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Abstract Ensuring proper living conditions for an ever growing number of
elderly people is a significative challenge for many countries. The difficulty
and cost of hiring and training specialized personnel has fostered research in
assistive robotics as a viable alternative. In this context, an ideally suited and
very relevant application is to transport people with reduced mobility. This
may involve either autonomous or semi-autonomous transportation devices
such as cars and wheelchairs.

For a working solution, a number of problems including safety, usability
and economic feasibility have to be solved. This paper presents PAL’s robotic
wheelchair, an experimental platform to study and provide solutions to many
of the aforementioned problems.
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1 Motivation, problem statement and related work

Ensuring proper living conditions for an ever growing number of elderly peo-
ple is a significative challenge for many countries. The difficulty and cost of
hiring and training specialized personnel has fostered research in assistive
robotics as a viable alternative. In this context, an ideally suited and very
relevant application is to transport people with reduced mobility.

In particular, this paper studies the case of a robotic wheelchair. For such
a system, it is crucial to take into account the actual needs and characteristics
of both its users and the people around them. The platform discussed in this
paper has been designed around the following requirements:

• Safety: The system should avoid collisions with both static and dynamic
entities.

• Usability: People with motor disabilities often have problems using joy-
sticks and other standard control devices. The system should account for
this, for example by favoring the most “reasonable” actions when presented
with an ambiguous command.

• Comfort: Strong accelerations can be untolerable and even dangerous for
a wheelchair user, this imposes an additional constraint on how the robot
may move.

• Respect of social conventions: When moving, a robot may considerably dis-
turb people around it, especially when its behavior is perceived as unsocial.
Even worse, the wheelchair’s passenger may be held responsible for that
behavior. It is thus important to produce socially acceptable motion.

From the technical standpoint these requirements imply that, in addition
to the conventional robot tasks (e.g. localization, path execution) the follow-
ing points should be specifically addressed:

• Integrated motion-planning and long-term motion prediction: Most human-
populated environments are highly dynamic, requiring considerable look-
ahead about how other objects will move in order to ensure collision-
free robot motion under “comfortable” accelerations. This motivates the
proposed integration of a long-term motion prediction algorithm based on
the idea of typical behavior with a risk-based motion planning algorithm.

• Interaction detection for socially acceptable robot-motion: Our approach
is based on the simple idea that, when people interact, they often adopt
spatial formations implicitly forming “interaction zones”. Thus, socially
acceptable motion can be enforced by first detecting interaction zones and
then computing the risk to invade them.

One of our main ambitions with this platform is to provide an open bench-
mark that could be used to compare and evaluate different approaches. This
is an important task given the diversity of existing wheelchairs [1], including
autonomous [2], semi-autonomous [3] and social aware systems [4, 5].
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2 Technical Approach

Fig. 1 presents an overview of our system’s architecture. It is divided into
several subsystems:

1. Tracking subsystem: mobile objects are tracked both off-board and on-
board the robotic wheelchair.

2. Prediction subsystem: the prediction subsystem processes data from the
trackers and transforms it into probabilistic predictions about the con-
figuration of the free space in the environment. It also features a “social
filter”, which detects present and future interactions and creates virtual
obstacles corresponding to interaction zones.

3. Navigation subsystem: the navigation subsystem includes a laser-based
localization module and a motion-planner which integrate predictions to
compute safe trajectories that are fed to the execution module.
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Fig. 1 Achitecture overview.

2.1 Tracking systems

The off-board tracker provides global information about moving obstacles
and provides learning input for our motion prediction module.

At this point, we are still developing and testing our tracking systems.
Meanwhile, we have performed several tests using augmented reality mark-
ers that people wear as hats. This has allowed us to validate the overall
architecture, even if it is not a viable solution in the long run.

For the definitive version of the platform, we are working on a basic
detect-then-track system, where moving objects are first detected using a
Self-organizing network [6], after this, objects are encoded as a color his-
togram, and then detected in later frames using the mean-shift algorithm [7].
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Finally, the different detections are used as input for a tracker based on the
Joint Probabilistic data Association Filter.

On the other hand, the on-board system will provide detailed information
about the objects that appear in the robot’s perceptual field. Its main use is
to identify interactions between people (e.g. two persons shaking hands). The
on-board tracking performs leg detection using a LIDAR sensor and people
detection using the kinect sensor, according to the technique described in [8].

