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. ~ Abstract .
This paper deals with the manipulation planning prob-

lem, where the goal is to plan the motion of a robot so that
it can move a given object from an initial configuration
to a final configuration while avoiding collisions with the
static obstacles in the environment. Our specific approach
adapts Adraine’s Clew Algorithm that has been shown ef-
fective for classical motion planning problem [1, 12]. In
our approach, landmarks are placed in lower dimensional
submanifolds of the composite configuration space. These
landmarks represent stable grasps that are reachable from
the initial configuration. From each new landmark, the
planner attempts to reach the goal configuration by ex-
ecuting a local planner, again in a lower (but different)
dimensional submanifold of the composite configuration
space. We have implemented this approach and present
initial experiments with a simple 2-dof planar arm among
polygonal obstacles.

Key Words : manipulation planning, regrasping, con-
figuration space, landmarks.

1.0 Introduction

Animportant problem toward achieving autonomous task
planning systems is that of automatic manipulation plan-
ning [10]. One version of this problem can be stated as
follows : plan the motion of a robot so that it can move a
given object from an initial configuration to a final config-
uration while avoiding collisions with the static obstacles
in the environment. It is well known that manipulation
planning is computationally more complex than the clas-
sical motion planning (piano mover’s) problem [10]. It in-
volves dynamically changing grasp and ungrasp motions
that change the composite configuration space dynami-
cally. Tt is known [10] that the manipulation problem
can be decomposed into a sequence of subpaths — lying in
lower dimensional submanifolds — separated by grasp and
ungrasp operations [15]. These paths are called transfer
and ¢ransit paths [8, 11]. Consequently, a manipulation
path is composed of a sequence of transfer and transit
paths. Let us introduce the problem using the figure 1.
The goal of the planar arm is to take the rectangular ob-
ject from the initial position (at the top of the figure 1a)
to the final position (at the bottom). To move this ob-
ject, the arm must grasp (with the end-effector) one of
the object’s edges as shown in 1b. The robot then moves
toward (transfer path) the goal but the obstacles prevent
the robot from continuing (c). The robot then ungrasps
the object and then regrasps the object at a new grasp
(transit path) (d). This new grasp permits the robot to
reach the goal position (e and f).
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One of the emerging paradigms (although there are
differences in the specific approaches) in solving motion
planning problems is to capture the connectivity of the
configuration space using a finite (but possibly large) set
of landmarks (or nodes) in it [1, 5, 7, 12, 13]. [1, 12]
presented an algorithm, called Ariadne’s Clew Algorithm
(ACA) that can be used to search for a path in a con-
tinuous domain. It is composed of two sub-algorithms :
EXPLORE and SEARCH. The EX PLORE algorithm
“explores” the reachable space from a given initial point
by placing landmarks in it. The landmarks are so placed
that a path from the initial position to any landmark is
known. The SEARCH algorithm is a local planner that
verifies if the goal configuration can be reached from a
newly placed landmark. Both algorithms are expressed
and solved as optimization problems using a special set
of paths — the Manhattan paths. The completeness of
this algorithm has been proved in [1].

In this paper, we extend this paradigm to manipu-
lation planning problem. Landmarks are placed in lower
dimensional sub-manifolds of the composite configuration
space. These landmarks represent stable grasps that are
reachable from the initial configuration. From each new
landmark, the planner attempts to reach the goal con-
figuration by executing a local planner, again in a lower
(but different) dimensional submanifold of the composite
configuration space. Our initial experiments are with a
simple 2-dof planar arm among polygonal obstacles.

Our approach offers the following advantages over the
previous work [3, 8, 9, 11] for manipulation planning (i)
it does not assume that an inverse kinematics solution for
the manipulator is available, and (ii) it does not assume
a finite number of robot configurations for each grasp,
i.e., it is directly applicable to redundant manipulators.
Please refer to [2, 3, 8, 9, 11] for an overview of previous
work; we omit it here for lack of space.

2.0 Basic definitions and Problem

Let W be the working space of the robot .A. A con-
figuration of the robot in W is completely specified by
Gga = (z1,%2,...,%5), where n is the number of degrees
of freedom of .A. C4 denotes the configuration space of A
[10]. The static obstacles in W are denoted by Bi=1,23,...
and the movwable object by M. Let jam = (y1,y2,---,Yk)
! denote the relative configuration of the object refence
frame Fa to the world’s reference frame Fy,. The con-
figuration space of M is denoted by Cartr. We will make
the assumption that C4 and Ca¢ are compact (closed and
bounded) sets.

