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Abstract—This paper presents a Bayesian model to predict
the opening (first strategy) of opponents in real-time strategy
(RTS) games. Our model is general enough to be applied to any
RTS game with the canonical gameplay of gathering resources
to extend a technology tree and produce military units and
we applied it to StarCraft1. This model can also predict the
possible technology trees of the opponent, but we will focus on
openings here. The parameters of this model are learned from
replays (game logs), labeled with openings. We present a semi-
supervised method of labeling replays with the expectation-
maximization algorithm and key features, then we use these
labels to learn our parameters and benchmark our method with
cross-validation. Uses of such a model range from a commentary
assistant (for competitive games) to a core component of a
dynamic RTS bot/AI, as it will be part of our StarCraft AI
competition entry bot.

I. INTRODUCTION

A. RTS gameplay and AI

We first introduce the basic components of a real-time
strategy (RTS) game. In a RTS, players need to gather
resources to build military units and defeat their opponents.
To that end, they often have worker units (or extraction
structures) than can gather resources needed to build workers,
buildings, military units and research upgrades. Workers are
often also builders (as in StarCraft) and are weak in fights
compared to military units. Resources may have different
uses, for instance in StarCraft: minerals are used for every-
thing, whereas gas is only required for advanced buildings
or military units, and technology upgrades. Buildings and
research upgrades define technology trees (directed acyclic
graphs) and each state of a “tech tree” allow for different unit
type production abilities and unit spells/abilities. The military
can be of different types, any combinations of ranged, casters,
contact attack, zone attacks, big, small, slow, fast, invisible,
flying... Units can have attacks and defenses that counter each
others as in rock-paper-scissors.

Each unit and building has a sight range that provides
the player with a view of the map. Parts of the map not
in the sight range of the player’s units are under fog of
war and the player ignores what is and happens there. In
RTS games jargon, an opening denotes the same thing than
in Chess: an early game plan for which the player has to
make choices. In Chess because one can not move many
pieces at once (each turn), in RTS games because during
the development phase, one is economically limited and
has to choose between economic and military priorities and
can only open so many tech paths at once. The opening

1StarCraft and its expansion StarCraft: Brood War are trademarks of
Blizzard EntertainmentTM

corresponds to the first military (tactical) moves that will
be performed and, in StarCraft, it corresponds to the 5
(early rushes) to 15 minutes (advanced technology / late
push) timespan. Players have to find out what opening their
opponents are doing to be able to effectively deal with the
strategy (army composition) and tactics (military moves:
where and when) thrown at them. For that, players scout
each other and reason about the incomplete information they
can bring together about army and buildings composition.
This paper presents a probabilistic model able to predict
the opening of the enemy that is used in a StarCraft AI
competition entry bot (see Figure 1).

Most real-time strategy (RTS) games AI are either not
challenging or not fun to play against. They are not challeng-
ing because they do not adapt well dynamically to different
strategies (long term goals and army composition) and tactics
(army moves) that a human can perform. They are not fun
to play againt because they cheat economically, gathering
resources faster, and/or in the intelligence war, bypassing
the fog of war. We believe that creating AI that adapt to the
strategies of the human player would make RTS games AI
much more interesting to play against and increase greatly
the “re-playability” of RTS games.

B. StarCraft

We worked on StarCraft: Brood War, which is a canonical
RTS game, as Chess is to board games. It had been around
since 1998, it has sold 10 millions licenses and was the best
competitive RTS for more than a decade. There are numerous
international competitions (World Cyber Games, Electronic
Sports World Cup, BlizzCon, OSL, MSL). In South Korea,
4.5 millions of licenses have been sold and the average salary
of a pro-gamer was up to 4 times the average salary. StarCraft
helped define a particular genre of RTS gameplay, based as
much on the strategy than the tactics. Nowadays, StarCraft
2 seems to overtake the original StarCraft, but the gameplay
is exactly the same and many buildings and units are shared
between the two games. There are 3 factions (Protoss, Terran
and Zerg) that are totally different in terms of units, tech trees
and thus gameplay styles.