2.2 Motion prediction

The motion prediction subsystem takes tracking data (i.e. position, orienta-
tion and velocity) and outputs K grids, representing the posterior probability
of the space being occupied at times {t1, · · · , tK} in the future. Prediction itself
is accomplished with a Growing Hidden Markov Model [9] and an Extended
Kalman Filter but the grid representation makes it easy to experiment with
other prediction algorithms. The prediction grids are then processed by a
fusion module, which currently performs bayesian sensor fusion as described
in [10].

In order to produce socially acceptable motion, we have proposed the “So-
cial Filter”, which integrates constraints inspired by social conventions in
order to evaluate the risk of disturbance represented by navigation decisions.
We focus on detecting and predicting conversations in the environment sur-
rounding the wheelchair [5].

2.3 Navigation

Our navigation system is based on Risk-RRT [11], a partial motion planner
which integrates motion predictions to provide safe trajectories. We have also
extended the approach by including a mechanism to obtain socially accept-
able behavior.

When the wheelchair is transporting a human, it will have to move in
a populated environment where an “optimal” behavior may be perceived
as unsocial. People will become uncomfortable if they are approached at
a distance that is deemed to be too close, where the level of discomfort
experienced by the person is related to the importance of his or her space.
This simple idea was formalized introducing the concept of personal space,
first proposed by Hall [12], which characterizes the space around a human
being in terms of comfort to social activity.

Another interesting social situation arises when two or more of the persons
in the environment are interacting. We model interactions using the concept
of o-space which has been developed by sociologists [13]. This space can be
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observed in casual conversations among people where participants’ position
and orientation are used to establish boundaries of the space. This space is
respected by other people and only participants are allowed to access to it,
therefore the intrusion of a stranger causes discomfort. In our path planner,
human friendly paths are generated by including a “Social Filter” which
transforms those spaces into corresponding cost functions which lead the
robot to avoid them. As a result, the choice of a best path done by RiskRRT
is based on the “probability of success” calculated for every partial path
considering the probability of not encountering a collision along the path
and not entering in a personal space or an o-space [5].

2.3.1 Modeling Personal Space

We have modeled personal space as a mixture of two gaussians human cen-
tered, one for the front and one for the back of the space, the front is larger
as people is more sensitive to this space. Fig. 2 shows an example of personal
space as provided by the Social Filter.

Fig. 2 Personal space calculated by Social Filter Module. Height of the gaussian means
Risk of disturbance then maximum disturbance is located at human position.

2.3.2 Modeling o-Space

When more than two people are in conversation, they tend to make a for-
mation with circular shape. The o-space could be taken as a circle whose
center coincides with that of the inner space. For the specific case of two
people, some formations, called F-formations, have been identified as being
particularly frequent [13]. The social filter identifies individual F-formations
(Vis-a-vis, L-Shape, C-Shape or V-Shape) and builds the corresponding o-
space. in Fig. 3, the calculated o-space for a Vis-a-Vis interaction is shown.
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Fig. 3 O-space calculated by Social Filter Module for a Vis-a-Vis F-formation. Maxi-
mum risk of disturbance is located at o-space center, in the picture the disturbance is
represented by height of Gaussian.

3 Experimental Results

It is important to highlight that the proposed experimental platform is an
ongoing effort. Thus, the results described below should be considered pre-
liminary. We have conducted experiments both in simulation and with the
real platform as described in § 3.1 and 3.2, respectively.

Before going into the details of our results, it is convenient to discuss
the graphical elements we will use in our figures. In our tests, humans are
represented by a 3D model of a man or woman (4a), red points are used to
represent the personal space that should be avoided by the robot. Finally,
colored squares in front of the human represent a simple estimation of future
positions, with each color representing a different moment in time.

The wheelchair (Fig. 4(b) is represented by a 3D model of a wheelchair
surrounded by rounded points that represent explored RiskRRT nodes. As
in the case of people, different colors are associated with different moments
in time. The size of the points represents the computed risk of navigation to
that position, where larger points mean bigger risks. Finally, a red solid line
is used to represent the path to be followed, with a blue arrow indicating the
robot’s goal.

3.1 Simulation

3.1.1 Test scenarios

The tests focused on two main functions: predictive navigation and socially
acceptable navigation. In the first case, people interfered with the robot’s
plans by either following the same path than the robot in the opposite direc-
tion or intersecting it at some point. In both cases the robot had to anticipate
the human trajectories and generate an alternative collision-free plan.
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(a) (b)

Fig. 4 (a) Human visualization and symbols meaning; (b) Robot visualization and
symbols meaning

In the second case, we aimed to assess the capability of the robot to avoid
disturbing or causing discomfort to persons that were not moving but were
interacting with each other. People were arranged in a manner that the direct
path to the robot’s goal would be inside a social interaction zone, so a straight
movement to the goal would violate the interaction zone and therefore, the
robot had to find alternative paths.

