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Abstract— With the growing demand of personal assistance to
mobility and mobile service robotics, robot navigation systems
must be “aware” of the social conventions followed by people.
They must respect proximity constraints but also respect people
interacting. For example, they may not break interaction
between people talking, unless the occupants want to take part
in the conversation. In this case, they must be able to join the
group using a socially adapted behavior. This paper proposes
a risk-based navigation method including both the traditional
notion of risk of collision and the notion of risk of disturbance.
Results exhibit new emerging behavior showing how a robot
takes into account social conventions in its navigation strategy.

Index Terms— Proxemics, Human aware navigation, risk
assessment.

I. INTRODUCTION

Robots enter more and more into human environments.

As areas of mobile service robotics and robotic assistance

of humans are becoming more common in everyday life,

humans need to share the physical space with robots and

robots need to take into account the presence of humans.

To be accepted, robots must behave in a socially acceptable

way. Their trajectories must be safe but also predictable.

Their behavior should follow social conventions, respecting

proximity constraints, avoiding people interacting or joining

a group engaged in conversation without disturbing.

People maintain a set of social conventions related to space

when they are interacting, for example, in a conversation

[1]. The sociology literature often refers to the concept of

personal space proposed by Hall [2] which characterizes the

space around a human being in terms of comfort to social

activity. Concerning interactions between people, the concept

of o-space is described in the sociology literature. This space

can be observed in casual conversations among people [1].

Perception of territorial boundaries established by a group of

humans and respect to these bounds are evidence of social

behavior. If the robot aims to join a group, it must get

permission from the group to be integrated.

In order to develop social robots or wheelchair like

robots, the notion of human to human interaction needs to

be included. In this article, we propose a simple way to

estimate the o-space in the case of two agents interacting.

This estimation is based on positions and orientations of
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agents. An approach to take advantage of o-space in robot

autonomous navigation, is also described.

Section II proposes a state of the art of human aware nav-

igation. Section III defines the concepts of spatial behavior

and describes proxemics models used to take decisions in

our navigation system. Section IV describes the algorithm

of navigation called Risk-RTT and explains the extensions

done. In section V the simulation of the navigation of an

autonomous wheelchair in presence of humans interacting is

presented. Section VI presents conclusions about the work

and perspectives.

II. STATE OF ART

In the literature we can observe the growing interest of

the robotics community in research that includes behavior

of humans and its impact in the development of tasks by the

robot. In [3] it is argued that moving in easily understood

and predictable ways will both improve people’s trusting and

comfort with the robot as well as will help to insure the safety

of people moving near the robot. They proposed a model for

person following behavior.

In [4] the authors proposed a method for a robot to join

a group of people engaged in conversation. The results of

the implementation and the experiments conducted with their

platform show a human-like behavior as judged by humans.

Robot just wants to preserve the formation of the group and

doesn’t know explicitly where the o-space is located.

Some approaches like [5]–[12], have been conducted to

establish the rules that probably will govern the physical

behavior of robots regarding interaction with humans. Our

proposal lets the robot satisfying the first three rules pro-

posed in [12]: Collision Free Rule: The host robot has to

maintain its safety and be able to reach the goal destination,

Interference Free Rule: The host robot should not enter into

the personal space of a human or the working space of any

other robot unless its task is to approach any of them. Waiting

Rule: Once the host robot enters into the personal space of

a human carelessly or unwillingly, it has to stop and to wait

for a threshold time. Closer to human aware navigation and

management of physical space, we could mention [13] where

a motion planner is presented which takes explicitly into

account its human partners. The authors introduced criteria

based both on the control of the distance between the robot

and the human, and on the control of the position of the

robot within the human’s field of view.
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In [14] an adaptive system was introduced which detects

whether a person seeks to interact with the robot based on the

person’s pose and position, this work was presented as a basis

for human aware navigation. Navigation was impplemented

using human centered potential fields.

In [15] a generalized framework for representing social

conventions as components of a constraint optimization

problem was presented and it was used for path planning and

navigation. Social conventions were modeled as costs to the

A* planner with constraints like shortest distance, personal

space and pass on the right. Navigation was based in the

Pure Pursuit Path-following. Simulation results showed the

robot navigating in a “social” manner.