StarCraft and most RTS provide a tool to record game
logs into replays that can be re-simulated by the game
engine and watched to improve strategies and tactics. All
high level players use this feature heavily either to improve
their play or study opponents style. Observing replays allows
players to see what happened under the fog of war, so that
they can understand timing of technologies and attacks and
find clues/evidences leading to infer the strategy as well as



weak points (either strategic or tactical). We used this replay
feature to extract players actions and learn the probabilities
of tech trees to happen at a given time and, in this paper,
also given a labeled opening.

C. Our Approach

The main idea of this paper comes from expert play of
StarCraft: human players can have a mental model of the
probabilities of their opponents current openings and/or tech
trees. They try to update this mental model by scouting the
opponent base and looking at the time at which opponents
build their (tech or producing) structures, number of units
at given times and so on. For instance in StarCraft, the
players need to have buildings to gather resources (command
center, refinery...), the time at which players build them is
a first indication. A player wanting to do advanced units
very fast will need gas and this resource type needs a
refinery/extractor/assimilator to be gathered. The time at
which it is built is typical of tech opening versus economical
or rush openings.

We made the buildings part of tech trees the central part of
our model because buildings can be more easily scouted than
units and our main focus was our bot implementation (see
Figure 1), but nothing hinders us to use units and upgrades as
well in a setting without fog of war (commentary assistant,
game AI that cheat). There is not a direct mapping between
the build time of structures and openings or strategies:
different timings of buildings can lead to the same tech tree
but different openings or strategies, whereas the same timings
of buildings can later lead to different tech trees. Finally, note
that if one does not want to predict specific openings but the
probabilities of tech trees, one does not need to have labeled
game logs but only game logs.

In the next section, we discuss related works on strategy
prediction and game logs exploitation. We also introduce
the probabilistic framework used to describe our model. In
section III, we describe our methodology to put openings
labels on replays and the Bayesian model for the recognition.
We then evaluate our recognition model, proving it leads to
significant information for the bot to adapt dynamically to
its opponent and that it is possible to perform the predictions
in real time.

II. BACKGROUND

A. Related Works

This work was encouraged by the reading of Weber and
Mateas’ Data Mining Approach to Strategy Prediction [1]
and the fact that they provided their dataset, that we used.
They tried and evaluated several machine learning algorithms
on replays that were labeled with strategies (openings) with
rules.

There are related works in the domains of opponent mod-
eling [2], [3], [4]. The main methods used to these ends are
case-based reasoning (CBR) and planning or plan recognition
[5], [6], [7], [8], [9]. There are precedent works of Bayesian
plan recognition [10], even in games with Albrecht et al.
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Fig. 1. Data flow of the full StarCraft robotic player BROODWARBOTQ.
In this paper, we only deal with the upper left part (in a dotted line).

[11] using dynamic Bayesian networks to recognize a user’s
plan in a multi-player dungeon adventure.

Aha et al. [5] used CBR to perform dynamic plan retrieval
extracted from domain knowledge in Wargus (Warcraft II
clone). Ontañón et al. [6] base their real-time case-based
planning (CBP) system on a plan dependency graph which
is learned from human demonstration. In [7], [12], they use
CBR and expert demonstrations on Wargus. They improve
the speed of CPB by using a decision tree to select relevant
features. Hsieh and Sun [2] based their work on Aha et
al.’s CBR [5] and used StarCraft replays to construct states
and building sequences. Strategies are choices of building
construction order in their model.

Schadd et al. [3] describe opponent modeling through
hierarchically structured models of the opponent behaviour
and they applied their work to the Spring RTS (Total Annihi-
lation clone). Hoang et al. [8] use hierarchical task networks
(HTN) to model strategies in a first person shooter with
the goal to use HTN planners. Kabanza et al. [4] improve
the probabilistic hostile agent task tracker (PHATT [13], a
simulated HMM for plan recognition) by encoding strategies
as HTN.

