Mobility Assistance and Human Aware Navigation

Anne Spalanzani INRIA e-Motion team Grenoble

Motivation and Problem

- Transport of people with reduced mobility using a robotic wheelchair in dynamic environments
- Navigation must take into account :
 - Partial and uncertain knowledge of the environment ;
 - Prediction of agents' behavior ;
 - Comfort and safety ;
 - Social conventions.

Mobility Assistance and Human Aware Navigation: 3 topics

- Autonomous navigation in dynamic and human populated environments (Jorge Rios-Martinez)
- Navigation using a leader (Procopio Stein)
- Human-Robot interface and User intentions understanding (Arturo Escobedo)

otion

Topic 1: Autonomous navigation in dynamic and human populated environments

Proposed solution :

- Integrated motion-planning and mid-term motion prediction;
- Interaction detection for socially acceptable robotmotion.

Navigation : RiskRRT [Fulgenzi 2009]

Based on the classic RRT framework [2], it takes into account uncertainty of environment sensing and prediction:

- Static obstacles are represented by an occupancy grid.
- Dynamic obstacles are represented by an estimated position and a velocity.
- Prediction of motion for dynamic obstacles is implemented using motion patterns.

Nodes of the tree contain not only position but also a feasible speed for the robot at that time.

The best plan is returned according to a time threshold.

[1] C. Fulgenzi, A. Spalanzani, and C. Laugier, "Probabilistic motion planning among moving obstacles following typical motion patterns", in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2009.
[2] S. LaValle and J. Kuffner, J.J., "Randomized kinodynamic planning," Robotics and Automation, 1999.

RiskRRT planner: Risk of collision

The algorithm relies on the Risk of collision (collP):

$$collP = Pcs + (1 - Pcs) * Pcd$$

and the weight function (W)

$$W = f(w_collP, d)$$

d = distance to goalw_collP = the worst collP among previous nodes in the same branch.

calculated on each node, to choose the best path.

Best path is the partial branch that finishes in the node with minimum W.

RiskRRT planner: illustration

Trajectory prediction

- Humans do not move at random, instead they follow typical paths
- Modeling typical paths:
 - Gaussian Processes [Tay 2007, Ellis 2009, Kim 2011]
 - Growing Hidden Markov Models [Vasquez 2009]

Human management of space

- Personal Space [3]

Zone around the human body that people feel is "their space". In that zone others cannot intrude without arousing discomfort.

- O-Space [4]

Groups can establish a joint or shared area which only participants have permitted access to it, they protect it and others tend to respect it.

Disturbance to these spaces causes discomfort to people

[3] Hayduk, L. A. (1978). Personal space: An evaluative and orienting overview. Psychological Bulletin .

[4] Kendon, A. (2010). Spacing and orientation in co-present interaction. In Development of Multimodal Interfaces: Active Listening and Synchrony, volume 5967 of Lecture Notes in Computer Science .

The Social Filter

From the models of social conventions, a <u>Risk of disturbance</u> is included as <u>part of</u> <u>the Risk of Collision</u> in the RiskRRT algorithm.

Ict-pamm meeting December 2012

Planning without Social Filter

 Planning with Social Filter back to back

viz a viz: interaction zone

Navigation using social conventions and prediction

Topic 2: Navigation using a leader

take advantage of moving agents during navigation in dynamic environments

Main advantages:

- Reduce computational requirements
- Escape Freezing Robot Problem
- Better acceptance by humans
- Avoid undetected obstacles (spilled coffee)

Motion

Innorobo 2012

Algorithm for selecting and following a leader

Experiments

REAL DATA + SIMULATION

- GHMM trained with real data
- Simulated Robot
- Fiducial markers were worn as hats
- Overhanging camera + wide angle lens
- People moved among interest points
 - Two types of tests were conducted:
 - leader detection and following
 - leader following among people

Experiments: real data + sim

leader detection and following

leader following among people

people naturally give room for the leader to pass. the robot benefits from this space

- Goal: Leader following to escape frozen situations;
- Reduction of 25% in time spent to reach goal, when following a leader.

Topic 3: Understanding the user intention

Ict-pamm meeting December 2012

17

Human-Robot interface: Face Control

- Face pose estimation using random regression forests [Fanelli 2011]
- Angular speed proportional to face heading angle
- Linear speed remains constant (limitation)

Adding a new modality: Face Control + Voice Recognition

- Some simple voice commands are employed to improve usability. (Go, Back, Brake, Faster, Slower).
- Linear speed can be adjusted by the user.
- Voice recognition -> pocketsphinx (Carnegie Mellon University).

Main Drawbacks

- Fatigue due to prolonged focusing while driving.
- Unwanted movements when the user moves the head without really aiming to control the wheelchair.

User Intention Estimation FROM FACE POSITION.

Idea: Use of contextual information (important places in the environment), user habits, and orders from a face tracking system to infere the user's desired destination.

User intention: bayesian network model

USER INTENTION Bayesian MODEL

$$P(G_t^i | C_t X_t) = \eta P(C_t | X_t G_t^i) \sum_j P(G_t^i | G_{t-1}^j) P(G_{t-1}^j | C_{t-1} X_{t-1})$$

 $P(G_t^i | C_t X_t): \text{ Current probability for the Goal (i) to be the intended destination.}$ $P(C_t | X_t G_t^i): \text{ User model, Probability of pointing in the direction of the goal.}$ $P(G_t^i | G_{t-1}^j): \text{ Probability of changing the previous estimated goal.}$ $P(G_{t-1}^j | C_{t-1} X_{t-1}): \text{ Previous Estimated Probability}$ $\eta: \text{ Proportionality Constant}$

THANK YOU FOR YOUR ATTENTION !

mathématiques

50 commandes

- Trouve moi la sortie
- Trouve moi le banc
- Fais-moi passer le passage piéton
- Passe la porte
- Prend le couloir
- Donne moi l'escalier
- Continue avance
- Trouve le passage