3.1.2 Prediction and Navigation

We have conducted extensive tests of the RiskRRT algorithm in simulation.
Fig. 5 shows one iteration of the navigation main loop. As it can be seen, the
resulting trajectory differs from optimal trajectories obtained by traditional
planning algorithms, the robot actually opts for a larger trajectory that avoids
obstructing the moving pedestrians.

In all our simulations the speed of pedestrians has been fixed to one m/s
and maximum speed of our wheelchair is also one m/s.

We have performed a number of tests to assess the effect of including pre-
diction in our motion planning algorithm. Fig. 6 compares the paths that
were obtained using predictions of pedestrian movements (left column) with
those obtained without predictions (right column). The robot’s initial posi-
tion is on the left end of the corridor while the goal is at right end. Since the
corridor is narrow, the only way to avoid colliding or disturbing the pedes-
trian is by moving aside in the corridor opening before continuing to the goal.
In the figure, it is possible to see how, by using predictions, the wheelchair is
capable to detect a possible collision in the middle of the corridor (6 a)) and
to choose an alternative path to reach the goal. Without prediction it takes
a straight path to reach the goal which, at first does not seem to pose any
risk (6 b)) later, when the wheelchair detects the collision (6 d)) and tries to
avoid the person, it is already too late.
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Fig. 5 Predictive navigation example. RiskRRT selected a plan (red line) to the goal
(blue arrow). The chosen path leads the robot to pass by the back of the first person, and
then reduces the speed to let the second person to pass as well. With this strategy, the
robot minimizes the risk of collision and the discomfort caused for the two pedestrians.
Once second person has passed, the algorithm choses a straighter path to the goal.
Frames at the right of the figure show that estimated risk is bigger at future positions of
the wheelchair (circles) which are close to predicted positions of pedestrians (squares).

3.1.3 Socially Acceptable Navigation

In order to test socially acceptable behavior, we conducted several simulation
tests. Our first test scenario consisted of two interacting people, together with
the wheelchair. We realized thirty executions of the planner in very similar
conditions, as it can be seen in Fig. 7, when the social filter is off, the plans
do avoid people but do not respect social space. When the social filter is
turned on again, all the plans managed to respect interaction space without
disturbing the involved people.

3.2 Real platform

3.2.1 Experimental platform

Our mobile platform (Fig. 8(b)) is a robotic wheelchair manufactured by
BlueBotics for the European project MOVEMENT. It is built on a mobile
base equipped with a SICK LMS-200 LIDAR, and a Microsoft Kinect RGBD
camera. The wheelchair is also equipped with an on-board computer to take
care of the low-level hardware control tasks, on top of that it also carries a
notebook computer with the navigation, prediction and tracking software.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 6 Qualitative comparison of predictive navigation (first column) vs non predictive
navigation (second column). Prediction helps to discover future high-risk states (a) and
anticipate avoidance paths to finally reach the goal (g). Without prediction avoidance
begins too late (f) and a collision is unavoidable (h).

In addition to the mobile platform, there is also an external camera
(Fig. 8(a)) overlooking the test environment. It is connected to an external
computer that communicates with the wheelchair via wireless network.

From the software perspective, the system has been implemented as a num-
ber of independent modules using the Robot Operating System (ROS) [14].

3.2.2 Motion Prediction

The proposed prediction algorithms has been extensively validated and com-
pared about other state of the art techniques [9]. Our approach consistently
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(a) (b) (c)

Fig. 7 Socially acceptable navigation. Each figure shows a sample of generated plans
(in red) for thirthy executions of RiskRRT: a) without social filter social spaces are not
respected, b) and c) with social filter, navigation is socially acceptable. In c) people
are looking towards walls, therefore there is no social interacting zone, then navigation
respects only their personal spaces.

Camera

Robotic

wheelchair

remote computer

(tracker)

tracked persons

wireless

connection

(a) Overview of the full experimental setting. (b) Robotic wheelchair.

Fig. 8 Experimental platform.

yields comparable predictions with much smaller models and is able to update
its knowledge as new motion patterns are observed.

To validate the results obtained with our predictor, the scenario chosen to
conduct the experiments is the main hall of INRIA Rhône Alpes (Fig. 9(a). It
is an interesting choice as it has a large flow of people during different times
of the day, entering and leaving the building during lunch hours and at the
beginning and the end of a working day. These conditions provide a realistic
and challenging place to conduct experiments on dynamic environments.