The work described in this paper can be classified as
probabilistic plan recognition. Strictly speaking, we present
model-based machine learning used for prediction of plans,
while our model is not limited to prediction. It performs two
levels of plan recognition, both are learned from the replays:
tech tree prediction (unsupervised) and opening prediction
(semi-supervised or supervised depending on the labeling
method).

B. Bayesian Programming

Probability is used as an alternative to classical logic
and we transform incompleteness (in the experiences, the
perceptions or the model) into uncertainty [14]. We introduce
Bayesian programs (BP), a formalism that can be used to
describe entirely any kind of Bayesian model, subsuming
Bayesian networks and Bayesian maps, equivalent to prob-
abilistic factor graphs [15]. There are mainly two parts in a



BP, the description of how to compute the joint distribution,
and the question(s) that it will be asked.

The description consists in explaining the relevant vari-
ables {X1, . . . , Xn} and explain their dependencies by
decomposing the joint distribution P (X1 . . . Xn|δ, π) with
existing preliminary knowledge π and data δ. The forms
of each term of the product specify how to compute their
distributions: either parametric forms (laws or probability
tables, with free parameters that can be learned from data
δ) or recursive questions to other Bayesian programs.

Answering a question is computing the distribution
P (Searched|Known), with Searched and Known two
disjoint subsets of the variables. P (Searched|Known)

=

∑
Free P (Searched, Free, Known)

P (Known)

=
1

Z
×

∑
Free

P (Searched, Free, Known)

General Bayesian inference is practically intractable, but
conditional independence hypotheses and constraints (stated
in the description) often simplify the model. Also, there are
different well-known approximation techniques, for instance
Monte Carlo methods [?] and variational Bayes [16]. In this
paper, we will use only simple enough models that allow
complete inference to be computed in real-time.

BP


Desc.


Spec.(π)


V ariables

Decomposition

Forms (Parametric or Program)

Identification (based on δ)

Question

For the use of Bayesian programming in sensory-motor
systems, see [17]. For its use in cognitive modeling, see
[18]. For its first use in video games (first person shooter
gameplay, Unreal Tournament), see [19].

III. METHODOLOGY

A. Replays Labeling

We used Weber and Mateas [1] dataset of labeled replays.
It is composed of 9316 StarCraft: Broodwar game logs,
between ≈ 500 and 1300 per match-up. A match-up is a
set of the two opponents races, Protoss versus Terran (PvT)
is a match-up, PvZ is another one. They are distinguished be-
cause strategies distribution are very different across match-
ups (see Table II). Weber and Mateas used logic rules on
building sequences to put their labels, concerning only tier
2 strategies (no tier 1 rushes).

Openings are closely related to build orders (BO) but
different BO can lead to the same opening and some BO
are shared by different openings. Particularly, if we do not
take the time at which the buildings are constructed, we may
be wrong too often. For that reason, we tried to label replays
with the statistical appearance of key features with a semi-
supervised method (see Figure 2). Indeed, the purpose of our
opening prediction model is to help our StarCraft playing bot

to deal with rushes and special tactics. This was not the main
focus of Weber and Mateas’ labels, which follow more the
development of the tech tree. We used the key components
of openings that we want to be aware of as features for our
labeling algorithm as show in Table I.
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Fig. 2. Data centric view of our semi-supervised labeling of replays

The selection of the features along with the opening labels
is the supervised part of our labeling method. The knowledge
of the features and openings comes from expert play and the
StarCraft liquipedia2. They are all presented in Table I. For
instance, if we want to find out which replays correspond to
the “fast Dark Templar” (DT, Protoss invisible unit) opening,
we put the time at which the first Dark Templar is constructed
as a feature and perform clustering on replays with it. This
is what is needed for our playing bot: to be able to know
when he has to fear “fast DT” opening and build a detector
unit quickly to be able to deal with invisibility.

