To appear in the Proceedings of 1997 ICRA

A Motion Planning Based Approach for Inverse Kinematics of
Redundant Robots: The Kinematic Roadmap

Juan Manuel Ahuactzin*
jmalQudlapvms.pue.udlap.mx
Department of Computer Science
Universidad de las Américas-Puebla

72820 Cholula, Puebla Mexico

Abstract

We propose a new approach to solving the point-to-
point inverse kinematics problem for highly redundant
manipulators. It is inspired by recent motion planning
research and explicitly takes into account constraints
due to joint limits and self-collisions. Central to our
approach is the novel notion of kinematic roadmap
for a manipulator. The kinematic roadmap captures
the connectivity of the configuration space of a ma-
nipulator in a finite graph like structure. The stan-
dard formulation of inverse kinematics problem is then
solved using this roadmap. Our current implementa-
tion, based on Ariadne’s Clew Algorithm [BA193], is
composed of two sub-algorithms: FXPLORE, an ap-
pealingly simple algorithm that builds the kinematic
roadmap by placing landmarks in the configuration
space; and SKFARCH, a local planner, that uses this
roadmap to reach the desired end-effector configura-
tion. Our implementation of SEA RCH is an extremely
efficient closed form solution, albeit local, to inverse
kinematics that exploits the serial kinematic structure
of serial manipulator arms. Initial experiments with
a T-dof manipulator have been extremely successful.
1 Introduction

Kinematically redundant robots (> 6-dof, since a gen-
eral positioning task may need up to 6 degrees of
freedom) are finding increasing use in the robotics re-
search community. Their main appeal is that the ad-
ditional degrees of freedom can be used to avoid sin-
gularities and collisions, and to optimize performance
criteria. However, with the increased degrees of free-
dom comes increased computational complexity for in-
verse kinematics and for motion planning and obstacle
avoidance. Former, because closed-form inverse kine-
matics solutions don’t exist in general, and the latter
because of the increase in the dimensionality of the
configuration space.

The inverse kinematic problem has been formu-
lated in primarily two ways. The first one — we call
it point-to-point kinematic problem — is to compute
a robot configuration corresponding to a given end-
effector configuration. Formally, it is stated as solving

the equation :
7 Eg) =14 (1)

where ¢ € IR denotes a robot configuration (joint
vector) and &, € IR™ denote the desired configuration

*The author was a visiting research scientist at Simon Fraser
University during Summer 1996. Research was funded by
NSERC research and CRD grants.

Kamal Gupta
kamal@cs.sfu.ca
School of Engineering Science
Simon Fraser University

Burnaby, B.C. Canada V5A 156

of the end-effector in work space ad f: R* — IR™ is
the forward kinematic function.

The second one, also called kinematic control prob-
lem [Sic90], is to find an entire joint space trajectory
¢(t) corresponding to a given work space trajectory,
Z4(t), t €[0,T] of the end-effector such that

F7 N (ag(1) = q(t) t€[0,7] (2)
There are two main aspects of solution to in-
verse kinematic problem: motion planning, which
deals with ezistence of a path, and redundancy res-
olution, which deals with selecting a single configura-
tion among a set of many possible ones (this set 1s the
self-motion manifold) [L1.94]. Most research in inverse
kinematics algorithms has primarily focussed on local
algorithms for redundancy resolution [Sic90]. These
approaches address the problem in the velocity do-
main, i.e., they use the linearized mapping z = J(§)q,
where J is the (n x m) Jacobian matrix. These ap-
proaches treat hard kinematic constraints by trans-
forming them into some sort of potential functions and
can be easily caught in local minima. In motion plan-
ning terminology, there is no guarantee of complete-
ness. Furthermore, most such approaches completely
ignore the constraints due to self-collisions among var-
ious links of the manipulators. Note that research in
motion planmng on the other hand, has dealt with
such constraints in a very different and effective man-
ner by explicitly characterizing the free regions in the
configuration space (joint space) [Lat91].

