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From Reeds and Shepp’s to Continuous-Curvature Paths

Thierry Fraichard and Alexis Scheuer

Abstract—This paper presents Continuous Curvature (CC) Steer, a
steering method for car-like vehicles, i.e., an algorithm planning paths in
the absence of obstacles. CC Steer is the first to compute paths with: 1) con-
tinuous curvature; 2) upper-bounded curvature; and 3) upper-bounded
curvature derivative. CC Steer also verifies a topological property that
ensures that when it is used within a general motion-planning scheme, it
yields a complete collision-free path planner. The coupling of CC Steer
with a general planning scheme yields a path planner that computes
collision-free paths verifying the properties mentioned above. Accordingly,
a car-like vehicle can follow such paths without ever having to stop in order
to reorient its front wheels. Besides, such paths can be followed with a
nominal speed which is proportional to the curvature derivative limit. The
paths computed by CC Steer are made up of line segments, circular arcs,
and clothoid arcs. They are not optimal in length. However, it is shown
that they converge toward the optimal “Reeds and Shepp” paths when the
curvature derivative upper bound tends to infinity. The capabilities of CC
Steer to serve as an efficient steering method within two general planning
schemes are also demonstrated.

Index Terms—Nonholonomic vehicles, smooth path planning.

I. INTRODUCTION

Ever since Laumond’s pioneering paper in 1986 [1], much research
has addressed collision-free path planning for nonholonomic systems
in general, and car-like vehicles in particular. Nonholonomic systems
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are subject to kinematic constraints that restrict their admissible di-
rections of motion. Nonholonomy makes path planning more difficult,
since the paths planned must take into account the constraints imposed
both by the obstacles and the nonholonomic constraints (the reader is
referred to [2] for a recent and extensive review on this topic). Car-like
vehicles are archetypal nonholonomic systems. They can only move
forward or backward in a direction perpendicular to the orientation of
their rear wheels’ axle; besides, their turning radius is lower bounded
because of the mechanical limits on the steering angle.

The review of the research works that plan collision-free paths for
car-like vehicles shows that most of them use a “simplified” model for
the car-like vehicle (one with only three configuration parameters in
which the control is the angular velocity), and compute planar paths
made up of line segments connected with tangential circular arcs of
minimum radius, e.g., [3]–[6], etc. The reason for this must be that the
shortest path between two configurations for the simplified car is such
a path (result established first by Dubins [7] for the car moving forward
only, and later by Reeds and Shepp [8] for the car moving both forward
and backward).

However, the curvature of this type of path is discontinuous. Dis-
continuities occur at the transitions between segments and arcs and be-
tween arcs with an opposite direction of rotation. The curvature being
related to the front wheels’ orientation, if a real car were to track pre-
cisely such a path, it would have to stop at each curvature discontinuity
so as to reorient its front wheels. Curvature continuity is, therefore,
a desirable property. Besides, since the derivative of the curvature is
related to the steering velocity of the car, it is also desirable that the
derivative of the curvature be upper bounded so as to ensure that such
paths can be followed with a given speed (proportional to the curvature
derivative limit). Reference [9] was the first to recognize this issue and
to address the problem of computing continuous-curvature paths with
an upper-bounded curvature derivative; it introduced a model for the
car-like vehicle moving forward only, with curvature as an extra con-
figuration parameter in which the control is the angular acceleration
rather than the angular velocity. This paper follows in [9]’s footsteps.
It also addresses the problem of planning paths with: 1) continuous cur-
vature and 2) an upper-bounded curvature derivative for car-like vehi-
cles. In addition to that, however, it considers: 3) upper-bounded cur-
vature; 4) forward and backward motions; and 5) collision avoidance.

The approach we have chosen to solve the problem at hand relies
upon the design of a steering method, i.e., an algorithm that computes
a path between two configurations in the absence of obstacles. Given
such a steering method, it is possible to use it within a general mo-
tion-planning scheme such as the Probabilistic Path Planner (PPP)
[10], the Ariadne’s Clew Algorithm (ACA) [11], or the Holonomic
Path Approximation Algorithm [12], in order to deal with the obstacles
and solve the full problem (in these schemes, the steering method
is used along with a collision checker to connect pairs of selected
configurations).

The steering method is a key component in these planning schemes,
and the main contribution of this paper is the first steering method that
computes paths with: a) continuous curvature; b) upper-bounded cur-
vature; and c) upper-bounded curvature derivative for car-like vehi-
cles. Our steering method is topologically admissible, i.e., it verifies a
topological property [13] that ensures that the coupling with one of the
aforementioned planning schemes yields a complete (or probabilisti-
cally complete) collision-free path planner. Unlike [9] or [14], the focus
of our work is not on optimal path planning, and our steering method
does not compute minimal-length paths. However, it computes paths

whose length is close to the length of the optimal paths for the simpli-
fied car (as a matter of fact, when the curvature derivative limit tends
to infinity, the paths computed become Reeds and Shepp paths).

There are a number of research works that are relevant to the design
of a steering method such as ours; they are reviewed in Section II. Then
the model of the car is detailed in Section III, while the steering method
proposed is described in Section IV. Finally, Section V presents exper-
imental results for the steering method on its own, and embedded in
two general planning schemes.