For the clustering part, we tried k-means, expectation-
maximization (EM) with equal shape (bivariate normal dis-
tribution with proportional covariances matrices) and EM
with the normal distribution shapes and volumes chosen with
a Bayesian information criterion (BIC). Best BIC models
were almost always the most agreeing with expert knowledge
(15/17 labels). We used the R package Mclust [20], [21] to
perform full EM clustering. We produce “2 bins clustering”
for each set of features (corresponding to each opening), and
label the replays belonging to the cluster with the lower norm
of features’ appearances (that is exactly the purpose of our
features). Figures 4 and 5 show the clusters out of EM with
the features of the corresponding openings. We thought of
clustering because there are two cases in which you build a
specific military unit of research a specific upgrade: either it
is part of your opening, or it is part of your longer term game
plan or even in reaction to the opponent. So the distribution
over the time at which a feature appears is bimodal, with
one (sharp) mode corresponding to “opening with it” and the
other for the rest of the games, as can be seen in Figure 3.

TABLE II
OPENINGS DISTRIBUTIONS FOR TERRAN IN ALL THE MATCH-UPS

vs Protoss vs Terran vs Zerg
Opening Nb Percentage Nb Percentage Nb Percentage

bio 62 6.2 25 4.4 197 22.6
fast exp 438 43.5 377 65.4 392 44.9

two facto 240 23.8 127 22.0 116 13.3
vultures 122 12.1 3 0.6 3 0.3

drop 52 5.2 10 1.7 121 13.9
unknown 93 9.3 34 5.9 43 5.0

2http://wiki.teamliquid.net/starcraft/



TABLE I
OPENING/STRATEGIES LABELS OF THE REPLAYS (WEBER’S AND OURS ARE NOT ALWAYS CORRESPONDING)

Race Weber and Mateas’ labels Our labels Features Note (what we fear)
Protoss FastLegs speedzeal Legs, GroundWeapons+1 quick speed+upgrade attack

FastDT fast dt DarkTemplar invisible units
FastObs nony Goon, Range quick long ranged attack

ReaverDrop reaver drop Reaver, Shuttle tactical attack zone damages
Carrier corsair Corsair flying units

FastExpand templar Storm, Templar powerful zone attack
two gates SecondGateway, Gateway, Zealot aggressive rush

Unknown unknown (no label or > 2 labels with ≈ probabilities)
Terran Bio bio ThirdBarracks, SecondBarracks, Barracks aggressive rush

TwoFactory two facto SecondFactory strong push (long range)
VultureHarass vultures Mines, Vulture aggressive harass, invisible
SiegeExpand fast exp Expansion, Barracks economical advantage

Standard
FastDropship drop DropShip tactical attack

Unknown unknown (no label or > 2 labels with ≈ probabilities)
Zerg TwoHatchMuta fast mutas Mutalisk, Gas early air raid

ThreeHatchMuta mutas ThirdHatch, Mutalisk massive air raid
HydraRush hydras Hydra, HydraSpeed, HydraRange quick ranged attack

Standard (speedlings) (ZerglingSpeed, Zergling) (removed, quick attacks/mobility)
HydraMass

Lurker lurkers Lurker invisible and zone damages
Unknown unknown (no label or > 2 labels with ≈ probabilities)

Fig. 3. Protoss vs Terran distribution of first appearance of Dark Templars
(Protoss invisible unit).

Fig. 4. Protoss vs Protoss Ground Attack +1 and Zealot Legs upgrades
timings. The bottom left cluster (squares) is the one labeled as speedzeal.

Fig. 5. Zerg vs Protoss time of the third Hatch and first appearance of
Mutalisks. The bottom left cluster (squares) is the one labeled as mutas.