Tools from topology have been employed to char-
acterize the global set of solutions for point-to-point
inverse kinematics — in particular, c-bundles and self-
motion manifolds — [Bur89]. These approaches are
mainly aimed at characterizing the global set of so-
lutions rather than finding a solution if there exists
one. Based on [Bur89], [LL94] discusses a frame-
work for global path planning, that attempts to sys-
tematically characterize different levels of planning
for inverse kinematics. At the top level it assumes
that a graph like compact description of the config-
uration space is available, and it is suggested that
an A* type algorithm could be used for searching
this graph. However, the topology of the configura-
tion space (with joint limits, self-collisions and pos-
sibly obstacle constraints) can be extremely compli-

1In motion planning problem, the initial and final config-
urations of the robot are specified and the aim is to find a
collision-free path connecting the two [Lat91].

cated and it is not clear how to obtain this graph
like structure in general. In the motion planning lit-
erature, several much more effective approaches have
been suggested to search high dimensional spaces with
extremely complicated topological structure [Lat91,
CH92, Gup90, G795, KI1.94, BAt93]. Tn particular,
an appealingly simple emerging paradigm (although
there are differences in specific details) in solving clas-
sical motion planning problems is to capture the con-
nectivity of the configuration space using a finite (but
possibly large) set of nodes (or landmarks) — generally
called a roadmap [Lat91, BAT93, KI1.94].

In this paper, we propose that this roadmap
paradigm 1s eminently suitable for inverse kinemat-
ics problem and apply this paradigm to solve the
point-to-point inverse kinematics problem for redun-
dant manipulators in the presence of joint limits, self-
collisions and obstacle constraints. Tt makes absolute
sense to capture the connectivity of the configuration
space —in the presence of joint limits and self-collisions
—1in what we call the kinematic roadmap of the manip-
ulator, since the kinematic structure of a manipulator
does not change and once built, this can be used to
quickly find a solution for inverse kinematics prob-
lem. Note that the emphasis of our approach 1s on
the motion planning aspects of the problem, i.e., find-
ing a path if there exists one. Once a feasible path is
found, more elaborate optimization criteria can then
be used to optimize it.

1.1 Overview of Our Approach

We first formulate the inverse kinematic problem as an
optimization problem (as is normally done in the kine-
matics literature) over the configuration space of the
robot, however, with the objective function being a
somewhat novel metric between the initial and the de-
sired end effector frames. This optimization problem
is then solved using a framework similar to Ariadne’s
Clew Algorithm (ACA), originally proposed for classi-
cal motion planning [BA193, Ahu94]. Our approach
is best described as composed of two sub-algorithms:
EXPLOREF and SEARCH, executed in an interleaved
manner. The FXPLORE algorithm “explores” the
reachable configuration space from the given initial
point by iteratively placing “landmarks” in it. The
landmarks are placed so that a path from the ini-
tial position to any landmark is known. The set of
landmarks with the associated paths is a kinematic
roadmap that represents the connectivity of the config-
uration space in the presence of kinematic constraints.
The SEFARCH algorithm is a local planner that ver-
ifies if the goal configuration can be reached from a
newly placed landmark. SEARCH exploits the serial
kinematic structure of a manipulator, and solves the
optimization problem sequentially, in a closed form,
thereby making it extremely efficient. Figure 1 shows
a schematic representation of the process. Each e de-
notes a landmark 7;, with Ly being the start con-
figuration. The continuous paths show the trajec-
tories used by FXPLORF to place a landmark and
the dotted ones show the attempts by SEFARCH to
reach the goal position. The tip of the arrows shows
how far the local planner SEARCH could proceed.
In the schematic, SEARCH succeeds from Lq;. The
final trajectory will be then constructed using land-
marks (and the corresponding paths connecting them)
Lg,Ls,Lg,Lq1 and the path to the goal point found by
SEARCH. The resolution completeness of the ACA

approach for classical motion planning has been shown
in [Ahu94]. We conjecture that a similar claim can be
made for the inverse kinematics problem. However,
our emphasis, in this paper, is on demonstrating the
practical effectiveness of our approach.