II. RELATED WORKS

The first class of works related to the problem of computing contin-
uous-curvature paths falls into the “path-smoothing” class. The focus
is on turning a sequence of configurations (or a nominal route, such
as a polygonal line) into a smooth curve that is then passed to the
control system of the vehicle. The curves used fall into two categories:
1) curves whose coordinates have a closed-form expression, e.g.,
B-splines [15], quintic polynomials [16], or polar splines [17]; and
2) parametric curves whose curvature is a function of their arc length,
e.g., clothoids [18], cubic spirals [19], quintic G2-splines [20], or
intrinsic splines [21]. These approaches are interesting. Unfortunately,
issues such as completeness or topological admissibility are com-
pletely ignored. They usually make simplifying assumptions (on the
respective positions of the configurations that are to be connected, on
the type of path generated, etc.) that render them unsuitable for our
purpose.

More relevant to our problem are the works stemming from the re-
cent application of control-theory tools and ideas to study the con-
trollability of nonholonomic systems in order to derive novel steering
methods.

First, optimal control theory could be used to solve the problem at
hand [22]. Indeed, optimal-length paths would be the paths of choice
for a steering method. Unfortunately, optimal paths are extremely diffi-
cult to characterize, in general. This characterization is available for the
simplified car-like system [8], but not for the system considered herein.
Besides, there are indications that the optimal paths for the system con-
sidered herein are, in general, irregular, and cannot be used in practice,
since they involve infinite chattering (cf. Section III-B). Nevertheless,
it would be possible, in theory, to compute an approximation of the op-
timal paths using a numerical optimizationmethod, such as the one pre-
sented in [23]. In practice, however, such a method poses a number of
problems (cf. the experimental results reported in [24]). Among them,
the fact that the convergence to the optimum is not guaranteed, meaning
that the topological admissibility is not guaranteed, either.

Second, given that the car-like vehicle is similar (from a control point
of view) to the system made up of a differential-drive vehicle pulling
one trailer, it could be possible to use one of the steering methods that
were proposed for such a system. These steering methods exploit dif-
ferent properties of such a system, namely, nilpotence [25], chained
form [26], and differential flatness [27]. We briefly review them now.
The reader is referred to [28] for underlying theoretical details (about
these properties, in particular), and to [24] for an experimental com-
parison between these steering methods, when applied to the case of a
differential-drive vehicle pulling several trailers.
1) Nilpotence: Nilpotent systems were first studied in [25]. For

such systems, it is possible to compute piecewise-constant controls,
steering the system exactly to the goal. The car-like vehicle is not
nilpotent, but it is possible to compute a nilpotent approximation of
such a system [29] and use it to steer the vehicle. Unfortunately, the
goal configuration would never be reached exactly.
2) Chained Form: As for systems that can be converted into

chained form [26], it is possible to steer them exactly to the goal
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using either sinusoidal [26], polynomial [30], or piecewise-constant
[31] controls. For these steering methods, path planning takes place
in a space defined by parameters whose physical meaning is unclear.
The relationship between the shape of the path in the parameter space
and the shape of the corresponding path in the actual workspace is a
very complex one, to the extent that it is extremely difficult to obtain
topological admissibility (cf. [24]).

3) Differential Flatness: It is a property enjoyed by certain me-
chanical systems which was first studied in [27]. In this case, too, path
planning takes place in a space defined by parameters different, in gen-
eral, from the configuration parameters. Exploiting this property, [32]
designed an efficient steering method for differential-drive vehicles
pulling trailers, a method that was later adapted to the case of a car-like
vehicle [33]. This steering method, developed in parallel with the one
presented in this paper, is very close to being a good candidate to solve
our problem. It is topologically admissible, and it computes contin-
uous-curvature paths for car-like vehicles. However, it does not take
into account the upper-bounded curvature-derivative constraint nor the
upper-bounded curvature constraint (what it does is to compute a path
first, and then check afterwards that the upper-bounded curvature con-
straint is not violated).

III. STATEMENT OF THE PROBLEM

A. Model of the Car-Like Vehicle

As mentioned earlier, in order to address the curvature discontinuity
problem, [9] introduced the following model for a car-like vehicle A
moving forward only (Fig. 1):

_x

_y
_�

_�

=

cos �

sin �

�

0

v +

0

0

0

1

�: (1)

This model extends the well-known Dubins model [7] by considering
the car as a four-dimensional system, with the curvature � as an extra
configuration parameter (the three other configuration parameters are
(x; y), the coordinates of the reference pointR, and �, the main orien-
tation ofA). This system has two controls: 1) v, the driving velocity of
the rear wheels; and 2) �, the angular acceleration which is related to
_�, the steering velocity of the front wheels. Let b denote the wheelbase
of A, the following relationships hold:

� =
tan�

b
; � = _� =

_�

b cos2 �
: (2)

The focus in [9] is on shortest-path planning. A constant unit-driving
velocity is assumed, along with an upper bound on the angular accel-
eration (stemming from the fact that the steering velocity of an actual
car is limited), in other words

v = 1 and j�j � �max: (3)

Under these assumptions, planning a trajectory between two con-
figurations is equivalent to computing a continuous-curvature planar
curve, with a bound on the curvature derivative, between two points in
the plane with prescribed tangents and curvatures.

