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Abstract— The objective of this paper is to present a strategy
to safely move a robot in an unknown and complex environment
where people are moving and interacting. The robot, by using
only its sensor data, must navigate respecting humans’ comfort.
To obtain good results in such a dynamic environment, a
prediction on humans’ movement is also crucial. To solve
all the aforementioned problems we introduce a suitable cost
function. Its optimization is obtained by using a new stochastic
and adaptive optimization algorithm (CAO). This method is
very useful in particular when the analytical expression of
the optimization function is unknown but numerical values
are available for any state configuration. Additionally, the
proposed method can easily incorporate any dynamical and
environmental constraints. To validate the performance of the
proposed solution, several simulation results are provided.

I. INTRODUCTION

Robots navigating close to humans or involved in inter-
action tasks with humans must assure not only safe but
understandable behavior in order to prevent discomfort in
people. Recently, several possible solutions to this problem
have been proposed [1], [2], [3], [4]. Our work is placed
in this framework: we are interested in safely lead a robot
in an unknown and complex environment, where people are
moving and interacting, respecting the humans’ comfort. The
first step is to understand how humans manage the space
around them while navigating and how their decisions affect
the comfort of others. Many psychological theories have been
proposed to explain the relation between distance, visual
behaviors and comfort in humans (see [5] and references
therein). Intuitively people will become uncomfortable if
they are approached at a distance that is judged to be too
close: the greater invasion/intrusion the more discomfort or
arousal is experienced by the person. This simple idea was
formalized introducing the concept of personal space, firstly
proposed by Hall [6], which characterizes the space around a
human being in terms of comfort to social activity. In casual
conversations, people claim an amount of space related to
that activity. This space is respected by other people and
only participants have permitted access to it, therefore the
intrusion of a stranger causes discomfort [7]. It can be
assumed that people will engage in proxemic behavior with
robots in much the same way that they interact with other
people [8]. For example in [9], participants evaluated the
direct frontal approach as least comfortable for a bring object
task by finding robots motion threatening and aggressive.
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In this paper we are formulating the problem of social
robot navigation as an optimization problem where the
objective function includes, in addition to the distance to
goal, information about comfort of present humans. We use
a new stochastic and adaptive optimization method: the CAO
algorithm. Using this method we can also obtain an indirect
prediction on the people movement, which is a very crucial
point to get good results for a similar task.

The CAO methodology, which was recently introduced in
[10], [11], is able to efficiently handle optimization problems
for which an analytical form of the function to be optimized
is unknown, but the function is available for measurements
at each iteration of the algorithm employed to optimize it. As
a result, it perfectly suits the optimization problem presented
in this paper. Similar situations are very common in robotics
and the power of the CAO algorithm to handle such a
problem is already shown in [12], [13] for multi-robot coop-
erative coverage. The CAO approach extends the popular Si-
multaneous Perturbation Stochastic Approximation (SPSA)
algorithm [14]. The difference between the SPSA and the
CAO approach is that SPSA employs an approximation of the
gradient of an appropriate cost function using only the most
recent experiments, while the CAO approach employs linear-
in-the-parameters approximators that incorporate information
of a user specified time window of the past experiments to-
gether with the concept of stochastic candidate perturbations
for efficiently optimizing the unknown function.

It is finally mentioned that the CAO or the SPSA do not
create an explicit approximation or estimation of obstacles
location, humans’ movement prediction and other unknown
information; instead, they on-line produce a local approxima-
tion only of the unknown cost function to optimize. For this
reason, they require simple, and thus scalable, approximation
schemes to be employed.

A. Related Work

A proposal of human aware navigation was presented in
[1], where a motion planner takes explicitly into account
its human partners. The authors introduced the criterion
of visibility, which is simply based on the idea that the
comfort increases when the robot is in the field of view
of a person. Our assumption is in some way the opposite
of the last criterion: the field of view shows the point of
interest of a person then, if the robot enters it, the activity
of the person will be interrupted decreasing the comfort
function. The work presented in [3] proposed rules that a
single robot should obey in order to achieve not only a
safe but also a least disturbance motion in a human-robot
environment. It is considered the fact that both humans



and robots have their sensitive zones, depending either on
their security regions or on psychological feeling of humans.
Personal space, o-space and their relation to comfort were
addressed in [4], where a risk based navigation was extended
to include risk due to discomfort. Human’s movement is
supposed to be known by learning of typical trajectories in
a particular environment. In [2] a generalized framework
for representing social conventions as components of a
constrained optimization problem was presented and it was
used for path planning and navigation. Social conventions
were modeled as costs for the A* planner with constraints
like shortest distance, personal space and pass on the right. In
contrast with the previous works, we can take advantage of
information about past people positions to obtain indirectly a
humans’ movement prediction. This fundamental advantage
is based on the possibility to work with an unknown objective
function.