Finally, some replays are labeled two or three times with
different labels (due to the different time of effect of different
openings), so we apply a filtering to transform multiple label
replays into unique label ones (see Figure 2). For that we
choose the openings labels that were happening the earliest
(as they are a closer threat to the bot in a game setup) if
and only if they were also the most probable or at 10% of
probability of the most probable label (to exclude transition
boundaries of clusters) for this replay. We find the earliest by
comparing the norms of the clusters means in competition.
All replays without a label or with multiple labels (i.e. which
did not had a unique solution in filtering) after the filtering
were labeled as unknown. We then used this labeled dataset
as well as Weber and Mateas’ labels in the testing of our
Bayesian model for opening prediction.



B. Opening Prediction Model

Our predictive model is a Bayesian program, it can be
seen as the “Bayesian network” represented in Figure 6. It is
a generative model and this is of great help to deal with the
parts of the observations’ space where we do not have too
much data (RTS games tend to diverge from one another as
the number of possible actions grow exponentially). Indeed,
we can model our uncertainty by putting a large standard
deviation on too rare observations and generative models tend
to converge with fewer observations than discriminative ones
[22]. Here is the description of our Bayesian program:
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λ Time
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Fig. 6. Graph representation of the opening (and tech tree) prediction
model

1) Variables:

• BuildTree ∈ [∅, building1, building2, building1 ∧
building2, techtrees, . . . ]: all the possible building
trees for the given race. For instance {pylon, gate} and
{pylon, gate, core} are two different BuildTrees.

• Observations: Oi∈J1...NK ∈ {0, 1}, Ok is 1/true if we
have seen (observed) the kth building (it can have been
destroyed, it will stay “seen”).

• Opening: Opt ∈ [opening1 . . . openingM ] take the
various opening values (depending on the race).

• LastOpening: Opt−1 ∈ [opening1 . . . openingM ],
Opening value of the previous time step (allows filter-
ing, taking previous inference into account).

• λ ∈ {0, 1}: coherence variable (restraining BuildTree
to possible values with regard to O1:N )

• Time: T ∈ J1 . . . P K, time in the game (1 second
resolution).

At first, we generated all the possible (according to the
game rules) BuildTree values (between ≈ 500 and 1600
depending on the race). We observed that a lot of possible
BuildTree values are too absurd to be performed in a
competitive match and were never seen during the learning.
So, we restricted BuildTree to have its value in all the build
trees encountered in our replays dataset. There are 810 build
trees for Terran, 346 for Protoss and 261 for Zerg (≈ 3000
replays/race), all learned from the (unlabeled) replays.

2) Decomposition: The joint distribution of our model is
the following:

P (T,BuildTree,O1 . . . ON , Op
t, Opt−1, λ)

= P (Opt|Opt−1)
P (Opt−1)

P (BuildTree|Opt)
P (O1:N )

P (λ|BuildTree,O1:N )

P (T |BuildTree,Opt)

This can also be see as Figure 6.
3) Forms:
• P (Opt|Opt−1) is optional, we use it as a filter so that

the previous inference impacts the current one. We use
a functional Dirac:

P (Opt|Opt−1) (Dirac)

= 1 if Opt = Opt−1

= 0 else

This does not prevent our model to switch predictions,
it just uses previous inference posterior P (Opt−1 to
average P (Opt).

• P (Opt−1) copied from one inference to another (mu-
tated from P (Opt)). The first P (Opt−1) is bootstrapped
with the uniform distribution, we could also use a prior
on openings in the given match-up.

• P (BuildTree|Opt) is learned from the labeled re-
plays. P (BuildTree|Opt) are card({openings}) dif-
ferent histogram over the values of BuildTree.

• P (O1:N ) is unspecified, we put the uniform distribution
(we could use a prior over the most frequent observa-
tions).

• P (λ|BuildTree,O1:N ) is a functional Dirac that re-
stricts BuildTree values to the ones than can co-exist
with the observations.