The configuration space of the entire system is then

C = C4 xCaq and its dimension is (n+k). The projections
of § € Cin C4 and Caq will be denoted and defined as

E=3if MMC R k=6if M C R®
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Figure 1: A manipulation path for a 2-dof planer arm.

follows :

A :GEC—Ga€ECh
Tm GEC — Gm €ECpm

Let Wga denote a stable configuration of M de-
scribed w.r.t. Fw. The submainfold CSMMe C C is de-

fined as C“mme = {§ € Clmm(d) ="im}. A transit path

is a contmuous map ¢ : [0,1] — Cft‘;b\f When the robot
is moving with the movable object grasped in its grip-
per, the configuration of M relative to the gripper re-
mains constant and the configuration of M w.r.t Fyw is
changing. Let us denote these relative configurations by
g and Wia respectively. Moreover, let ®("Vgas) be
the function that transforms the configuration of M from
Fw to the gripper’s reference frame F. For a given grasp
configuration “§ s, we define the sub-manifold chf;\ip cc

s Cgrq‘”f’ = {¢§ € C|®(7r1(§)) =%Gm}. Note that the di-
mension of this submainfold is n (the number of dof of A),
and that ® depends on 4. A transfer pathis a continuous
map 7 :[0,1] — Cgrq‘lip. Let CB denote the configuration
space obstacles. The free space Cyr.. is defined as C\CB.
A free transfer path $ (resp. free transit path, @) is then
defined as a mapping @ : [0,1] — Cfree N Copetle.

Wi
A single manipulation path & is defined as a concate-
nation (product) [10] of a free transit path ¢ and a free
transfer path #, &§ = @ * #. A manipulation path of order
£, denoted by &% is defined as a concatenation of £ single
manipulation paths, Le., 6% = 61 % 62 % ... % 65.
Let P = {"grmy,” data, .o, Gary } be the set of sta-
ble placements of M in W. The entire sub-manifold gen-
erated by P is then, CP = c:@zble ucx;ble Lucsierte

W,
Similarly, let G = {g1, g2, . .., gm} be the set of grasps and
{9, Gatay .., Gan,, } the set of relative position of
M w.rt. Fa resulting from G. The set of submainfold

generated by G is then, CG = CZ"**P UCL **F U...UCL **F
M qM qu

The manipulation path planning problem can now
be stated as follows : Given an initial configuration
Go € Cfree and a desired final configuration W(jM. of
M, a set of stable placements, P, and a set of grasps,
G, find a manipulation path &* such that 6*(0) = g, and

(55 (1) =" dume.

Figure 2: Schematic representation of the placement
of landmarks.

3.0 Overview

The ACA is composed of two sub-algorithms
EXPLORE and SEARCH. Tet o = (4a,,"” mo) be
the initial configuration of the system. FX PLORE tries
to identify the set of reachable configurations in CP N CG
from §,. It does so by placing landmarks in CG N CP in
such a way that a manipulation path from §, to any land-
mark is known. Let L, denote the n'® landmark, with
WQM(n) = mm(Ln) and G(jM(n) are the configuration of
M w.rt. Fy and Fg respectively. Using this notation
we have that L, € C%Zilj NCL**? | EXPLORE tries

(n) Gdam n

to spread the landmarks all over the( c)onnected space from
Go. To do so, it tries to put the next landmark as far as
possible from the current ones. By construction, a new
landmark is reachable from at least one of the previously
placed landmarks via a single manipulation path. Each
time we obtain a new landmark, we use SFARCH to try
to go to the goal. The SEARCH algorithm, a fast local
planner, tries to plan a free transfer path from the current
landmark 7, to the final configuration WqM. by mini-
mizing the distance between the current configuration of
M and Wiuq,; if it fails, another landmark is placed by
EXPLORE. Essentially, a tree of landmarks is formed
with ¢, as the root. Figure 2 shows the tree and the con-
figurations where the landmarks have been placed. The
sub-manifolds of CP are schematically represented by a
rectangle and those of CG by an ellipse. Each of the land-
marks (drawn with a e), is connected to its parent by a
single manipulation path (continuous line). We have used
dashed rectangles to show the reachable configurations
(in CP N CQG) from the root (shown as O). The number
of different grasps reachable from a placement is then the
number of ellipses intersecting the square and the number
of different placements reachable with a given grasp is the
number of rectangles intersecting an ellipse.

More formally, let £, denote the set of existing land-
marks at step n, and ¥, the set of single manipulation
paths which start from the configuration corresponding
to one of the landmarks, L; and terminate at the grasp
submanifold j accessible from L;, ie., ¥, = {6 : 6(0) =
L; € Ly and 6(1) € Cg;:p nCP}.

i

To illustrate, suppose, n = 2 and L2 = {L1, L2}. Now
given a manipulation path & € X3 (that is, a single manip-
ulation path starting either at L, or Lg), the algorithm
tries to choose a path 42 that maximizes the distance?®
(1) — L2||. The extremity of this path gives us Ls, i.e.,
G2 : maxXsex, ming, ez, ||6(1) — Li||, and Ls = 62(1) and

2Note that this is a distance between a point and a set.