This model bounds the angular acceleration �, rather than the
steering velocity _� (although it is the steering velocity of A which is
physically limited). This choice is, in fact, conservative; it ensures that
the steering velocity limit is never violated, no matter what the value
of � is (indeed, 8� : _� � _�= cos2 �).

For our purpose, we keep [9]’s model and the constant unit-driving
velocity assumption. However, for further realism, we enrich the
model as follows. First, to allow backward motions, v can now
take two values: v = 1 (forward motion); and v = �1 (backward
motion). In other words, cusp points are now allowed. At a cusp, A

Fig. 1. Car-like vehicleA : R = (x; y) is the reference point and � the main
orientation. � is the steering angle and b the wheelbase.

instantaneously changes its motion direction, both its orientation and
curvature remaining continuous. Second, given that � is related to the
steering angle � and that � is mechanically limited, j�j � �max, a
bounded curvature constraint is introduced

j�j � �max = tan�max=b: (4)

Accordingly, our final model for A is given by (1) with

j�j � �max; jvj = 1; and j�j � �max: (5)

Henceforth, the term CC Car (for continuous-curvature car) is used
to denote a vehicle with such a model. Planning a trajectory for the CC
Car between two configurations is equivalent to computing a contin-
uous-curvature planar curve joining two points in the plane with pre-
scribed tangents and curvatures. Such a curve must verify the upper
bounds on its curvature and curvature derivative.

By design, such a curve can be followed at unit speed by A. To
enableA to follow it with a different constant speed vd, the curvature-
derivative limit should be set to �maxv

�1

d
.

B. Properties of the CC Car

Following the study of model (1) carried out by [9], [14], and [34],
the CC Car model (1)+(5) was studied by Scheuer in [35] and [36]. It is
established that the CC Car is small-time controllable [35, Th. 1]. The
set of configurations reachable from any configuration q before a time
t contains a neighborhood of q for any t. The condition of existence of
the optimal, i.e., shortest, paths is also established. In the absence of
obstacles, if a path exists between two configurations, then an optimal
path exists [35, Th. 2].

The nature of the optimal paths is more difficult to establish. How-
ever, [36] demonstrates that, for the CC Car moving forward only (v =
1), the optimal paths are made up of line segments, circular arcs of ra-
dius ��1max, and clothoid arcs1 of sharpness��max. It also demonstrates
that, whenever the shortest path includes a line segment (which is the
case as soon as the distance between the start and end configurations
is large enough), it involves infinite chattering. In other words, it con-
tains an infinite number of clothoid arcs that accumulate toward the
endpoints of the segment (these results are the extension of similar re-
sults obtained in the case of the model (1) by [9] and [14]).

Characterising the true nature of the optimal paths for the CC Car is
beyond the scope of this paper. Based on the results mentioned above,
it is conjectured that they will (at least) be made up of line segments,
circular arcs, and clothoid arcs, and that they will be irregular. This
prevented us from designing a steering method computing the optimal
path between two configurations. Instead, it prompted us to settle for
a steering method computing paths essentially made up of locally
optimal paths, i.e., line segments, circular arcs of radius ��1max, and
clothoid arcs of sharpness ��max.

1A clothoid is a curve whose curvature varies linearly with its arc length:
�(s) = �s + �(0); � is the sharpness of the clothoid.
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Fig. 2. Discontinuous curvature profile of a RS Path (left) versus piecewise-
continuous curvature profile of a CC Path (right). The part from a to b is a
clothoid arc.

IV. STEERING THE CC CAR

A. Principle

The steering method we have designed is called CC Steer. It com-
putes paths called CC Paths that are derived from “Reeds and Shepp’s”
paths (RS Paths) [8].

The RS Path between two configurations is the shortest path made up
of line segments and circular arcs of minimum radius ��1max. Its curva-
ture profile looks like the one depicted in Fig. 2. CC Paths are similar to
RS Paths, but in order to ensure curvature continuity, the circular arcs
are replaced by special transitions calledCC Turns, whose purpose is to
change the CC Car’s orientation. Their curvature varies continuously
and piecewise linearly from 0 up and then down back to 0. They are
made up of circular arcs of minimum radius ��1max and clothoid arcs of
sharpness j�j � �max (Fig. 2).

CC Turns and line segments are combined in order to form the CC
Paths (cf. Sections IV-B and IV-C). However, the CC Paths obtained
by combining CC Turns and line segments only cannot account for the
small-time controllability of theCCCar. To avoid this problem, an extra
type of CC Paths made up only of line segments and clothoid arcs of
sharpness j�j � �max is introduced (cf. Section IV-D).

B. CC Turns

1) General Case: In general, a CC Turn is made up of three parts:
a) a clothoid arc of sharpness � = ��max whose curvature varies from
0 to��max; b) a circular arc of radius���1max; and c) a clothoid arc of
sharpness ��, whose curvature varies from ��max to 0.

