Using Manhattan Paths for Manipulation Planning

Juan Manuel Ahuactzin * jmal@udlapvms.pue.udlap.mx

Kamal Gupta kamal@cs.sfu.ca

School of Engineering Science Simon Fraser University Burnaby, B.C. CANADA V5A 1S6

Abstract
This paper deals with the manipulation planning problem, where the goal is to plan the motion of a robot so that it can move a given object from an initial configuration to a final configuration while avoiding collisions with the static obstacles in the environment. Our specific approach adapts Adraine's Clew Algorithm that has been shown effective for classical motion planning problem [1, 12]. In our approach, landmarks are placed in lower dimensional submanifolds of the composite configuration space. These landmarks represent stable grasps that are reachable from the initial configuration. From each new landmark, the planner attempts to reach the goal configuration by executing a local planner, again in a lower (but different) dimensional submanifold of the composite configuration space. We have implemented this approach and present initial experiments with a simple 2-dof planar arm among polygonal obstacles.

 $\mathbf{Key}\ \mathbf{Words}:\ \mathrm{manipulation}\ \mathrm{planning},\ \mathrm{regrasping},\ \mathrm{con-}$ figuration space, landmarks.

Introduction

An important problem toward achieving autonomous task planning systems is that of automatic manipulation planning [10]. One version of this problem can be stated as follows: plan the motion of a robot so that it can move a given object from an initial configuration to a final configuration while avoiding collisions with the static obstacles in the environment. It is well known that manipulation planning is computationally more complex than the classical motion planning (piano mover's) problem [10]. It involves dynamically changing grasp and ungrasp motions that change the composite configuration space dynamically. It is known [10] that the manipulation problem can be decomposed into a sequence of subpaths - lying in lower dimensional submanifolds - separated by grasp and ungrasp operations [15]. These paths are called transfer and transit paths [8, 11]. Consequently, a manipulation path is composed of a sequence of transfer and transit paths. Let us introduce the problem using the figure 1. The goal of the planar arm is to take the rectangular object from the initial position (at the top of the figure 1a) to the final position (at the bottom). To move this object, the arm must grasp (with the end-effector) one of the object's edges as shown in 1b. The robot then moves toward (transfer path) the goal but the obstacles prevent the robot from continuing (c). The robot then ungrasps the object and then regrasps the object at a new grasp (transit path) (d). This new grasp permits the robot to reach the goal position (e and f).

One of the emerging paradigms (although there are differences in the specific approaches) in solving motion planning problems is to capture the connectivity of the configuration space using a finite (but possibly large) set of landmarks (or nodes) in it [1, 5, 7, 12, 13]. [1, 12] presented an algorithm, called Ariadne's Clew Algorithm (ACA) that can be used to search for a path in a continuous domain. It is composed of two sub-algorithms: EXPLORE and SEARCH. The EXPLORE algorithm "explores" the reachable space from a given initial point by placing landmarks in it. The landmarks are so placed that a path from the initial position to any landmark is known. The SEARCH algorithm is a local planner that verifies if the goal configuration can be reached from a newly placed landmark. Both algorithms are expressed and solved as optimization problems using a special set of paths - the Manhattan paths. The completeness of this algorithm has been proved in [1]

In this paper, we extend this paradigm to manipulation planning problem. Landmarks are placed in lower dimensional sub-manifolds of the composite configuration space. These landmarks represent stable grasps that are reachable from the initial configuration. From each new landmark, the planner attempts to reach the goal configuration by executing a local planner, again in a lower (but different) dimensional submanifold of the composite configuration space. Our initial experiments are with a simple 2-dof planar arm among polygonal obstacles.

Our approach offers the following advantages over the previous work [3, 8, 9, 11] for manipulation planning (i) it does not assume that an inverse kinematics solution for the manipulator is available, and (ii) it does not assume a finite number of robot configurations for each grasp, i.e., it is directly applicable to redundant manipulators. Please refer to [2, 3, 8, 9, 11] for an overview of previous work; we omit it here for lack of space.

Basic definitions and Problem

Let $\mathcal W$ be the working space of the robot $\mathcal A$. A configuration of the robot in \mathcal{W} is completely specified by $\hat{q}_{\mathcal{A}} = (x_1, x_2, \dots, x_n)$, where n is the number of degrees of freedom of \mathcal{A} . $\mathcal{C}_{\mathcal{A}}$ denotes the configuration space of \mathcal{A} [10]. The static obstacles in W are denoted by $\mathcal{B}_{i=1,2,3,...}$ and the movable object by \mathcal{M} . Let $\hat{q}_{\mathcal{M}} = (y_1, y_2, ..., y_k)^{-1}$ denote the relative configuration. denote the relative configuration of the object refence frame $\mathcal{F}_{\mathcal{M}}$ to the world's reference frame $\mathcal{F}_{\mathcal{W}}$. The configuration space of \mathcal{M} is denoted by $\mathcal{C}_{\mathcal{M}}$. We will make the assumption that $\mathcal{C}_{\mathcal{A}}$ and $\mathcal{C}_{\mathcal{M}}$ are compact (closed and bounded) sets.

The configuration space of the entire system is then $\mathcal{C} = \mathcal{C}_{\mathcal{A}} \times \mathcal{C}_{\mathcal{M}}$ and its dimension is (n+k). The projections of $\hat{q} \in \mathcal{C}$ in $\mathcal{C}_{\mathcal{A}}$ and $\mathcal{C}_{\mathcal{M}}$ will be denoted and defined as

^{*}On leave from Universidad de las Americas, Puebla (Mexico). Acknowledgemnts: This work builds upon the Ph.D. thesis of the first author. Many thanks to Dr. Emmanuel Mazer of LIFIA, Grenoble, for his contribution to these ideas.

