ2 λ1 = 1[ ] λ2 = 1[ ])
P( S = 0[ ] | φ1φ2 λ1 = 1[ ] λ2 = 1[ ])

=
P( f1 = 0[ ] f 2 = 0[ ] S = 1[ ]) + P(011)φ2 + P(101)φ1+ P(111)φ1φ2

P(000) + P(010)φ2 + P(100)φ1+ P(110)φ1φ2
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Bayesian biochemistry:
Basic ideas
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Bayesian values -> Concentration of messengers, 
membrane potential & spike frequency

Bayesian gates -> equilibrium between allosteric 
macromolecules & messengers

Bayesian inference -> signal transduction.

The interplay between local biochemical 
mechanisms and distant electrical propagation in 
neurons is the key level to understand brain 
computation



Bayesian biochemistry:
Open questions

70

how is information encoded at the different 
scales (molecular, intra-cellular, cellular, 
inter-cellular, population, system)?

How is information processed at these different 
scales?

How is information memorized at these different 
scales?

What is meant by learning and adaptation at these 
different scales?

Do sensory-motor systems perceive values or 
probabilities of values?

How do they make decisions on the actions to 
perform?



Want to know more?

Pierre.Bessiere@College-de-france.fr

Bayesian-Programming.org
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