P (λ = 1|buildTree, o1:N )

= 1 if buildTree can exist with o1:N

= 0 else

A BuildTree value (buildTree) is compatible with
the observations if it covers them fully. For instance,
BuildTree = {pylon, gate, core} is compatible with
o#core = 1 but it is not compatible with o#forge = 1.
In other words, buildTree is incompatible with o1:N iff
{o1:N\{o1:N ∧ buildTree}} 6= ∅.

• P (T |BuildTree,Opt) are “bell shape” distributions
(discretized normal distributions). There is one bell
shape per couple (opening, buildTree). The parame-
ters of these discrete Gaussian distributions are learned
from the labeled replays.

4) Identification (learning): The learning of the
P (BuildTree|Opt) histogram is straight forward counting
of occurrences from the labeled replays. The learning of



the P (T |BuildTree,Opt) bell shapes parameters takes into
account the uncertainty of the couples (buildTree, opening)
for which we have few observations. Indeed, the normal
distribution P (T |buildTree, opening) begins with a high
σ2, and not a Dirac with µ on the seen T value and
sigma = 0. This accounts for the fact that the first
observation may have been an outlier. This learning process
is independent on the order of the stream of examples,
seeing point A and then B or B and then A in the learning
phase produces the same result.

5) Questions: The question that we will ask in all the
benchmarks is:

P (Op|T = t, O1:N = o1:N , λ = 1)

∝ P (Op).P (o1:N )

×
∑

BuildTree P (λ|BuildTree, o1:N )

.P (BuildTree|Op).P (t|BuildTree,Op)

Note that if we see P (BuildTree, T ime) as a plan, asking
P (BuildTree|Opening, T ime) boils down to use our “plan
recognition” mode as a planning algorithm, which could
provide good approximations of the optimal goal set [9].
This gives us a distribution on the build trees to follow (build
orders) to achieve a given opening.

IV. RESULTS

A. Prediction

For each match-up, we ran cross-validation testing with
9/10th of the dataset used for learning and the remaining
1/10th of the dataset used for testing. We ran tests finishing
at 5, 10 and 15 minutes to capture all kinds of openings
(early to late ones). To measure the predictive capability of
our model, we used 3 metrics:
• the final prediction, which is the opening that is pre-

dicted at the end of the test,
• the online twice (OT), which counts the openings that

have emerged as most probable twice a test (so that their
predominance is not due to noise),

• the online once > 3 (OO3), which counts the openings
that have emerged as most probable openings after 3
minutes (so that these predictions are based on really
meaningful information).

After 3 minutes, a Terran player will have or be building
his first supply depot, barracks, refinery (gas), and at least
factory or expansion. A Zerg player would have his first
overlord, zergling pool, extractor (gas) and most of the time
his expansion and lair tech. A Protoss player would have his
first pylon, gateway, assimilator (gas), cybernectics core, and
sometimes his robotics center, or forge and expansion.

Table III sums up all the prediction probabilities (scores)
of our model in all the match-ups with both labeling of the
game logs. Please note that when an opening is mispredicted,
the distribution on openings is often not P (badopening) =
1, P (others) = 0 and that we can extract some value out
of these distributions. Also, we observed that P (Opening =
unknown) > P (others) is often a case of misprediction:

Fig. 7. Evolution of P (Opening) with increasing observations in a TvP
match-up, with Weber’s labeling on top, our labeling on the bottom. The
x-axis corresponds to the construction of buildings.

our bot would use the next prediction in this case. Figure 7
shows the evolution of the distribution P (Opening) during
a replay for Weber’s and our labelings. Figure 8 shows the
resistance of our model to noise. We randomly removed some
observations (buildings, attributes), from 1 to 15, knowing
that for Protoss and Terran we use 16 buildings observations
and 17 for Zerg. We think that our model copes well with
noise because it backtracks unseen observations: for instance
if we have only the core observation, it will work with build
trees containing core that will passively infer unseen pylon
and gate. Also, uncertainty is handled natively.