Goals of work presented in [16] are similar to ours, they

proposed Spatial Behavior Cognition Model (SBCM), a

framework to describe the spatial effects existing between

human-human and human-environment. SBCM was used to

learn and predict behaviors of pedestrians in an environment

and to help a service robot to take navigation decisions.

The algorithm Dynamic AO* was used for motion planning

issues.

In almost all the cited works the concept of personal space is

present but the concept of o-space and F-formations have not

been included explicitly. We think the latter concepts can give

us a clue to consider the interactions between the dynamic

obstacles in the environment and to improve autonomous

navigation by a better understanding of management of space

realized by humans.

III. CONCEPTS OF SOCIAL BEHAVIOR

To understand the perceived behaviors in human-human

interaction and resulting management of space, we can

support us on the works developed in the area of sociology

to define some concepts such as personal space, o-space and

F-formations.

A. Personal Space

The term Proxemics was proposed by Hall [2] to describe

the use of space between humans, he observed the existence

of some rules not written that conducted people to keep

distances from others, and others to respect this space, he

proposed that space around a person in social interaction is

classified as follows:

• the public zone > 3.6m,

• the social zone > 1.2m

• the personal zone > 0.45m

• the intimate zone < 0.45m

This definition is important because it represents a useful

tool for a robot to understand humans intentions. It’s well

known that these measures are not strict and that they change

depending on age, culture and type of relationship but the

categories proposed explain very well reactions like the un-

comfortable sense of a stranger invading your intimate zone

or the perception of somebody looking social interaction by

entering to your social zone. In general, people are more

strict regarding their frontal space.

In the rest of the article we use personal space as a synony-

mous of personal zone plus intimate zone.

The model that we have implemented to represent personal

space is defined in [17], it consists in blending two Gaussian

functions both of them centered in the position of the person.

The first one represents the personal space situated in front

of a human and for this reason it’s wider than the last one

representing the back space. Fig. 1 shows an example of

personal space for two people walking, the measures are

projected in the plane of floor, the values obtained from the

Gaussian are higher in the center than on the borders.

Fig. 1. Estimated personal space for two people that walk projected in the
floor.

B. F-formations

(a) (b) (c) (d)

Fig. 2. Examples of F-formations: (a) Vis-a-vis, (b) L-Shape, (c) C-Shape,
(d) V-Shape.

In [18] Kendon proposed that people interacting in groups

follow some spatial patterns of arrangement. When people

are performing an activity they claim an amount of space

related to that activity, this space is respected by other

people and Kendon referred it as individual’s transactional

segment. This transactional segment varies depending on

body size, posture, position and orientation during the ac-

tivity. Moreover the groups can establish a joint or shared

transactional segment and only participants have permitted

access to it, they protect it and others tend to respect it.

The o-space is that shared transactional segment reserved for

the main activity. This space is surrounded by a narrower

one, called the p-space, which provides for the placement

of the participant’s bodies and also personal things. An F-

formation system is the spatial-orientation arrangement that

people create, share and maintain around their o-space. To

become a member of a formation of this sort, you have to

be in the p-space.

C. Model of o-space in F-formations

As there is not an exact physical definition of o-space we

will describe in this section how we can estimate its location.

When more than two people are in conversation they exhibit
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an F-formation with circular shape then the o-space could

be taken as a circle whose center coincides with that of the

inner space. In the case of two people some F-formations

have been identified as the most frequent [1], examples are

shown in fig. 2.

In our model, the o-space will be dependent on the particular

F-formation identified: Vis-a-vis, L-Shape, C-Shape or V-

Shape. From the definition found in the reference we can

design a geometric representation for each F-formation, the

model is based on the position and orientation of the body

of participants.

Given the positions of pedestrians H1 = (x1, y1) and

H2 = (x2, y2) in the plane of the floor and their respective

orientations φ1 and φ2 around the normal to that plane, we

calculate DH as the euclidean distance between H1 and H2.

We calculate also a point Vi as the intersection of the vectors

beginning in H1 and H2 in the direction of φ1 and φ2,

respectively. Let H12 be the mean point between H1 and H2.

Let C be the mean point between Vi and H12. Calculate Di

as the distance between Vi and H12.