What happens when the CC Car follows a CC Turn is illustrated in
Fig. 3. Let qs = (xs; ys; �s; 0) be the start configuration. Without loss
of generality, it is assumed that qs = (0; 0; 0; 0) and that the CC Car
moves forward while turning to the left. First, it follows a clothoid arc
of length �max=�max and sharpness �max until it reaches qi

qi =

xi = �=�maxCf �2max=��max

yi = �=�maxSf �2max=��max

�i = �2max=2�max
�i = �max

(6)

with Cf and Sf , the Fresnel integrals. Then it follows a circular arc
of radius ��1max until it reaches qj = (xj ; yj ; �j ; �max). The center of
this circular arc, 
, is located at distance ��1max from qi in the direction
normal to �i


 =
x
 = xi � ��1max sin �i
y
 = yi + ��1max cos �i:

(7)

Finally, it follows a clothoid arc of sharpness��max until it reaches
the goal configuration qg = (xg; yg; �g; 0). Let � = (�g��s)mod2�
denote the change of orientation between qs and q. � is the deflection
of the CC Turn, and is used to characterize CC Turns. The deflection of
the CC Turn whose circular arc has zero length is �min = �2max�

�1
max.

It is the angular value of the circular arc of a CC Turn, i.e., �� �min,
that actually determines where the goal configuration is. The locus

Fig. 3. CC Turns. General case.

Fig. 4. CC Turns. “� = 0” and “0 < � < � ” cases.

Fig. 5. Curvature profile and track of an elementary path of sharpness � and
length l [37].

of the goal configurations is a circle C+

l (qs), henceforth called a CC
Circle, whose center is 
, and whose radius r is

r = x2
 + y2
: (8)

In addition, the angle � between the orientation of qg and the tangent
to C+

l (qs) at qg is constant; it is the opposite of the angle between the
orientation of qs and the tangent to C+

l (qs) at qs

� = atan (x
=y
): (9)

2) CC Turns of Small and Large Deflections: With the definition
above, a CC Turn makes a loop and intersects itself when the angle
of its circular arc becomes too important (Fig. 4). It can be shown that
self-intersection happens for deflections 0 < � < �min. In this case, we
propose to use instead a loopless and shorter path called an elementary
pathmade up of a clothoid arc of sharpness � � �max and a symmetric
clothoid arc of sharpness �� (Fig. 5). Such a path is feasible, and we



IEEE TRANSACTIONS ON ROBOTICS, VOL. 20, NO. 6, DECEMBER 2004 1029

Fig. 6. CC Turns. “� + � � � < 2�” case.

have shown in [38] that there is a unique� � �max such that qg belongs
to C+

l (qs)

� =
�(cos(�=2)Cf ( �=�) + sin(�=2)Sf ( �=�))2

r2 sin2(�=2 + �)
: (10)

As for the � = 0 case, the CC Turn reduces to the line segment of
length 2r sin�, so as to ensure that the goal configuration also belongs
to C+

l (qs) (Fig. 4).
Finally, since the CC Car can make backward and forward motions,

it is possible to further refine CC Turns so as to reduce their length.
Once qi is reached, it is shorter for CC Turns of large deflection to
back up to qj instead of moving forward (Fig. 6). Given that the angle
of the circular arc of a CC Turn of deflection � is � � �min when the
CC Car moves forward from qi to qj , and ���min�2� when it moves
backward, the backward motion is shorter when � � �min + �.

3) Properties of the CC Turns: In summary, a CC Turn allows the
CC Car to reach any goal configuration qg with a null curvature which
is located on the circle C+

l (qs), and such that the angle between the
orientation of qg and the tangent to C+

l (qs) at qg is constant. It is the
deflection associated with qg that determines the nature of the CC Turn.

• ��� = 0: The CC Turn is a line segment.
• 0 < ��� < ���min: The CC Turn is made up of a clothoid arc of
sharpness � � �max and a symmetric clothoid arc of sharpness
��.

• ���min � ��� < ���min + ���: The CC Turn is made up of a clothoid
arc of sharpness �max whose curvature varies from 0 to �max, a
forward circular arc of radius ��1max, and a clothoid arc of sharp-
ness ��max whose curvature varies from �max to 0.

• ���min + ��� � ��� < 2���: The CC Turn is made up of a clothoid
arc of sharpness �max whose curvature varies from 0 to �max,
a backward circular arc of radius ��1max, and a clothoid arc of
sharpness ��max whose curvature varies from �max to 0.

The above analysis was carried out for the case of the CCCarmoving
forward while turning to the left. The case where the CC Car is turning
to the right is dealt with in the same manner, it yields a symmetric CC
Circle C+

r (qs) (Fig. 7). Two similar CC Circles, C�l (qs) and C�r (qs),
are obtained when the CC Car moves backward (Fig. 7).

The arc length of a CC Turn depends upon its nature. Let l(�) denote
the arc length of a CC Turn of deflection �. It is defined as follows
(Fig. 8).

• ��� = 0: The CC Turn is a line segment of length l(0) = 2r sin�.
• 0 < ��� < ���min: Let � be the sharpness characterising the CC
Turn in this case: l(�) = 2

p
���1. l(�) increases monotonously

from 2r sin� to lmin = 2�max�
�1
max. lmin is the arc length of the

general CC Turn whose circular arc has zero length.
• ���min � ��� < ���min+���: In this case, the arc length of the CC Turn
is lmin plus the arc length of its circular arc: l(�) = lmin + (� �
�min)�

�1
max. l(�) increases linearly from lmin to lmin + ���1max.

Fig. 7. The four CCCirclesC (q ); C (q ); C (q ); andC (q ) attached
to q .

Fig. 8. Arc length of a CC Turn (� = 1; � = 1) as a function of �.