B. Performances

The first iteration of this model was not making use of the
structure imposed by the game in the form of “possible build
trees” and was at best very slow, at worst intractable without
sampling. With the model presented here, the performances
are ready for production as shown in Table IV. The memory
footprint is around 3.5Mb on a 64bits machine. Learning
computation time is linear in the number of games logs
events (O(N) with N observations), which are bounded, so
it is linear in the number of game logs. It can be serialized
and done only once when the dataset changes. The prediction
computation corresponds to the sum in the question (III.B.5)
and so its computational complexity is in O(N.M) with N
build trees and M possible observations, as M << N , we
can consider it linear in the number of build trees (values of
BuildTree).



TABLE III
PREDICTION PROBABILITIES FOR ALL THE MATCH-UPS

Weber and Mateas’ labels Our labels
5 minutes 10 minutes 15 minutes 5 minutes 10 minutes 15 minutes

match-up final OT OO3 final OT OO3 final OT OO3 final OT OO3 final OT OO3 final OT OO3
PvP 0.65 0.53 0.59 0.69 0.69 0.71 0.65 0.67 0.73 0.78 0.74 0.68 0.83 0.83 0.83 0.85 0.83 0.83
PvT 0.75 0.64 0.71 0.78 0.86 0.83 0.81 0.88 0.84 0.62 0.69 0.69 0.62 0.73 0.72 0.6 0.79 0.76
PvZ 0.73 0.71 0.66 0.8 0.86 0.8 0.82 0.87 0.8 0.61 0.6 0.62 0.66 0.66 0.69 0.61 0.62 0.62
TvP 0.69 0.63 0.76 0.6 0.75 0.77 0.55 0.73 0.75 0.50 0.47 0.54 0.5 0.6 0.69 0.42 0.62 0.65
TvT 0.57 0.55 0.65 0.5 0.55 0.62 0.4 0.52 0.58 0.72 0.75 0.77 0.68 0.89 0.84 0.7 0.88 0.8
TvZ 0.84 0.82 0.81 0.88 0.91 0.93 0.89 0.91 0.93 0.71 0.78 0.77 0.72 0.88 0.86 0.68 0.82 0.81
ZvP 0.63 0.59 0.64 0.87 0.82 0.89 0.85 0.83 0.87 0.39 0.56 0.52 0.35 0.6 0.57 0.41 0.61 0.62
ZvT 0.59 0.51 0.59 0.68 0.69 0.72 0.57 0.68 0.7 0.54 0.63 0.61 0.52 0.67 0.62 0.55 0.73 0.66
ZvZ 0.69 0.64 0.67 0.73 0.74 0.77 0.7 0.73 0.73 0.83 0.85 0.85 0.81 0.89 0.94 0.81 0.88 0.94

overall 0.68 0.62 0.68 0.73 0.76 0.78 0.69 0.76 0.77 0.63 0.67 0.67 0.63 0.75 0.75 0.63 0.75 0.74

Fig. 8. Two extreme evolutions of the 3 probabilities of opening recog-
nition with increasing noise (15 missing attributes/observations/buildings
correspond to 93.75% missing information for Protoss and Terran openings
prediction and 88.23% of missing attributes for Zerg openings prediction).
Zerg opening prediction probabilitly on top, Protoss bottom.