The rest of the paper is organized as follows: before
to present in details the particular problem we want to
solve, in next section we explain the main concepts of
the adopted method and its mathematical properties; section
III formulates the problem approached in this paper and
it shows how the proposed optimization method can be
applied to find a solution. The performance of the proposed
approach is presented in section IV, where several simulation
results are shown and the experimental platform where the
algorithm will be tested is described. Finally, in section V,
the conclusions of this work and possible future extensions
are drawn.

II. THE CAO APPROACH

The Cognitive-based Adaptive Optimization (CAO) ap-
proach, recently proposed [10], [11], is a new stochastic op-
timization algorithm very useful if the analytical expression
of the function to optimize is unknown. Let us suppose to
have an optimization function depending on a set of variables
x
(1)
k , . . . , x

(M)
k (e.g., the robot’s positions):

Jk = J
(
x
(1)
k , . . . , x

(M)
k

)
(1)

where k = 0, 1, 2, . . . denotes the time-index, M the state’s
dimension, Jk the numerical value of the optimization func-
tion at the k-th time-step and J is a nonlinear function which
depends, apart from the explicit variables, on the particular
environment where the robot lives.

Due to a lack of information, like for example particular
environment characteristics, the explicit form of the function
J is not known in most practical situations; as a result,
standard optimization algorithms (e.g. steepest descent) are
not applicable to the problem in hand. However, in most
practical cases the current value can be estimated, e.g. from
the robot’s sensor measurements. In other words, at each
time-step k, an estimate of Jk is available through sensor
measurements,

Jnk = J
(
x
(1)
k , . . . , x

(M)
k

)
+ ξk (2)

where Jnk denotes the estimate of Jk and ξk denotes the
noise introduced in the estimation of Jk due to the presence
of noise in the robot’s sensors.

Apart from the problem of dealing with a criterion for
which only a sensor-based information is available, an ef-
ficient algorithm for real applications has additionally to
deal with the problem of restricting the state variables so
that obstacle avoidance as well as dynamical constraints
are met. In other words, at each time-instant k, the vectors
x
(i)
k , i = 1, . . . ,M should satisfy a set of constraints which,

in general, can be represented as follows:

C
(
x
(1)
k , . . . , x

(M)
k

)
≤ 0 (3)

where C is a set of nonlinear functions of the state variables.
As in the case of J , the function C depends on the particular
environment characteristics (e.g. location of obstacles, terrain
morphology) and an explicit form may be not known in
many practical situations; however, it is natural to assume
that during the task is possible to get information whether a
particular selection of state variables satisfies or violates the
set of constraints (3).

Hence, the optimization problem can be described as the
problem of changing x

(1)
k , . . . , x

(M)
k to a set that solves

the following constrained optimization problem: maximize
(1) subject to (3). As already noticed, the difficulty in
solving in real-time and in real-life situations this constrained
optimization problem lies in the fact that explicit forms for
the functions J and C are not available.

As a first step, the CAO approach makes use of function
approximators for the estimation of the unknown objective
function J at each time-instant k according to

Ĵk

(
x
(1)
k , . . . , x

(M)
k

)
= ϑτkφ

(
x
(1)
k , . . . , x

(M)
k

)
. (4)

Here Ĵk denotes the approximation/estimation of J gener-
ated at the k-th time-step, φ denotes the nonlinear vector
of L regressor terms, ϑk denotes the vector of parameter
estimates calculated at the k-th time-instant and L is a
positive user-defined integer denoting the size of the function
approximator (4). The parameter estimation vector ϑk is
calculated according to

ϑk = argmin
ϑ

1

2

k−1∑
`=`k

(
Jn` − ϑτφ

(
x
(1)
` , . . . , x

(M)
`

))2
(5)

where `k = max{0, k−L−Th} with Th being a user-defined
nonnegative integer. Standard least-squares optimization al-
gorithms can be used for the solution of (5).