Fig. 9. How RS Paths are computed. Two circles of radius � are attached
to the start and goal configurations q and q . Then a tangent intermediate line
segment (or circular arc of radius � ) q q is used to connect two of these
circles.

• ���min + ��� � ��� < 2���: This is the same case as above: l(�) =
lmin+(2���+�min)�

�1
max. l(�) decreases linearly from lmin+

���1max to lmin + �min�
�1
max = 3�max�

�1
max.

C. From CC Turns to CC Paths

CC Steer computes CC Paths by combining CC Turns and line seg-
ments the same way circular arcs and line segments are combined to
form RS Paths (a basic illustration of how RS Paths are computed
is depicted in Fig. 9). Accordingly, CC Steer has to analyze the tan-
gency relationships that may exist between the two sets of four CC
Circles attached to the start and goal configurations, and line segments
or other similar CC Circles. However, due to the fact that the orien-
tation of the configurations located on the CC Circles make a con-
stant angle � with the tangent to these circles, the tangency relation-
ships considered here (henceforth denoted by �-tangency) is slightly
different from the classical one. Accordingly, before detailing how CC
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Fig. 10. �-tangent line segments between two CC Circles. Top: external.
Bottom: internal.

Steer operates (Section IV-C.3), we present the particulars of the �-tan-
gency. Two cases are considered: �-tangency between line segments
and CC Circles (Section IV-C.1), and �-tangency between CC Circles
(Section IV-C.2).

1) Line Segments-CC Circles �-Tangency: In Reeds and Shepp’s
case, two circles associated with two given configurations can be con-
nected by one of the tangent line segments existing between them. In
our case, however, the �-tangent line segments are different. Theymust
cross the CC Circles so as to make an angle � with the tangent at the
intersection points.

As in the regular tangent case, �-tangent line segments can be in-
ternal (i.e., separating) or external, depending on the type of CCCircles
that are to be connected. Fig. 10 illustrates how�-tangent line segments
are obtained in two cases (the other cases are symmetric and derived
similarly).

• ConnectingC+
r andC�

l
: The �-tangent line segment is external

and parallel to the line of centers
1
2 [Fig. 10 (top)]. A straight-
forward geometric analysis shows that the external �-tangent line
segment q1q2 exists iff

l(
1
2) � 2r sin� (11)

and its length is

l(q1q2) = l(
1
2)� 2r sin�: (12)

• Connecting C+
r andC�r : The �-tangent line segment is internal

and crosses the line of centers 
1
2 [Fig. 10 (bottom)]. Once
again, a straightforward geometric analysis shows that the in-
ternal �-tangent line segment exists iff

l(
1
2) � 2r (13)

and its length is

l(q1q2) = l(
1
2)2 � 4r2 cos2 �� 2r sin�: (14)

2) CC Circles �-Tangency: In Reeds and Shepp’s case, two circles
associated with two given configurations can also be connected by a
circle tangent to both of them [Fig. 9 (left)]. Similarly, two CC Circles
can be connected, thanks to a third CC Circle. In our case, however,
the tangency relationship between two CC Circles is different from the
classical tangency relationship existing between two circles. Two cases
arise, depending on whether there is a change of direction of motion
when passing from the first CC Circle to the second one.

Fig. 11. �-tangency between two CC Circles. Top: No change of direction of
motion. Bottom: change of direction of motion.

• No change of direction of motion: In this case, the �-tangency
condition between two CCCirclesC1 andC2 is the classical one.
C1 and C2 are �-tangent if they are in the disposition depicted
in the top part of Fig. 11. Let q1 denote the configuration located
at the contact point betweenC1 andC2, and that makes an angle
� with both C1 and C2. Then the path made up of the CC Turn
from qs to q1 and the CC Turn from q1 to qs is a valid CC Path.
q1 belongs to the line of centers 
1
2, and it exists iff

l(
1
2) = 2r: (15)

• Change of direction of motion: In this case, the �-tangency con-
dition between twoCCCirclesC1 andC2 is different.C1 andC2

are �-tangent if they are in the disposition depicted in the bottom
part of Fig. 11. Let q1 denote the configuration located at one of
the intersection points between C1 and C2, and that makes an
angle � with both C1 and C2. Then the path made up of the CC
Turn from qs to q1 (moving forward), and the CC Turn from q1
to qs (moving backward) is a valid CC Path. In this case, q1 does
not belong to the line of centers 
1
2, and it can be shown that
it exists iff

l(
1
2) = 2r cos�: (16)

3) Building CC Paths Using CC Turns: There is an infinite number
of ways to connect two given configurations with paths combining CC
Turns and line segments. It is the same for RS Paths, but the key re-
sult established by Reeds and Shepp [8] is that the shortest RS Paths
belongs to a set of nine families. The conjectured irregularity of the
optimal paths for the CC Car would rule out the determination of such
families. We settled for heuristically selected families instead. Our first
choice was to use the families determined by Reeds and Shepp (we
later experimented with an extended set of families but obtained mixed
results only [39]). These families are:

(i)(ii)(iii) CCC or CjCC or CCjC

(iv) CCjCC

(v) CjCCjC

(vi) CjCSCjC

(vii) (viii) CjCSC or CSCjC

(ix) CSC (17)

where C (resp. S) denotes a CC Turn (resp. line segment), and j a
change of direction of motion (a cusp point). Note that, by design, the
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CC Paths above can connect configurations with null curvature only,
i.e., for which the front wheels’ orientation of the car is null (this re-
striction is addressed later in Section V-B). Given two configurations
with null curvature, CC Steer operates by computing the shortest CC
Paths among the families in (17).