Ls =Ly U{Ls}.
We can therefore express the FX PLORE algorithm

as an optimization problem :

EXPLORE(n) = { Maximize || =& (1)l

n

It has been shown in [1] that if 3§, € CP N CG such
that mat(§e) = Gate and o is an accessible configuration
from §o then Ve > 0 3N such that at the N*" iteration of
EXPLORE, exists a landmark at a distance ¢ from ¢,.

SEARCH algorithm is essentially a fast local plan-
ner that wverifies if a given configuration is reach-
able from a landmark. Let e denote the de-
sired resolution and we call the SEARCH algorithm,
SEARCH_TRANSFER(LW,WQM.) which returns the
value true if it finds a path and false otherwise. The
ACA is written as follow :

ARIADNE'S CLEW (§o," )
begin
n =0;
L1={L1={o};
do
n=n+41;
Place a new landmark L,4; with EXPLORE(n);
en = ||Lny1 — Lall;
Lnpr =LnU{Lnp1};

transfer = SEARCH_ TRANSFER(Lny1,” Gae)

while( —transfer and (en > ¢€))
if (transfer)
return(history_of(Lny1));
else not path exist with resolution ¢;
end

The “history_of” routine is simply a concatenation
of the manipulation paths of the ancestors of L,4+1 and

the transfer path found by SFARCH.

4.0 Implementing FXPLORE and

SEARCH with Manhattan paths

As is probably apparent by now, we will implement EX-
PLORE and SEARCH as optimization problems, how-
ever, with a special class of paths — the Manhattan paths
which consist of moving one robot link at a time. The
main motivation in considering Manhattan motions is
that (i) they can be represented by a vector of IR", (note
that in general a path is represented by a function not
a vector), (ii) they define a naturally redundant search
space which is well suited for writing the trajectory plan-
ning problem as an optimization problem in IR™, and (iii)
the class is resolution complete in that if a trajectory ex-
ists from one configuration ¢, to another ¢, and the mini-
mal distance of this trajectory to the C-obstaclesis e > 0,
then there exists a Manhattan path from §, to ge [1].

Given a continuous space X C IR" and ¢, =
(z1,...,2n) € X, we define a single Manhattan path in
X starting from ¢, as the function % : [0,1] — X where
for o € [0,1] :

z; for 0<a< g%l
Yi(o) = z; + Aj(na —i+1) for ‘(an) <a< %
LAY for ~<a<l1

with A; € IR being the range of motion for joint 2 and
is carried out in duration % 4 is therefore completely

defined by ¥ = (A1, Ao, ...,A,). Note that the semantic
of this path is “move link 1 a distance A;” followed by
“move link 2 a distance As”, and so on. Furthermore,
the product of ¢ single Manhattan paths in X is a Man-
hattan path of order ¢. Let §o € X be a point in X.
The Manhattan path space of order k at §,, denoted by
Q(X; §o, k) is the set of all the Manhattan paths of order
£ < k starting at the point §,.

We now denote the Manhattan path space of order
k in C%Zilj starting at ¢ = ((jA,W Gm) as Q(Cfé‘;i’\f; G, k).
For brevity, we simply use Q. Let us consider the con-
figurations of the robot and the movable object shown
in the figure 1. We can graphically represent the space
of Manhattans paths of order 1 (¥ = (A1, As)). Note
that Ay, Ay € [—2m, 27] and that the space Q(C{j@‘;b\f; 4,1)

can be represented by [—27, 27] x [—27,27]. The space
is formed by two complementary subsets, denoted by
OB = {3 € @ : o € [0,1] : ¥*(a) € CB}, and
Qfree = Q/QB. Note that QB (Qfre. resp.) depends

stable -

on C ,G and k. Because of brevity we are not showing

Wi
it explicitly in our notation.
A similar construction is used to define Manhattan

space for the transfer trajectories.

Let go = (Ao, dw aq,) be a configuration in CP and
%Gate be the configuration for a grasp of M. The transit
path planning problem can now be stated as a minimiza-
tion problem : MiN sk cqcstable g k) Fa(35,% Gare)

Wangd '
where

kG _ L IPGER) = daell i AR € Qppee
fa(3%,7 Gae) —{ +oo otherwise

Clearly, if there is a transit path *3* € Qfe. tak-
ing the robot to the goal grasp configuration then
fa(*3%,% Gats) = 0. For the simple planar arm, f, is
equivalent to the distance between the end-effector and
the grasp point, however, for a real robot, a pre-shaping
of the grasp would be easier to find [4].