We have implemented this approach for a 7-dof
manipulator arm (with polyhedral models for links
and joint-limits) shown in Figure 6, and our initial
experiments have been extremely successful (See Sec-
tion 6 for details). The planner always found a fea-
sible path. A main reason for the success of our ap-
proach appears to be that SEARCH has a rather
large pre-image region — the set of all points ¢ such
that SEARCH succeeds in getting to the goal, z,.
Therefore the probability that EXPLORE will place
a landmark in this pre-image region is quite high.

Figure 1: Schematic representation of the kinematic
roadmap. The set of landmarks and the associated
paths capture the connectivity of the configuration
space in the presence of self-collisions and joint limits.

In summary, the salient features of our algorithm
are: (i) it proposes and builds a novel representation —
the kinematic roadmap — of the configuration space of
the manipulator in a finite number of nodes; (i1 % hard
kinematic constraints due to joint limits, self-collisions
(and other static obstacles) are explicitly taken into
account while building this kinematic roadmap. The
roadmap is then used to efficiently find a feasible solu-
tion if there exists one; and (iii) it avoids computation
of Jacobian, often an expensive computation.

2 The Metric

2.1 Notation

Let A denote the robot arm, § = (q1,¢2...qn) denote
a robot configuration, G denote the end effector of A,
and & = (x,y,2,¢,0 ’y) denote a configuration of the
end-effector, where w, #,~ denote an appropriate pa-
rameterization of SO(3). C4 and Cg denote the con-
figuration spaces of A and G respectively. Following
standard D-H notation in [Cra91], we use F; to denote

a frame attached to i*" joint, and T is the homoge-
nous transformation matrix (or simply matrix) that
represents Fy w.r.t. F,. The trailing superscript may
be omitted if the base frame is implicitly understood.

T(&) represents the matrix corresponding to a config-
uration z of the end-effector frame Fg.

2.2 The Metric

One could use any number of metrics between two
configurations of the end-effector as the objective
function, however, it is well known that these metrics
mix translational and rotational components [Lat91].
Although there is no natural way of doing it in gen-
eral since any distance metric in SFE(3) will ultimately
depend on a choice of length scale [Par95], what we
need is a way of measuring distance between two con-
figurations of the same object and such metrics have
been proposed before [KR92]. These metrics, how-
ever, are computationally expensive [Par95]. Instead,

we define a novel metric d? between two coordinate
frames, say F, and F3 represented (w.r.t. some com-
mon frame F,) by matrices “T, and °Tp, as the sum
of distances between the corresponding unit vectors
along the co-ordinate axes, i.e.,
d(°T,,*Ty) = dy + dy + d. (3)
where dg, dy, and d, are the distances between the
unit vectors along the 2,y and z axes, respectively
gsee Figure 2). Note that trailing superscript may be
ropped since this metric d is left-invariant, i.e., it is
independent of the base frame F..

This metric is then used to pose the inverse kine-
matics problem as an optimization problem. A cost
function ¢ is first defined as:

o(q,2g) = d(T(£(2)), T(2,)) (4)
and the inverse kinematic problem can then be posed
as follows:

£ g = ot min o(d,) 5)

GeCa

Note that ¢ € f~'(z,) < c(¢,2,) = 0. In the
next two sections, we show an algorithm to solve this
problem within the ACA paradigm. First we present
a local algorithm (SEARCH) that computes a local
minimum of the optimization problem, and then we
present EXPLORF that spreads landmarks over the
configuration space.

d,
KX j R q
T o
Ta

Figure 2: d,, d, and d, shown graphically. Sum of
these three quantities defines the metric d between
two frame, F, and Fj.

3 The Local Algorithm SEARCH

Our approach exploits the serial kinematic struc-
ture of manipulator arms [Gup90, GZ95] to con-
struct an efficient local algorithm to solve the opti-
mization problem posed in the previous section. Let
q=1(91,92, -, 4, ---, qn) be a free configuration of the
robot. We denote by A; = [AM"? AM] C R the
collision-free interval of joint 7 at ¢ (see Figure 3). The
joint limits are naturally represented as an interval
and the collision constraints are easily computed as an
interval by simple computational geometric methods

2Tt is relatively straightforward to show that d is indeed a
metric.