As far as computing the candidate CC Paths between two given con-
figurations is concerned, it should be noted first that all the families
(17) are made up of one or more parts of type CSC;CC or CjC , and
that such parts are precisely the type of paths that were built in the
two previous sections while studying the various �-tangency properties
(Sections IV-C.1 and IV-C.2). It should be noted also that the condition
of existence and the characterization of the CSC;CC and CjC paths
stem directly from these �-tangency properties. Accordingly, the con-
dition of existence of a CC Path of any given type is readily obtained
by combining these conditions of existence. Once the existence of a
given type of CC Path is ascertained, it can be computed and its arc
length can be determined using (12), (14), and the results established
in Section IV-B.3 on the arc length of a CC Turn.

D. Small-Time Controllability Issues

1) Topological Admissibility: As mentioned in Section I, the pur-
pose of our steering method CC Steer is to be used within a general
motion-planning scheme, such as the PPP [10], the ACA [11], or the
Holonomic Path Approximation Algorithm [12]. In order to ensure that
the coupling between the planning scheme and the steering method
yields a complete (or probabilistically complete) collision-free path
planner, the steering method is required to account for the small-time
controllability of the system under consideration. In other words, it
must be topologically admissible, i.e., verify the following topological
property [13]:

8" > 0;9� > 0; 8(q1; q2) 2 C2

q2 2 B(q1; �) =) Steer (q1; q2) � B(q1") (18)

where B(q; ") denotes the configuration space ball of size " centered
around q, and Steer (q1; q2) denotes the path from q1 to q2 computed
by the steering method. In other words, the steering method must be
able to connect two �-neighbor configurations with a path that remains
in an " neighborhood.

Because of the nature of the CC paths, CC Steer is not topologically
admissible. Indeed, no matter how close the start and goal configu-
rations are, the CC Path connecting them includes at least one CC
Turn (except if the start and goal configurations are perfectly aligned),
and since the length of a CC Turn is lower bounded by 2r sin�
(cf. Section IV-B.3), (18) is violated. The approach we have chosen to
make CC Steer topologically admissible is to extend the set of families
(17). A new family of CC paths is introduced, henceforth called
topological paths. They are made up of line segments and clothoid
arcs, they do not include CC Turns, and are designed so as to verify
(18).

2) Topological Paths: The topological path between two configu-
rations qs and qg is the concatenation of two parts:

• reorientation path between qs and an intermediate configuration
qj which has the same orientation as qg , and is located on the line
passing through qg with a direction perpendicular to the orienta-
tion of qg (Fig. 12);

• lateral path between qj and qg (Fig. 13).

Reorientation and lateral paths are described in the next two sections,
respectively, whereas Appendix C establishes that the topological paths
verify the topological property (18).

3) Reorientation Paths: The reorientation path defined for two con-
figurations qs and qg in the disposition depicted in Fig. 12 has two parts:

Fig. 12. Reorientation path defined for q and q , connecting q and q .

Fig. 13. Lateral path between q and q .

• a backward turn starting from qs made up of two symmetric
clothoid arcs to an intermediate configuration qi which has the
same orientation as qg ;

• a forward motion along a line segment until qj , the configuration
located on the line passing through qg with a direction perpendic-
ular to the orientation of qg , is reached.

Appendix B details how reorientation paths are computed.
4) Lateral Paths: The lateral path between between qj and qg has

three parts (Fig. 13):

• a forward turn made up of two symmetric clothoid arcs con-
necting qj and an intermediate configuration qk;

• a backward motion along a line segment to an intermediate con-
figuration ql;

• a forward turn made up of two symmetric clothoid arcs con-
necting ql to qg .

There is an infinite number of such paths between qj and qg . Two extra
constraints are introduced in order to reduce this number to one. First,
the lateral path should be symmetric with respect to the midpoint of
the line segment connecting qj and qg . This constraint forces the line
segment part of the lateral path to pass through this midpoint. Second,
the shortest lateral path verifying the previous constraint is selected to
be the lateral path between qj and qg . Appendix A details how lateral
paths are computed.

E. CC Steer

In summary, given two configurations with null curvature, CC Steer
computes all the existing CC Paths of the different families (17), plus
the topological path connecting them. Then CC Steer selects and re-
turns the shortest candidate.

In order to be complete, CC Steer must be able to compute a con-
necting path between any pair of arbitrary configurations with null cur-
vature. Given two such configurations, the existence of the CC Path
of one of the different families (17) connecting them depends on their
disposition (cf. Section IV-C.3). However, by construction, the topo-
logical path connecting them always exists (cf. Appendixes A and B).
Accordingly, CC Steer is complete; it can connect any given pair of
configurations with null curvature.

In general, the topological path between two configurations is longer
than the shortest CC Paths of the different families (17). However, when
the start and goal configurations converge toward one another, the topo-
logical path eventually becomes the shortest one, and it is selected by
CC Steer. CC Steer therefore accounts for the small-time controlla-
bility of the CC Car, and the coupling between CC Steer and one of the
aforementioned general planning schemes yields a complete (or prob-
abilistically complete) collision-free path planner.
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Fig. 14. Convergence of C (q ) when � tends to infinity.