A very similar optimization formulation exists for
planning transfer paths.

5.0 Local Planners
We now illustrate simple local planners for transit paths.
The case for transfer paths is similar. Let §, be an initial
configuration in Cfree and best_path(j) defined as follows :
best_path(q) = 4" : min fa(#*,% dme)
AR EQfree CAUCELAPI%14,k)

dm

A local planer for transit paths can be written as fol-
lows :

SEARCH _TRANSIT(Go,% Gate, k)

begin
qu = 40§
1 :=0;
do
1 =1+ 1;

i = best_path(g;)
distance = fu($:,% Grte);
Gi = @i(1);
while((distance # 0) and (i # Gi—1));
if (distance = 0)
then return($r * G2 * ... x $;);
else return(null_path);
end



Note that SEARCH_TRANSIT returns the null
path if no path has been found for the grasp “gate, ie., a
local minima has been reached. Moreover, using bouncing
techniques, we have an explicit coding of any manhattan
path 4% € R™ to a path in Qf,... We will not go into
details of this optimization here, however, we have used
genetic algorithms to carry out this optimization as in [1].

SEARCH_TRANSIT is now used to build EXPLORFE
as follows. A single manipulation path & starting at
L; € L, is generated by a concatenation of the tran-
sit path ¢ obtained by SEARCH TRANSIT(L;,® Gy ),
and a transfer path 7 coded by a manhattan path
;yk € Q¢ree. This transfer path is obtained as follows.
EXPLORF randomly generates msy transfer paths with
a grasp configuration in G. The sub-manifold where 7
is executed depends on ¢(1). Remember that the algo-
rithm SEFARCH _TRANSIT returns the null path if no
path has been found for the grasp “gas,. In this case,
the obtained manipulation path will keep the same grasp
that corresponds to L; (i.e. there is no change of grasp).
Furthermore, for each landmark [L;, mi transit paths
@5, 7 =1, my are generated. Therefore, in all, m1 x m»
manipulation paths are generated from each landmark.
The manipulation path & that such that &(1) is farthest
away from L, is the chosen manipulation path and &(1)
gives the n 4+ 1" landmark.

The algorithm EX PLORF can be written as follows :

EXPLORE(t)
begin
fori=1ton
for j =1 to my
choose a grasp Gqu €G;
¢i; = SEARCH TRANSIT(Li,° Gm;);

for k =1 to mo

7i,5,k = random_manhattan_path_with(g;;(1));

) Gigh = @iy * Tijj ks
6 =maxs, ;, ||6i5k(1) — Le|| 5
return(s);

Note that, in reality, we use genetic algorithms to
solve the above optimization problems in EXPLORFE
as in [1]. The above explanation is a high-level de-
scription of this process. In particular, constants m;
and mo2 are related to the number of generations used
in the genetic optimization process. The search space
¥n used by FXPLORE can be then represented by :
[1,2,...,n] x [1,2,...,m] x R**™¢ where [1,2,...,n] is
the id of the starting landmark, [1,2,...,m] the id of
grasp in G, nq is number of dof and IR**"¢ represents the
transfer paths.

The example shown in figure 1 was solved using FX-
PLORF and SEFARCH-TRANSIT as explained in this sec-
tion. The approximate run time was about 4 minutes
on an [PX Sparcstation. About seven landmarks were
needed for this example. Admittedly our experiments are
somewhat preliminary, however, they show the promise
of our approach.

6.0 Conclusions

One of the emerging paradigms in solving motion plan-
ning problems is to capture the connectivity of the con-
figuration space by using a finite (but possibly large) set
of landmarks (or nodes) in it. In this paper, we extend
this paradigm to manipulation planning problem. Our
approach offers the following advantages over the previ-
ous methods for manipulation planning (i) it does not
assume that an inverse kinematics solution for the ma-
nipulator is available, and (ii) it does not assume a finite

number of robot configurations for each grasp, i.e., it is
directly applicable to redundant manipulators.

Our initial experiments are with a simple 2-dof pla-
nar arm among polygonal obstacles. We are now in the
process of extending the approach to realistic 3-D environ-
ments and manipulators with many degrees of freedom.
We believe that for environments in 3-D, the search for a
stable placement (or a pre-shaping configuration) can be
incorporated in the optimization function. Furthermore,
in the current implementation, a local planner is used to
to compute the transit paths. This could be augmented
by using EXPLORE function for transit paths also.
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