[1.P87]. The intersection of these intervals then gives
the desired interval A; which determines the feasible
range of motion for joint i.

Formally, let Cé C Cafree denote this feasible in-
terval set for joint 7, 1.e.,

Cé = {(ql)q2) e Gi—-1,95 + 6) Qi1 an)|6 S Al}

Let 2, € Cg be the desired configuration of G. For
an arbitrary § € Cafree, a function g is defined as
follows : ,

9(q,1) = ¢™" : mine(q, &) (6)
qec;

The configuration in Cé that minimizes the cost
function ¢ is then §™". For brevity, we have
not explicitly shown 2, as one of the arguments
of g(-). Note that the values of joints other than
i do not change as a result of applying g¢(q,1),
ie, if ¢ = (¢1,92, -, %, Gn-1,qn), then g(q,7) =

(qlana cey quzna sy qn—1, qn)

1

Figure 3: Tllustration of collision-free interval

[ATi7 A™%] due to a physical obstacle. Constraints
due to joint limits and self-collisions are also repre-
sented as an interval.

From a given initial configuration, ¢, =
(49,45, ..,4%) € Ca, g(q,7) is repeatedly applied in
an iterative manner, i.e., apply g(go,1) obtaining
@1 = (", 43, 4n) € Cj,, then apply g(g1,2) ob-
taining ¢ = ((I.Tm,q;”m,q.g...,qg). € ngl and so on
until ¢, = (q7"", ¢5"", 5" 7"") € CF
tained. We adopt the notation :

) 1s ob-

9" (o) = 9(9(9(-(9(do, 1), 2).... n = 2),n = 1),n) (T7)

Stated algorithmically, we can now define the

SEARCH algorithm as follows:

SEARCH (Go,Z4)

begin
q=9"(do)
while (¢ # ¢o) SEARCH(q, z4)
return e(§,)

end

Starting from ¢ = §g, SEARCH repeatedly ap-
plies ¢"(§), each time using the result of previous
iteration as the starting point for the current itera-

tion. Note that gio. = g"°°(4s), is a global minimum
(i.e. a solution to the inverse kinematic problem) if

SEARCH(j,

z4) = 0, else a local minimum has been
found.

We now describe how g(¢q, %) is irnplernented (for a
revolute joint, the case for prismatic joint is similar).
It is analytlcally derived by symbolically differentiat-
ing the cost function ¢(-) in equation 4 w.r.t. g¢;. Tt
is computationally advantageous to represent the goal
frame w.r.t. frame F;. Let P; = (%i,¥i,2),1=1...3
denote the vectors that represent the tips of unit axes
vectors (i, and k) of Fg w.r.t.]:Z in (‘onﬁguratlon
&g, i.e. T(Z,) . Similarly, P/ = (2},y},2}),i=1...3
denote the vectors that represent the tips of unit axes
vectors Fg w.r.t. F; (see Figure 4) in an arbitrary con-
figuration ¢ of the robot. With this formualtion, the
z coordinate (for a revolute joint, hence we exp]l(‘lﬂy

use 6; instead of ¢;) remains constant and therefore
simplifies the symbolic differentiation of the metric d.
For example, in the expression for d; in 3,

d2 = (z1 — 2} *cos(6;) — v} * sin(6;))*+
(y1 — 2} * sin(6;) + vy * cos(6;))*+
(21 =)
the term (z1 — 21)? is a constant and therefore has
no influence in the optimization.

Figure 4: Vectors P; and P/ corresponding to the de-
sired goal configuration and an arbitrary configuration
of the end-effector. Both are defined w.r.t. F;.