Fig. 15. Examples of CC Paths. (left) CjCC . (right) CSC .

F. CC Paths and RS Paths

Looking back at Fig. 2, it can be noted that the curvature profile of
a CC Path would converge toward the curvature profile of a RS Path
should �max tend to infinity. As a matter of fact, according to (6)–(9),
it can be verified that, when �max tends to infinity

qi = (0; 0; 0; �max)


 = ��1max sin �s; �
�1
max cos �s

r = ��1max

� = 0:

In other words, C+

l
(qs) becomes a circle of radius ��1max tangent to

qs (Fig. 14). This circle is precisely one of the circles that are used to
compute RS Paths. Similar convergence affects the other CC Circles
C+

r (qs); C
�

l
(qs) and C�r (qs). Accordingly, when �max tends to in-

finity, the CC Paths obtained converge toward the corresponding RS
Paths.

V. EXPERIMENTAL RESULTS

A. CC Paths versus RS Paths

Fig. 15 depicts examples of paths computed by CC Steer. By de-
sign, the transition configurations between CC Turns and line segments
(marked as a cross in Fig. 15) have a null curvature (the orientation of
the front wheels of A is null). A can therefore pass from one part of a
CC Path to the next without having to stop in order to reorient its front
wheels (this is also true for cusp points).

CC Steer has been implemented along with a function computing RS
Paths. Comparisons were made regarding the length of the paths and
the time required for their computation. The ratio of CC over RS Paths’
lengths were computed for 1000 pairs of (start, goal) configurations.
The results obtained for j�maxj = 1 are summarized in Table I. In
most cases (82%), CC paths are only about 10% longer than RS Paths.
Similar experiments were carried out for the computation time. The
running time of CC Steer is of the same order of magnitude (Table II).

B. Embedding CC Steer in General Planning Schemes

To demonstrate the capabilities of CC Steer for collision-free path
planning, we embedded it into two general planning schemes.

First, we used the PPP [10] to plan collision-free paths for the CCCar
moving forward only. In this case, the families of CC Paths considered

TABLE I
RS VERSUS CC PATH LENGTH (1000 PATHS)

TABLE II
RS VERSUS CC PATH COMPUTATION TIME

Fig. 16. Examples of collision-free paths (made up of CC Paths) for the CC
Car moving forward only [38].

Fig. 17. Collision-free path planning for the CC Car in a parallel-parking-like
situation [39].

by CCSteer were restricted to paths without cusp points. Fig. 16 depicts
some results obtained for a polygonal environment [38].

Second, we used the ACA [11] to plan collision-free paths for the
regular CC Car, i.e., with forward and backward motions. Unlike PPP,
which is roadmap-based, ACA is a direct method; it develops a tree
rooted at the start configuration until the goal is reached. Fig. 17 de-
picts the result obtained in a parallel-parking-like situation (the explo-
ration tree is depicted on the left part of the figure). Fig. 18 shows a
path-planning example in the Inria Rhône-Alpes parking lot [39]. The
exploration tree is displayed in grey. Note that since CC Steer permits
placing tree nodes very far from each other, few tree nodes suffice to
cover the whole free space, and the resulting path looks quite natural.

In all cases, the collision-free paths resulting from the coupling of
CC Steer with a general planning scheme are concatenations of CC
Paths. Because CC Paths are designed to connect configurations with
null curvature, the transition configurations between two consecutive
CC Paths must have null curvature, and so must the start and goal con-
figurations. The curvature profile of the overall resulting path is, there-
fore, continuous, and a car-like vehicle can move from one CC path to
the next without ever having to stop in order to reorient its front wheels
(of course, it has to stop at cusp points in order to change its motion
direction).

In our opinion, the restriction on the curvature of the start and goal
configurations is not so important, since an actual car-like vehicle
can always reorient its front wheels on the spot (and such a “motion”
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Fig. 18. Collision-free path planning for the CC Car in a parking lot [39].

is collision-free). In other words, to solve a path-planning problem
between two configurations with nonnull curvature, the corresponding
path-planning problem between the same two configurations with
null curvature is solved using a general planning scheme coupled
with CC Steer. Then, the collision-free path obtained is completed by
two on-the-spot front-wheel reorientations, both at the start and goal
configurations.

VI. CONCLUSION

In this paper, we have presented CC Steer, the first steering method
for a car-like vehicle that computes paths with continuous curvature,
upper-bounded curvature, and upper-bounded curvature derivative.
CC Steer computes paths made up of line segments, circular arcs,
and clothoid arcs. It is designed to connect configurations with null
curvature, i.e., for which the front wheels’ orientation of the car
is null. CC Steer is complete, i.e., it can connect any such pair of
configurations, and it verifies a topological property that ensures that
the coupling between CC Steer and a general planning scheme yields
a complete collision-free path planner. CC Steer does not compute
minimal-length paths. However, we have shown that it computes, in
about the same time, paths whose length is close to the length of the
optimal paths for the RS car (as a matter of fact, when the curvature
derivative limit tends to infinity, the paths computed by CC Steer tend
to the optimal RS paths).