Remark 1: In order for the proposed methodology to
guarantee with efficient performance, special attention has
to be paid in the selection of the regressor vector φ. The
particular choice adopted in this paper is described in section
III. �

As soon as the estimator Ĵk is constructed according to
(4), (5), the set of new state variables is selected as follows:
firstly, a set of N candidate state variables is constructed



according to

xi,jk = x
(i)
k + αkζ

i,j
k , i ∈ {1, . . . ,M}, j ∈ {1, . . . , N} , (6)

where ζi,jk is a zero-mean, unity-variance random vector with
dimension equal to the dimension of x(i)k and αk is a positive
real sequence which satisfies the conditions:

lim
k→∞

αk = 0,

∞∑
k=1

αk =∞,
∞∑
k=1

α2
k <∞ . (7)

Among all N candidate new variables x1,jk , . . . , xM,j
k , the

ones that correspond to non-feasible variables, i.e. the ones
that violate the constraints (3), are neglected and then the
new state is calculated as follows:[
x
(1)
k+1, . . . , x

(M)
k+1

]
= argmin

j ∈ {1, . . . , N}
xi,jk not neglected

Ĵk

(
x1,jk , . . . , xM,j

k

)

The idea behind the above logic is simple: at each time-
instant a set of many candidate new state variables is
stochastically generated and the candidate, among the ones
that provide with a feasible solution, that provides the “best”
estimated value Ĵk of the optimization function is selected
as the new set of state variables. The random choice for the
candidates is essential and crucial for the efficiency of the
algorithm, as such a choice guarantees that Ĵk is a reliable
and accurate estimate for the unknown function J ; see [10],
[11] for more details. The next theorem summarizes the
properties of the CAO algorithm described above:

Theorem 1: Let x(1
∗), . . . , x(M

∗) denote any local mini-
mum of the constrained optimization problem. Assume also
that the functions J , C are either continuous or discon-
tinuous with a finite number of discontinuities. Then, the
CAO algorithm as described above guarantees that the state
x
(1)
k , . . . , x

(M)
k will converge to one of the local minima

x(1
∗), . . . , x(M

∗) with probability 1, provided that the size
L of the regressor vector φ is larger than a lower bound L̄.

The proof of this theorem, not presented here for brevity
purposes, is among the same lines as the main results of
[10], [11]; the main difference is that while in that case it
is established that the CAO algorithm is approximately a
gradient-descent algorithm, the CAO algorithm used in this
paper is proven to be approximately a projected gradient-
descent algorithm.

Remark 2: As already noticed in section I, the CAO al-
gorithm requires only a local approximation of the unknown
function J and as a result the lower bound L̄ has not to
be large (as opposed to methods that construct a global
approximation of the function J ). Although, there exist no
theoretical results for providing the lower bound L̄ for the
size of the regressor vector φ, practical investigations on
many different problems (even in cases where the dimension
of the variables to be optimized is as high as 500; see [10]-
[11] for more details) indicate that for the choice of the
regressor vectors according to Remark 1 such a bound is
around 20. �

III. PROPOSED SOLUTION

In this section we formulate the problem of social robot
navigation and we show how the proposed optimization
algorithm can be applied in practice to the problem studied
in this paper. Furthermore, we discuss how it is possible to
include a prediction of humans’ motion by using the CAO
algorithm.

Our intent is to safely move a robot in a complex and
unknown environment respecting the comfort of the people
moving in. Let x(R)

0 be the robot start position and let
x(G) be the goal position. Our intent is to move the robot
from x

(R)
0 to x(G) minimizing the discomfort of humans

located at positions {p(i)}. The discomfort function has
two components, one for the invasion of Personal Space
(dis(PS)) and the other for invasion of Information Process
Space (dis(IPS)), both of them explained later in this
section. To fulfill both the tasks of reaching the goal and
respecting the people, we define the optimization function in
the following way:

J = λ ∗ (dis(PS) + dis(IPS)) +D(x(G)) (8)

where λ is a constant parameter and D(x(G)) is a function
depending on the distance to the goal. In our case it is the
Euclidean distance.
The difference with respect to the general presentation of the
algorithm, provided in section II, is that now the cost function
depends on both active variables (the robot’s position x(R))
and passive variables (humans’ positions {p(i)}). This means
that now the cost function can be expressed in the form:

J = J(x(R); {p(i)}) (9)

and only the controllable components x(R) are perturbed to
generate the candidate new positions.

A. Discomfort model

Fig. 1. We consider as discomfort the invasion made to humans’ space by the robot,
specifically, a) Personal Space b) Information Process Space or c) o-space.