Differentiating d(*T(z,),! T(f(¢)) w.rt. ¢ and
then equating the result to zero (using MAPLE) yields
the following expression for the optimum value (¢; =
%) for a revolute joint:

—or Y, tyr) — Yy e + T,y — vy w4+ Ty s
arctan n n n 7 n n
T2y + Y1 Yy T Ty 22+ Yy Y2 + 2523 + Yg Ys

The global minimum of ¢(-) over the interval A; is
either at 65, or 65 + m, or (if 67 lies outside the valid
range A;) one of the endpomts of the interval. This
is the value returned by g¢(q,1).

4 Algorithm EFXPLORKE

The goal of FXPLORF is to capture the connectiv-
ity of the accessible space from an initial configuration
Go € Cajree- A representation of that space is ob-
tained by generating free paths and placing landmarks
all over the configuration space beginning from an ini-
tial landmark (configuration) Ly = ¢,. The structure

obtained by FXPLORF is essentially a tree where
the set of nodes represents accessible configurations
of Capree and the set of links represents free paths
connecting these configurations. This structure is a
kinematic roadmap.

EXPLORF may be implemented in several ways.
Here we present an appealingly simple but effective
implementation that has been very successful in our
experiments. It executes random paths, one each from
the current set of landmarks. Each of these paths lie
completely in C4r... The end points of these random
paths are called embryos. The embryo that is the far-
thest from the current set of landmarks is then chosen
as the new landmark, and the process is repeated.

Formally, at the m!? iteration, let £,, denote

the set of existing landmarks, and let PL, =
{¢2, 83, -, @j, -, Pm} be the set of paths from one
landmark to another. Let &, = {ém,ém—1,...,€1}
denote the set of existing embryos, and PE,, =
{1,925 %, s Ym} denote the set of paths go-
ing from landmarks to their corresponding embryos,
where 7; is the path from landmark L; to ;. The tree
structure 7., = (Lo, Em) is the kinematic roadmap of
the manipulator A. A schematic representation of 7,
is shown in Figure 1. Note that the cardinality of
Ly Em,PLpy and PE,, is m. At times, we may omit
the sub-index m and simply write 7. EXPLORF iter-
atively builds 7 by placing one new landmark at each
iteration.

The set of landmarks is initialized to £1 = {1 =
Go}. EXPLORF generates a random trajectory 91 and
the end of this trajectory is initialized to the first em-
bryo,ie., & = {é1 = 71(1)} The edge set of the tree
is initialized to null set, , PLi = ¢, and P& =
{71}. At step m, the embryo say €r € Emn that is far-
thest from L, (i.e., d(éx, Lm) > d(é;,Lm),VE; € &),

becomes the (m + 1)th landmark, i.e., Lyy1 = ép.
The corresponding path, ¥y is added to the edge set,

, Pm+1 = Yk. T'wo new embryos are generated —
one embryo to replace the embryo that just became a
landmark and the the other from this newly generated
landmark. Each of these is obtained, as before, by ex-
ecuting a random path. The first path, %; is generated
from Lk and the end of the path becomes an embryo,
ie., €, = 4;(1). The second path, 441 is generated
from Lm+1 and the end of this path becomes the cor-
responding embryo, i.e., émit1 = Fm41(1)

EXPLORE(m) takes the roadmap 7, as its in-
put and returns an updated roadmap 7,41 and is
stated in pseudocode form as follows :

EXPLORFE(m)
begin
mazx_dist =0
fori =1tom
min_dist = oo
forj=1tom
distance = ||é; — L;||
if (distance < min_dist)
min_dist = distance
if (min_dist > max_dist)
k=1
Lm+1 = ‘fk
Sam+1 =7k
Ym41 = random_path_from(L,41)

4% = random_path_from(Ly)

€mt1 = Ym1(1)

éx = k(1)
end
where the random_path_from(§) generates a random
path beginning at configuration q.

4.1 Generating Random Paths
4.1.1 Manhattan paths and Bouncing Tech-
nique
As we have shown in the previous section, each of the
landmarks generated by the FXPLORF algorithm
is obtained by generating a random path. In order to
do this we use a special class of paths, the Manhattan
paths, which consist of moving one robot link at a
time. Formally, a Manhattan path 4 is completely
defined by
7= (A1,Aq, .., Ay)

Note that the semantic of this path is “move link 1
a distance Ay” followed by “move link 2 a distance
Ay”, and so on. Furthermore, the product of £ single
Manhattan paths is a Manhattan path of order £.