The o-space is represented by a two-dimensional Gaussian

function Γc of covariance matrix S and centered in C, then

for each point Q around the center we have:

ΓC,S(Q) = e−
1

2
(Q−C)tS−1(Q−C) (1)

where S is a diagonal covariance matrix defined as:

S =

(

σ2
x 0
0 σ2

y

)

. (2)

To get the shape of the o-space in function of the F-

formations, the values chosen for the parameters are σx =
DH/4 and σy = Di/2. In the particular case of the Vis-a-

Vis formation σy = 0.6. The orientation of the Gaussian is

in the direction of the segment
−−−→
H12C, this coincides with

the location of the point of interest of humans as exhibited

by the orientation of their bodies.

Fig. 3. Scheme showing the elements of the model o-space for L-Shape
F-formation.

The p-space is considered as the area between the border

of the o-space and the same border enlarged by the average

size of the humans in conversation. The implementation of

o-space is realized using a grid and taking the result of

evaluating the center of each cell as the value of the cell.

All the elements defined can be seen in fig. 3 for the case

of an L-Shaped F-formation.

IV. THE ALGORITHM RISK-RRT

As starting point for navigation we chose the strategy

proposed in [19]. This algorithm was thought to operate in

dynamic, uncertain environment, it supposes that the mov-

ing pedestrians detected in the environment follow typical

motion patterns that are represented by Gaussian processes

which have been learned by an off-board platform before

navigation and to be known by the robot. The planning

algorithm is based on an extension of the Rapidly-exploring

Random Tree algorithm [20], where the likelihood of the

obstacles future trajectory and the probability of collision is

explicitly taken into account. The tree is grown in a random

fashion but a bias is included to direct the search to the

goal. Best trajectory (path in the tree) is chosen using as

heuristic the “probability of success” and distance to the goal

of its nodes. We extended the Risk-RRT by including the

knowledge of personal space of pedestrians and the possible

interactions between them. The interaction we are focusing

on is the conversation between two pedestrians. We penalize

paths that passes in the personal space of pedestrians and in

the o-space of interactions taking place in the environment

by calculating a cost for each one, see eq. 13 and eq. 11. In

this section, we present the partial motion planning algorithm

Risk-RRT and the collision risk assessment modified in order

to include our new constraints.

A. Environment model

At a given instant, the robot knowledge about the state of

the world, as proposed by [19], is represented by: an esti-

mation of the state of the robot, a set of Gaussian Processes

representing the typical patterns of the dynamic obstacles, a

goal position, an occupancy grid which represents the struc-

ture of the static environment and a list of moving objects

their estimated position, velocity and previous observations.

To take into account the new constraints we included to the

list:

1) A model of personal space PS(om) attached to each

dynamic obstacle om, according to section III-A

2) A list LI = {Zi}i=1..r of interactions detected in the

environment, each interaction Zi has a model of o-

space attached to it.

B. Probabilistic Risk of Collision [21] [22]

When searching for a safe path, the algorithm must

determine the amount of collision’s risk of taking an action

u ∈ U when in configuration q(t1). This risk can be written

as P (coll(q(t1), u) = 1), the probability of collision will be

referred as Pc in the rest of the paper. The risk is computed

on the basis of the probability of occupation of the surface A
which is swept by the robot moving from q(t1) under control
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u in the interval to [t1, t2]:

q(t2) = f(q(t1), u, τ) (3)

A =

t2
∫∫

t1

q(t)dt (4)

where f(.) is the motion model of the robot and τ = t2− t1
is the time step. The risk of collision must incorporate both

the static and the moving obstacles. Even when two humans

in conversation don’t exhibit a significant motion they must

be treated as dynamic ones because they represent more

risk than static obstacles. The space occupied by personal

space and o-space can’t be detected by sensors, these spaces

will be linked to the dynamic obstacles and their costs will

be reflected on the corresponding probability of collision.

We keep the hypothesis that moving obstacles and static

obstacles cannot overlap, and consequently that collision

with static obstacles and collision with moving obstacles are

mutually exclusive events, which yields:

Pc = Pcs + (1− Pcs) · Pcd (5)

Pcd = 1−
M
∏

m=1

[1− Pcd(om)] (6)

where Pcs is the probability of collision due to the static

obstacles, Pcd(om) is the probability of collision due to the

dynamic obstacle om and Pcd is the probability of collision

due to all the dynamic obstacles.