TABLE IV
EXTREMES OF COMPUTATION TIME VALUES (IN SECONDS, C2D 2.8GHZ)

Race Nb Games Learning time Inference µ Inference σ2

T (max) 1036 0.197844 0.0360234 0.00892601
T (Terran) 567 0.110019 0.030129 0.00738386
P (Protoss) 1021 0.13513 0.0164457 0.00370478
P (Protoss) 542 0.056275 0.00940027 0.00188217
Z (Zerg) 1028 0.143851 0.0150968 0.00334057
Z (Zerg) 896 0.089014 0.00796715 0.00123551

V. CONCLUSIONS

A. Possible Uses

Developing beforehand a RTS game AI that specifically
deals with whatever strategies the players will come up
is very hard. And even if game developers were willing
to patch their AI afterwards, it would require a really
modular design and a lot of work to treat each strat-
egy. With our model, the AI can adapt to the evolutions
in play by learning its parameters from the replay, and
it can dynamically adapt during the games by using the
reverse question P (BuildTree|Opening, T ime), or even
P (TechTree|Opening, T ime) if we use a TechTree vari-
able encoding buildings and technology upgrades. This
question would give the distribution over technology trees
knowing the opening we want to perform at which time.
This would allow for the bot to dynamically choose/change
build orders.

We will also investigate the use of our model in a
commentary assistant AI. In the StarCraft and StarCraft 2
communities, there are a lot of progamers tournaments that
are commented and we could provide a tool for commen-
tators to estimate the probabilities or different openings or
technology paths. As in commented poker matches, where
the probabilities of different hands are drawn on screen for
the spectators, we could display the probabilities of openings.
In such a setup we could use more features as the observers
and commentators can see everything that happens (upgrades,
units) and we limited ourselves to “key” buildings in the
work presented in this paper.



B. Improvements

First, our prediction model can be upgraded to have a
higher recognition rate: we could reason about t+1 explicitly
before computing the distribution over possible openings
at t and thus compute the distribution over technology
trees at t + 1. Perhaps it would increase the results of
P (Opening|Observations), but it almost surely would in-
crease P (BuildTreet+1|Observations) which is important
for late game predictions. We could also make use of more
features as we currently only use at most 20 features (only
buildings), and never all at once. Perhaps also that incorpo-
rating priors per match-up would lead to better results.

Then, we could feed it with more replays during the
learning by scrapping more progamers level replays websites.
Also, we could learn from replays of bot vs bot matches. For
the learning part, the labeling of replays is very important,
and our labeling methods can be improved. We could explore
auto-supervised learning [23]. Clearly, some match-ups are
handled better, either in the replays labeling part and/or in the
prediction part. Replays could be labeled by humans and we
would do supervised learning then. Or they could be labeled
by a combination of rules (as in [1]) and statistical analysis
(as the method presented here). Finally, the replays could
be labeled by match-up dependent openings (instead of race
dependent openings currently) and could contain either the
two parts of the opening (early and late developments) or the
game time at which the label is the most relevant, as openings
are often bimodal (“fast expand into mutas”, “corsairs into
reaver”, etc.).

Finally, a hard problem is detecting the “fake” builds
of very highly skilled players. Indeed, some progamers
have build orders which purpose are to fool the oppo-
nent into thinking that they are performing opening A
while they are doing B. For instance they could “take
early gas” leading the opponent to think they are go-
ing to do tech units, not gather gas and perform an
early rush instead. We think that this can be handled
by our model by changing P (Opening|LastOpening) by
P (Opening|LastOpening, LastObservations) and adapt-
ing the influence of the last prediction with regard to the last
observations (i.e., we think we can learn some “fake” label
on replays).

C. Conclusion

We presented a probabilistic model to be able to compute
the distribution over openings (strategies) of the opponent in
a RTS game. It yields good results: > 70% of recognition
rate at 10 minutes (up to 94%), 63−68% of recognition rate
at 5 minutes with plenty of time to adapt to the opponent’s
opening, strong robustness to noise (> 50% recognition
rate with 50% missing observations). It can be used in
production due to its low CPU (and memory) footprint.
We also presented a semi-supervised method to label RTS
game logs (replays) with openings (strategies). Both our
implementations are free software and can be found online3.

3https://github.com/SnippyHolloW/OpeningTech/

We will use this model (or and upgraded version of it) in
our StarCraft AI competition entry bot as it enables it to
deal with the incomplete knowledge gathered from scouting.
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