It is clear that all valid Manhattan paths of or-
der k can be represented by a vector z € R™* but
not all & € IR™** represent a valid Manhattan Path,
since A; € ’"yk could easily violate a kinematic con-
straint, either due to an obstacle or due to joint limit.
The bouncing technique allows us to map an arbi-
trary Manhattan path into an admussible Manhattan
path. The basic idea is to bounce off the obstacle
and has been used in [BAT93, HFT94] (see Figure
5). Suppose a certain A; leads to collision. As men-
tioned before, at the given configuration, a collision-
free interval [A7*" A% can be easily obtained (as
in [LP8T]) such that every joint value within this in-
terval is collision-free (see Figure 3). We can then map
the original interval A; modulo the collision-free inter-
val to within the collision-free interval [A*" A"%7].
Physically speaking, it is as if the the robot link re-
peatedly bounces off the obstacles until the entire A;
1s travelled. Obviously, this bouncing move is not ex-
ecuted by the robot, it is just a mapping from A; € R
to [AP*", A7*"]. Note that the range of link (i + 1)

depends on the moves of link 1...1, i.e., Af_ff and
74" are functions of Aj for j = 1,2,...,i. We can

now generate a random Manhatian path (by randomly
generating each A;, which is equivalent {o generai-

ing a random vector & € IR™*) and then transform it
wmnto an admissible Manahttan path using the bouncing

technique. . :
5 Algorithm INVKIN

Using SEARCH and EXPLORE, our inverse kine-
matics algorithm /N VKIN is obtained as follows:

INVKIN(§o, g, n-iterations)
begin [initialization of 7]

m =1

Ly = (jo

Y1 = random_path_from(Ly)
&1 = 4(1)

path_found = false
repeat [place landmarks until solution]
or m reaches n_iterations]
if (SEARCH (L, 2,) ==0)
path_found = true

Last configuration on the
path aftér bouncing

Bouncing point ——

Figure 5: A physical illustration of bouncing tech-
nique.

else
FEXPLORE(m) [increment 7 :add landmark]
m=m-+1

until(m > n_iterations or path_found)

if (path_found)

return(g'°°(¢))
else
return(fail)
en
6 Experimental Results

The above algorithm, INVKIN has been implemented
(on an SGI Indigo II) for a 7-dof manipulator arm
in 3-dimensional environments. All joints are revo-
lute and each joint has a joint limit (e.g., —90 deg to
90 deg for joint 1, and similar limits for other joints).
Polyhedral CAD models were used for both the robot
and the environment. The collision detection scheme
is based on the algorithm in [LP87] that efficiently
computes a collision-free interval for a given robot
link as it rotates, keeping all other degrees of freedom
fixed. These collision-free intervals are then used by
the bouncing technique to convert an arbitrary Man-
hattan path into a collision-free Manhattan path. Sev-
eral standard techniques — simplified and hierarchical
representations for manipulator links and obstacles,
etc. — were employed for efficient collision detection.
The robot links, the fixed obstacles, and the payload
are each represented by a parallelepiped.

Figure 6 illustrates a difficult example with a few
fixed obstacles present in the environment. The initial
configuration of the arm, and the desired end-effector
location is shown in Figure 6a. Note that the de-
sired location of the end-effector is under the table
and therefore, quite constrained. Small moves of the
robot must be executed to achieve this (if it is indeed
possible). 58 landmarks were needed to solve this ex-
ample and total execution time was 30 seconds.