The static obstacles are represented in the occupancy grid

which is assumed to be stationary. Given M(t0) with t0 ≤ t1
the most recent estimation of the static map and ς ⊂ M(t0)
the subset of cells which is the minimal approximation of

surface A, the risk of collision with a static obstacle is given

by the max probability over the subset ς:

Pcs = max
ς

(P (Occ(Cellx,y) = 1)) (7)

where Cellx,y is the cell of the occupancy grid in (x, y)
position. The risk of collision with a moving obstacle om
is approximated by the probability of the area swept by

the robot intercepts the one swept by the obstacle in the

considered interval:

Pcd(om) = P (om(t) ∩A 6= ∅, ∀t ∈ [t1, t2]) (8)

The prediction om(t) is given by a weighted sum (mixture) of

Gaussian Processes. A Gaussian Process is a generalization

of the Gaussian probability distribution in function space,

see [22] for a more detailed explanation and equations for

Gaussian Processes. First, each Gaussian component k is

considered separately, then all the Gaussian components are

summed:

Pcd(om, k) =

∫

A

G(om(t), µk,Σk) (9)

Pcd(om) =

K
∑

k=1

wmkPcd(om, k) (10)

where Pcd(om, k) is the probability of collision with the

obstacle m moving along pattern k; G(om(t), µk,Σk) is the

Gaussian Process representing pattern k, given the observa-

tion history of object om. The probability is marginalized

over the set of possible patterns to yield Pcd(om), where

wmk is the weight of the k component for object m.

In order to choose an appropriate path, the Risk-RRT uses

the risk of collision of a particular action to calculate

the“probability of success” of each partial path [19].

1) Adding social constraints: In this section we explain

the inclusion of the social constraints to the model of

previous section, being this the main contribution of the

paper. First we define PZi as the probability of disturbing

by passing inside the o-space (sec. III-B) of interaction i,
and we calculate it as:

PZi = max
ς

(ΓCi,Si
(Cellx,y)) (11)

To reflect the fact of disturbing an interaction we think

of it as a collision with a dynamic obstacle and modify the

equation 6 to get:

Pcd = 1−
M
∏

m=1

[1− Pcd(om)]
r
∏

i=1

[1− PZi] (12)

In the case of the personal space we define Pps as the

probability of disturbing by passing in the personal space of

the human om. We can approximate Pps as the probability

that A, the area swept by the robot, intercepts the one

represented by the personal space:

Pps(om, k) =

∫

A

PS(om(t)) (13)

Where PS(om(t) is the model of personal space centered in

om(t) as described in III-A. Again, to take into account this

last constraint we need to modify the original equation 10

to get:

Pcd(om) =

K
∑

k= 1

wmk

[

Pcd(om, k)+Pps(om, k)(1−Pcd(om, k))
]

(14)

After these extensions the “probability of success” calcu-

lated for every partial path is given by the probability of not

encountering a collision along the path and not entering in

a personal space or an o-space.

C. The goal-oriented navigation algorithm

The goal oriented navigation proposed is described in

Algorithm 1. It combines three tasks: one dedicated to

perception (of static and moving obstacles), a task for

planning partial but safe trajectories and a task for navigating

safely along planned trajectories. The prediction done for

forecasting the position of moving obstacles in the near

future is based on learned Gaussian Processes [19].

Risk-RRT takes explicitly into account the real-time con-

straint and limits the time available for planning to a fixed
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(a) (b)

Fig. 4. Example of execution of Risk-RRT algorithm. In a) the robot navigation system has created a tree of possible paths to follow, robot is the green
rectangle, the chosen path is in red. In (b) we can observe how the robot has adapted its trajectory trying to avoid a possible collision with pedestrian (in
red) by considering the predictions of typical pedestrian trajectories.