The coupling of CC Steer with a general motion-planning scheme
yields a path planner that computes collision-free paths with a contin-
uous curvature profile. A car-like vehicle can, therefore, follow such a
path without ever having to stop in order to reorient its front wheels.
Besides, such paths can be followed with a nominal speed which is pro-
portional to the curvature derivative limit. Given that paths with con-
tinuous curvature, upper-bounded curvature, and upper-bounded cur-
vature derivative can be tracked at high speed with a much greater ac-
curacy by real vehicles (cf. the experimental results obtained in [35]),
the results reported herein fully demonstrate the interest of CC Steer.

APPENDIX A
COMPUTING LATERAL PATHS

With reference to Fig. 13, let qj denote the configuration of null
orientation, and let L denote the half-line of orientation � anchored at
qj (Fig. 19). Let qk(r) denote a configuration of orientation 2� located
on L at a given distance r. The elementary path (cf. Section IV-B.2)
connecting qj and qk(r) exists, and does not violate the upper-bounded

Fig. 19. Computing a lateral path (see Fig. 13).

curvature constraint (4) iff r is lower bounded (cf. [36, Property 4] or
[37, Th. 1])

r � r1min(�) = 2��1max 2�j�jD(j�j) (19)

where D is the real function defined over [0; �] as

D(u) = cosuCf

2u

�
+ sinuSf

2u

�

with Cf and Sf the Fresnel integrals [40].
The elementary path � connecting qj and qk(r) is uniquely defined.

The sharpness of its clothoid arcs is ([36, Property 4] or [37, eq. (3)])

�(�; r) = 4�sgn(�)
D(j�j)2

r2
(20)

and its length is

l(�; r) = 2
2�

�(�; r)
: (21)

Now, the upper-bounded curvature derivative constraint (3) yields an
upper bound on the sharpness in (20), j�(�; r)j � �max, which yields
an additional lower bound on r

r � r2min(�) = 2 ���1maxD(j�j): (22)

Let us define the following function:

r(�) = max r1min(�); r
2

min(�) : (23)

Given an orientation �; r(�) is the distance of the closest configu-
ration qk of orientation 2� located on L that can be connected by an
elementary path verifying both the upper-bounded curvature constraint
(4) and the upper-bounded curvature-derivative constraint (3).

The line of orientation 2� passing through qk intersects the line per-
pendicular to qj at a point located at a distance d(�) from qj

d(�) =
r(�) sin(2�)

2 cos(�) cos(2�)
: (24)

Now, to determine the lateral path between two configurations qj and
qg separated by a distance ", it suffices to use (24) in order to determine
� such that d(�) = "=2.

APPENDIX B
COMPUTING REORIENTATION PATHS

Let qg denote a goal configuration of null orientation, and let �� de-
note the orientation gap between qg and the start configuration qs. Let
L denote the half-line of orientation �+��=2 anchored at qs (Fig. 20).
As per Appendix A, a backward elementary path starting from qs can
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Fig. 20. Computing a reorientation path.

connect any configuration of null orientation located on L at a distance
greater than r(��=2).

Let qi denote the configuration of null orientation located onL at the
minimum distance r(��=2). The elementary path � connecting qs and
qi is uniquely defined (cf. Section A), and so is the configuration qj ,
which is the intersection between the line of null orientation passing
through qi and the line passing through qs, with a direction perpendic-
ular to the orientation of qs. The reorientation path defined for qs and
qg is, therefore, completely determined.

APPENDIX C
TOPOLOGICAL ADMISSIBILITY OF THE TOPOLOGICAL PATHS

Let us assume that qs and qg are separated by a distance � (in both
position and orientation).

Consider Fig. 20. qi is located at a distance r(�=2) from qs, and the
length of the elementary path connecting qs and qi is l(�=2; r(�=2)).
A straightforward geometric analysis shows that the distance between
qi and qj is jr(�=2) cos(�=2)� �j. It can be concluded then that the
reorientation path from qs to qj is entirely contained in a ball centered
at qs of radius

rr = l(�=2; r(�=2))+ jr(�=2) cos(�=2)� �j:

Consider now Figs. 13 and 19. It can be shown that the distance
between qj and qg is jr(�=2) sin(�=2)��j. Let � be such that d(�) =
jr(�=2) sin(�=2)��j=2, then qk (resp. ql) is located at a distance r(�)
from qj (resp. qg). As for the elementary paths from qj to qk , and ql to
qg , their lengths are l(�; r(�)). It can be concluded then that the lateral
path from qj to qg is entirely contained in a ball centered at qj of radius

rl = jr(�=2) sin(�=2)� �j+ l(�; r(�)):

Accordingly, the topological path between qs and qg is entirely con-
tained in a ball centered at qs of radius

rt = rr + rl:

When qs converges toward qg , i.e., when � converges toward 0,
the orientation �, such that d(�) = jr(�=2) sin(�=2) � �j=2, also
converges toward 0 (indeed, � = 0 is a straightforward solution to
d(�) = 0). Now, given that both

lim
�!0

r(�) = 0 and lim
�;r!0

l(�; r) = 0

we have rt that converges toward 0. Accordingly, thanks to the topo-
logical paths, CC Steer can access a neighborhood of a configuration
qs without escaping a ball centered at qs (no matter how small the ball).
It accounts for the small-time controllability of A.
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