Since comfort is a subjective notion it is clear that it cannot
be measured directly by any sensor, however studies have
been developed to explain how distance and visual behavior
affect comfort in humans (see [5] for a review). Some
other works have studied the visual behavior of pedestrians
when navigating: for example in [15] authors explored the
size and the shape of Information Process Space (IPS), in
which a pedestrian takes into account other pedestrians and
obstacles for calculating next moves and where psychological



comfort is evaluated (this space can be related to visual field).
Inspired by these works, our model considers as discomfort
the invasion made to humans’ space, specifically personal
space [6], o-space [7] and Information Process Space [15], by
the robot. A representation of these spaces can be observed
in Fig. 1. We assume that the discomfort will be higher in the
spaces previously mentioned and we propose a function that
approximates them. The function to represent IPS is inspired
on the representation of the Doppler effect which establishes
that the perception in the frequency of a sound varies with
the movement of source and observer. The source of sound
is a pedestrian that moves with a constant velocity and all
the other points are observers which do not move. Then the
equation is:

f ′ =
c

c− vs cos θs
f , (10)

where f is the frequency emitted by the source, f ′ is the
frequency perceived by the observer, c is the velocity of
sound, vs is the velocity of the source and θs is the angle
between the direction of the source and the direction of the
line that links observer and source. The numerical values of
the parameters in eq. (10) have been determined empirically
to best adjust the results for IPS in [15]. They are c = 3.43,
vs = 3.0 and f is determined in function of distance as
stated in next equation:

f =


1 if d < de

1−
(
d−de
dl

)
if de ≤ d ≤ de + dl

0 if d > de + dl

(11)

where d is the distance from the human’s position, de is the
main radius of IPS effect and dl is the range where the IPS
loses its effect. In our current implementation de = 4.5 and
dl = 4.5.

(a) (b)

(c)

Fig. 2. Models implemented to represent discomfort in humans’ spaces: (a) Personal
Space of a human in (0,0) and orientation of 90 degrees. (b) IPS for a human in (0,-4.5)
and orientation of 90 degrees. (c) O-space for two humans in positions (-0.85,-4.5) and
(0.85,-4.5) and orientations of 30 and 150 degrees, respectively. Higher discomfort in
darker red, lower in lighter blue.

Fig. 3. An example of prediction: the robot anticipates humans’ movements
and avoids them.

When two people are interacting the o-space is created by
the intersection of the two IPS, as we can see in the case
presented in Fig. 2 (c). Finally, we use a Gaussian function
centered on the pedestrian position to represent the Personal
Space; the front is wider than the back as presented in [2].
Using these equations we can get the next graphics for the
models: the first one is the Personal Space for a pedestrian
walking in the direction of y-axis, the second one the IPS for
the same case and the third one shows the resulting o-space
for two pedestrians in conversation. The robot must avoid
the red regions while navigating.

B. Movement Prediction

As already stated, our intent is to consider a dynamic envi-
ronment where the people {p(i)} are moving. The objective
function is then time-dependent and in general it will be
different for each time step:

Jt = J(x(R); {p(i)t }) . (12)

In this case, in order to solve the optimization problem,
i.e. finding the optimal next robot position, the result can
be considerably improved if we consider the function Jt+1

instead of Jt, where:

Jt+1 = J(x(R); {p(i)t+1}) . (13)

This function is obviously unknown at time t but it could be
approximated if a prediction model is available. Indeed, we
can express the positions {p(i)t+1} by means of a limited set
of q past configurations

{p(i)t+1} = g({p(i)t }, ..., {p
(i)
t−q}) (14)

where the new function g represents the prediction model.
In our case we do not assume any particular model and the
function g is to consider completely unknown. Hence also
the function

Jt+1 = J(x(R); g({p(i)t }, ..., {p
(i)
t−q})) (15)

is now unknown. The strategy to approach the problem is
not to explicitly predict the humans’ movement but try to
directly approximate the cost function (15) using its available
past values. To do this in practice, we construct at each time
step an approximator Ĵt, like in (4), of the unknown function
Jt+1 using the last m > q numerical values of Jt such that:

Ĵt(x
(R)
t ; {p(i)t−1}, ..., {p

(i)
t−q−1}) ≈ J(x

(R)
t ; {p(i)t }) . (16)



In this way, using the last available set of humans’ positions,
we have an indirect approximation of the humans’ movement
prediction and we obtain

Ĵt(x
(R); {p(i)t }, ..., {p

(i)
t−q}) ≈ Jt+1 (17)

i.e., the function we want to optimize.
Once the optimization problem is defined, a fundamental

point for a good behavior of the algorithm is an appropriate
choice of the form of the regressor vector φ, introduced
in equation (4). Several different choices for its explicit
expression are admissible and, for the particular application
treated in this paper, it was found that it suffices to choose
the regressor vector as follows:

1) choose the size of the function approximator L to be
an odd number;

2) select the first term of the regressor vector φ to be the
constant term;

3) select randomly the next (L − 1)/2 terms of φ

to be any 2nd-order terms of the form x
(i)
a · x(j)b

[with a, b ∈ {1, . . . ,dim(x(i))}, i, j ∈ {1, . . . ,M}
randomly-selected positive integers];

4) select the last (L − 1)/2 terms of φ to be any 3rd-
order terms of the form x

(i)
a · x(k)b · x

(j)
c [with a, b, c ∈

{1, . . . ,dim(x(i))}, i, k, j ∈ {1, . . . ,M} randomly-
selected positive integers].