Algorithm 1 Risk-RRT

1: procedure RISK-RRT

2: trajectory = empty

3: Tree = empty

4: Goal = read()

5: t= clock()

6: while Goal not reached do

7: if trajectory is empty then

8: brake

9: else

10: move along trajectory for one step

11: end if

12: observe (X);
13: delete unreachable trajectories(T,X)
14: observe(Map,movingobstacles)
15: t= clock()

16: predict moving obstacles at time t, ..., t+Nτ
17: if environment different then

18: update trajectories(T,Map,moving obstacles)

19: end if

20: while clock()< t+ τ do

21: grow trajectories with depth<= N in T

22: end while

23: trajectory = Choose best trajectory in T

24: t = clock()

25: end while

26: brake

27: end procedure

interval. After each planning cycle, the planned trajectory

is generally just a partial trajectory. Execution and planning

are done in parallel: while the robot moves a step along the

planned partial path, the tree is updated (line 18 of Algo-

rithm 1) with the information coming from the perception

algorithm, the tree is grown and the new partial path is

passed for execution when the time step is over. In fig. 4 we

can observe an example of navigation employing Risk-RRT

in the case of one pedestrian entering in the environment

and robot going to its goal. At the beginning the robot has

explored the environment and then decides to follow one

trajectory, some steps ahead when it detects the presence

of pedestrian, a prediction is realized based in the Gaussian

processes and it must adjust its previous choice to avoid a

collision with the human.

V. SIMULATION RESULTS

To test our models of interaction we have chosen a

scenario that shows one conversation between two humans

standing in a spacious area, this is because we want to

decrease the effect of the structure of the environment in the

management of space done by people. The simulation loads

a map previously constructed by a SLAM function using

a laser mounted on a wheelchair and creates an occupancy

grid based on it. The pedestrians are placed in a Vis-a-Vis F-

formation, that is, facing each other in theirs social zone (sec.

III-A). The space between them is big enough to let the robot

passing. Detecting conversation interactions is done, first by

finding pedestrians that are closer than a maximum distance,

then by check if their velocities are under a maximum

velocity and finally by taking into account the orientation

of their bodies to match one of the F-formations defined

in section III-B. The robot simulated is an autonomous

wheelchair with two wheels, the model used is that of a

differential robot system.

a) (b)

Fig. 5. Change in the behavior of the wheelchair (green). In (a) the
navigation doesn’t take includes the personal spaces nor the Vis-a-vis
formation and chooses a path that interrupts the interaction of two humans
(circles), the goal is the red cross, (b) the robot has more information and
respects the social conventions of space.

The concepts exposed in section III have been imple-

mented in a navigation algorithm based on our previously

designed Risk-RRT approach [21], [19].

The first task was to reach the goal defined by the user, we

chose an initial position for the robot and a goal location in
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such a way that the short distance between them passes in

the middle of human positions. First, we run the algorithm

original and we note that there is a tendence to choose a

path that interrupts the interaction (fig. 5 (a)), then we run

the algorithm modified and we can see (fig. 5 (b)) that the

behavior of the wheelchair (in green) can be changed when

the system detects the interaction and reduces the probability

of disturbing by entering into the o-space and personal space

of pedestrians.

As a second task, using the same scenario we let the

wheelchair to explore the environment (fig. 6) and find a

group in conversation to join it. Once that the wheelchair

detects the first conversation, the new goal becomes the

center of the o-space for the interaction detected. In this

case we detect interactions only in a semicircular region

centered in the wheelchair and oriented to the front of it. The

wheelchair approaches to the group and because of the effect

of interaction model it stops at p-space distance (sec. III-B),

a behavior that coincides with that of a person approaching

to a group and waiting for the reaction (acceptance) of the

group and the third rule proposed in [12].

a) (b)

Fig. 6. The wheelchair (green) explores its environment (a), it detects
a conversation, approach to humans and stops at p-space distance (b), a
behavior that can be judged social

VI. CONCLUSIONS AND FUTURE WORK

The approach presented in this paper shows a way to

take into account social conventions in navigation strategies

providing the robot with the ability to respect the personal

space and the o-space of people in its environment when

moving safely towards a given goal. In the same way these

models were useful to guide the robot for a “joining a

group” task. The previous concepts have been implemented

by extending a previously designed navigation algorithm,

the Risk-RRT approach. We have shown in simulation that

the behavior of a robot can be changed if we detect an

interaction. Our current work aims of implementing our

approach on a real autonomous system like a wheelchair and

perform some experiments with real humans.

In a dynamic environment it is not enough detecting interac-

tions because it could be too late to take a decision, we need

to predict when and where an interaction will take place.

Some studies [23] include the analysis of interaction between

humans to get information that could be useful for robots

to mimic that behavior, our future work will be focused in

adding a technique for better predicting the creation of an

o-space in the path of the robot.
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