The GHMM has been trained using a set of 190 real trajectories. Volunteers
were asked to move naturally among interest points in the environment, as
the entrance of the hall, the two corridors and the two doors. Fig. 9(b) shows
a sample of these trajectories, where the tree interest points located at the
stairs illustrates the three separate paths that can be taken when climbing
it.

A great advantage of the GHMM is it capability to automatically create,
remove and merge redundant states while learning, which result in a more
efficient training compared to classical HMM. Fig. 10 illustrates the learned
states (represented by spheres) along the INRIA’s hall.
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Fig. 9 (a) INRIA Rhône Alpes entrance hall. (b) Real trajectories used in the GHMM
training.

Fig. 10 GHMM learned states (represented by connected nodes) and the prediction of
a goal for a person beginning to move from the left door (represented by larger nodes
at the left portion of the stairs.

3.2.3 Socially acceptable navigation

Test were conducted in the INRIA hall, linking together the tracking, social
filters and navigation modules, previously presented. The tracking module
fed information to the social filter module which computed social interaction
zones, according to the orientation and position of humans in the scene.

Fig. 11(a) shows one image of two persons interacting while the robot
passes by, with a researcher closely following. Fig. 11(b) shows the same situ-
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ation but taken from the overhanging camera linked to the tracker computer,
where the robot position, its plan and intended destination can be seen.

(a) (b)

Fig. 11 (a) Experimental test with two interacting humans and a robotic chair navi-
gating among them. (b) Overview camera image of the test scenario with the robot plan
overlayed.

Several tests were conducted to evaluate the capability of the robot to
avoid zones that would cause discomfort to the people interacting with each
other. We also compared results with and without the social filter module,
to demonstrate that not taking into account the zones of social interaction
would result in paths that are shorter but “rude” or even frightening.

Fig. 12 shows the two experiments that were performed. The image shows
roughly the same initial configuration for the robot and the interacting per-
sons, as well as the same goal. The only difference is that, in the left column
the social filter has been disabled while in the right one it is active, which is
illustrated by the point cloud between persons.

Due to the absence of a social space, in the left column images, the planning
algorithm treats the humans are simple obstacles, and the chosen path is the
one that moves straight to the goal. However, when the social filter is active,
nodes that are generated inside the interaction zone are penalized with a high
risk, and then are excluded during the path search.

This example clearly shows that although a straight path to the goal can
be considered to be more efficient in terms of energy and total distance that
was traveled, it moves in such a way that it causes discomfort to interacting
groups of people in the environment. On the other hand, the example shown
in the right column, manages to avoid the zone of interaction, at the cost of
traveling a longer distance.
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(a) (b)

(c) (d)

Fig. 12 The robot is represented by a rectangle, the goal by the leftmost arrow, and
interacting people by black circles. Images (a,c,e) show the social filter module deacti-
vated, the resulting trajectory is shorter but socially unacceptable; (b,d,f) images shows
a trajectory that is longer but respects the social interaction zones displayed as clouds
of blue points.

4 Conclusions and future work

As we have mentioned above, the platform presented in this paper should
be considered work in progress. Nevertheless, we consider that the results
we have obtained until now are both relevant and promising and had been
instructive in relation to several aspects of the problem at the application
and the technical level:

• Socially acceptable behavior is very important. Even in our scripted tests,
both interacting people and the wheelchair’s user reported that they felt
very uncomfortable when the robot passed right through the middle of a
talking group.

• Predictive behavior leads to socially acceptable behavior. For example, when
pedestrians were passing through the robot’s path, it often happened that
it stopped (knowing that the path was going to be free) to let the person
pass. This seems to indicate that in many cases, knowing how people will
move, the most reasonable thing to do is to be polite. It also suggests game
theory as a possible way to analyze these interactions.

On the other hand, there are several open fundamental issues that need to
be addressed, in particular, the problem of defining proper ways of evaluating
comfort and social compliance has not been tackled here. The reason lies in
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the difficulty to put together experiments which really factor out all those
variables that are not being studied. For example, during our experiments,
we were applying questionnaires to the wheelchair passenger with very in-
conclusive results because the environment contained a flight of stairs going
down. The result was that people were too frightened about the wheelchair
falling there to be able to consider social discomfort.

As future work we plan to have the help of sociologists to aid in the
formulation of questionnaires that can better capture the variables we want
to study, as the comfort, for example. We also noticed that the reduced
size of the useful space of our test environment (approximately 70m2) posed
limitations to the variety of tests that we could perform. So future tests will
be conducted in a larger environment, free of risk factors (as stairs), with a
larger number of humans and more free space for the robot to maneuver, so
we can better explore the limitations and advantages of our techniques.
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