In order to extensively test our algorithm, we first
generated several random and collision-free configura-
tions of the robot and saved the corresponding con-
figurations of the end-effector. This was done so that
we knew that indeed there is a manipulator configu-
ration corresponding to the desired end-effector loca-
tion. These end-effector configurations were then used
as goal configurations to obtain various test statistics
such as percentage success, average number of land-

marks placed, and average run time. For environ-
ments free of obstacles, the average number of land-
marks placed was 61 (ranging between a minimum

of 1 and maximum of 372) and average run time was
16.9 seconds (minimum 0.3 seconds, maximum 80 sec-
onds). Planner always found a solution. For envi-
ronments with obstacles, the average number of land-
marks placed was 62 (minimum 1 and maximum 353)
and average run-time was 34.5 seconds (minimum 0.3
seconds and maximum 199 seconds).

7 Discussion

There are several interesting issues to be explored
further. A main one is to exploit the topology of
the configuration space while creating this kinematic
roadmap. It is well known that the configuration
space can be sub-divided into c-bundles separated by
co-regular surfaces. Another important issue to be ex-
plored 1is the resolution completeness of our approach.

References

[Ahu94] J.M. Ahuactzin. Le Fil d’Ariane. Une méthode
de planification générale. Application a la plan-
ification automatique des trajectoires. PhD the-
sis, Institut National Polytechnique de Grenoble,
France, 1994.

[BAT93] Pierre Bessiere, Juan Manuel Ahuactzin, et al.
The “ariadne’s clew” algorithm: Global plan-
ning with local methods. In ITEEE/RSJ confer-
ence on Intelligent Robots and Systems, 1993.

Joel Burdick. On the inverse kinematics of re-
dundant manipulators: Characterization of the
self-motion manifolds. In /CRA, pages 264-269,
1989.

P. C. Chen and Y.K. Hwang. Sandros: A motion
planner with performance proportional to task

difficulty. In JEEE ICRA, 1992.

John J. Craig. Introduction to Robotics. Addison
Wesley, 1991.

[Gup90] Kamal Kant Gupta. Fast collision avoidance for
manipulator arms: A sequential search strat-
egy. IFEFE Transactions on Robotics and Au-
tornation, 6(5):522-532, july 1990.

Kamal Kant Gupta and Xinyu Zhu. Practical
global motion planning for many degrees of free-
dom: A novel approach within sequential frame-
work. Journal of Robotic Systems, 2(12):105-
118, 1995.

[HFT94] Thomas Horsch, F.Scwarz, and H. Tolle. Motion
planning for many degrees of freedom — random
reflections at c-space obstacles. In /CRA, pages
3318-3323, 1994.

Lydia Kavraki and Jean-Claude Latombe. Ran-
domized preprocessing of configuration space for
path planning: Articulated robots. In /ROS,
1994.

K. Kazerounian and J. Rastegar. Object norms:
A class of coordinate and metric independent
norms for displacements. In G. Kinzel et al., ed-
itors, Flexible Mechanisms, Dynamics and Anal-
ysis. ASME DE-Vol 47, 1992.

Jean-Claude Latombe. Robot Motion Planning.
Kluwer Academic, 1991.
Carlos Liick and Sukhan Lee. Global path plan-

ning of redundant manipulators based on self-
motion topology. In JCRA, pages 372-377, 1994.

[Bur89]

[CHY2]

[Cra91]

[GZ95]

[K1.94]

[KR92]

[Lat91]

[L1.94]

[LP87] Tomas Lozano-Perez. A simple motion planning
algorithm for general robot manipulators. /[EEE
Transactions on Robotics and Automation, 3(3),

1987.

F.C. Park. Distance metrics on the rigid-body
motions with applications to mechanism design.
ASME Journal of Mechanism Design, 117:48—
54, 1995.

Bruno Sicihiano. Kinematic control of redundant
manipulators: A tutorial. Journal of Intelligent
and Robotic Systems, 3:201-212, 1990.

[Par95]

[Sic90]

-K
Desired final configfration
of the end-effector

Figure 6: Inverse kinematics in the presence of fixed
obstacles. The initial robot configuration and the de-
sired end-effector configuration are shown in (a). A
zoomed-in view of the desired end-effector configura-
tion is shown in the bottom right sub-square in (a).
The solution determined by our algorithm is shown in

(b).