After the setting of the regressor vector φ and once the
values of the cost function are available for measurement, it
is possible to find at each time step the vector of parameter
estimates θk and thus the approximation of the cost function
Ĵk. Then, another important choice in order to assure the
convergence of the algorithm is the expression of αk, defined
in equation (6). A typical choice for such a sequence is given
by

αk =
γ

(k + 1)η
, (18)

where γ is a positive user-defined constant and η ∈ (0, 0.5).
Remark 3: Please note that the CAO algorithm’s compu-

tational requirements are dominated by the requirement for
solving the least-squares problem (5). As the number of free
parameters in this optimization problem is L, most popular
algorithms for solving least-squares problems have, in the
worst case, O(L3) complexity. �

IV. PERFORMANCE EVALUATION

In this section several scenarios are presented to show the
execution of our algorithm in simulation. The first scenario
is shown in Fig. 4: in this case five humans are present, three
of them are moving and two interacting. The robot starts at
(1,1) and reaches its goal while avoiding people and o-space
of interaction. In Fig. 5 four different and more complex
scenarios are presented. In (a) a robot has to pass through
a corridor while two humans are chatting in the middle. It
is possible to see how the robot is able to understand the
interaction and to avoid them without disturbing. We can
notice how the method evaluates many points that fall in
the shortest path but finally can found a more comfortable

way. In Fig. 5(b), the robot start position is aligned with
the goal position but as one people is looking to the walls
the chosen path guides the robot toward the middle of the
corridor and then to the goal. We can remark that in this
case, since the two people are not interacting, the robot can
pass between them without trouble. A representation of a
room with people inside is exhibited in Fig. 5(c). Here the
chosen path does not interrupt any human. Last example is
shown in Fig. 5(d), where the robot respects o-space of the
group and p-space of humans. Note that in every simulation
the presence of obstacles does not create any problem to
the robot navigation. Additionally, the proposed algorithm,
due to the random generation of next state configuration, is
able to overcome many of typical local minima generated by
obstacle avoidance problems.

(a) (b)

(c) (d)

Fig. 5. More simulations with different scenarios. Start positions are in
green, goal positions in red. In (a) the robot decides to take a path that
minimizes discomfort of interacting humans. In (b) a similar configuration
but humans are not interacting. In (c) and (d), two different complex
scenarios where the robot’s trajectories respect people comfort.

A. Experimental platform

The current approach is being implemented in our ex-
perimental platform, an automated wheelchair (Fig. 6(a))
equipped with two Sick lasers and a Microsoft Kinect,
running ROS (Robotic Operating System) for achieving
semi-autonomously mobility actions commanded by the
wheelchair’s user. Laser permits us to build a map of the
environment, like shown on the bottom of Fig. 6(b). Data
coming from the Kinect will allow us to have position and
orientation of pedestrians in the scene.

V. CONCLUSIONS AND FUTURE WORK

In this paper we have presented a new stochastic opti-
mization algorithm to move a robot in a complex, dynamic
and unknown environment taking into account the respect



(a) (b) (c)
Fig. 4. Simulation of the robot navigating in an environment populated by people at three different times. Three humans walking and two in conversation.
The discomfort function is shown on the top. People are represented by circles, robot’s positions by small triangles, in green and red initial and goal
position respectively.

(a) (b)

Fig. 6. Experimental platform: in (a) the wheelchair, on the top of (b) the
data provided by the kinect, on the bottom the final map.

of humans’ comfort. In particular, the proposed approach
presents the following advantages:
• It does not require any a priori map of the environment
• It can include a prediction of the humans’ movement
• It can easily incorporate any kind of dynamical and

environmental constraints
• The random next-state searching allows us to overcome

many local minima
• Low computational complexity, allowing real time im-

plementations
The results obtained in this work are a strong motivation

to continue the research and to implement the method in a
real dynamic environment using the wheelchair previously
described.
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