 $^{^{1}}k=3$ if $\mathcal{M}\subset\mathbb{R}^{2},\,k=6$ if $\mathcal{M}\subset\mathbb{R}^{3}$

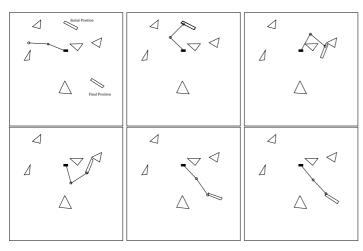


Figure 1: A manipulation path for a 2-dof planer arm.

follows:

$$\begin{array}{l} \pi_{\mathcal{A}} \ : \hat{q} \in \mathcal{C} \to \hat{q}_{\mathcal{A}} \in \mathcal{C}_{\mathcal{A}} \\ \pi_{\mathcal{M}} \ : \hat{q} \in \mathcal{C} \to \hat{q}_{\mathcal{M}} \in \mathcal{C}_{\mathcal{M}} \end{array}$$

Let ${}^{\mathcal{W}}\hat{q}_{\mathcal{M}}$ denote a stable configuration of \mathcal{M} described w.r.t. $\mathcal{F}_{\mathcal{W}}$. The submainfold $\mathcal{C}^{stable}_{\mathcal{W}\hat{q}_{\mathcal{M}}}\subset \mathcal{C}$ is defined as $\mathcal{C}^{stable}_{\mathcal{W}\hat{q}_{\mathcal{M}}}=\{\hat{q}\in\mathcal{C}|\pi_{\mathcal{M}}(\hat{q})={}^{\mathcal{W}}\hat{q}_{\mathcal{M}}\}$. A transit path is a continuous map $\hat{\varphi}:[0,1]\to\mathcal{C}^{stable}_{\mathcal{W}\hat{q}_{\mathcal{M}}}$. When the robot is moving with the movable object grasped in its gripper, the configuration of \mathcal{M} relative to the gripper remains constant and the configuration of \mathcal{M} w.r.t $\mathcal{F}_{\mathcal{W}}$ is changing. Let us denote these relative configurations by ${}^{G}\hat{q}_{\mathcal{M}}$ and ${}^{\mathcal{W}}\hat{q}_{\mathcal{M}}$ respectively. Moreover, let $\Phi({}^{\mathcal{W}}\hat{q}_{\mathcal{M}})$ be the function that transforms the configuration of \mathcal{M} from $\mathcal{F}_{\mathcal{W}}$ to the gripper's reference frame $\mathcal{F}_{\mathcal{G}}$. For a given grasp configuration ${}^{G}\hat{q}_{\mathcal{M}}$, we define the sub-manifold $\mathcal{C}^{grasp}_{\mathcal{G}_{\mathcal{M}}}\subset\mathcal{C}$ as $\mathcal{C}^{grasp}_{\mathcal{G}_{\mathcal{M}}}=\{\hat{q}\in\mathcal{C}|\Phi(\pi_{\mathcal{M}}(\hat{q}))={}^{G}\hat{q}_{\mathcal{M}}\}$. Note that the dimension of this submainfold is n (the number of dof of \mathcal{A}), and that Φ depends on $\hat{q}_{\mathcal{A}}$. A transfer path is a continuous map $\hat{\tau}:[0,1]\to\mathcal{C}^{grasp}_{\mathcal{G}_{\mathcal{M}}}$. Let \mathcal{CB} denote the configuration space obstacles. The free space \mathcal{C}_{free} is defined as $\mathcal{C}\setminus\mathcal{CB}$. A free transfer path $\hat{\varphi}$ (resp. free transit path, $\hat{\varphi}$) is then defined as a mapping $\hat{\varphi}:[0,1]\to\mathcal{C}^{stable}_{\mathcal{W}_{\mathcal{M}}}$.

A single manipulation path $\hat{\sigma}$ is defined as a concatenation (product) [10] of a free transit path $\hat{\varphi}$ and a free transfer path $\hat{\tau}$, $\hat{\sigma} = \hat{\varphi} * \hat{\tau}$. A manipulation path of order ℓ , denoted by $\hat{\sigma}^{\ell}$ is defined as a concatenation of ℓ single manipulation paths, i.e., $\hat{\sigma}^k = \hat{\sigma}_1 * \hat{\sigma}_2 * \dots * \hat{\sigma}_{\ell}$.

manipulation paths, i.e., $\ddot{\sigma}^n = \sigma_1 * \sigma_2 * \dots * \sigma_\ell$. Let $\mathcal{P} = \{{}^{\mathcal{W}} \hat{q}_{\mathcal{M}_1}, {}^{\mathcal{W}} \hat{q}_{\mathcal{M}_2}, \dots, {}^{\mathcal{W}} \hat{q}_{\mathcal{M}_k}\}$ be the set of stable placements of \mathcal{M} in \mathcal{W} . The entire sub-manifold generated by \mathcal{P} is then, $\mathcal{C}\mathcal{P} = \mathcal{C}_{\mathcal{W}}^{stable} \cup \mathcal{C}_{\mathcal{W}}^{stable} \cup \mathcal{C}_{\mathcal{W}}^{stable} \cup \dots \cup \mathcal{C}_{\mathcal{W}}^{stable} \hat{q}_{\mathcal{M}_k}$. Similarly, let $\mathcal{G} = \{g_1, g_2, \dots, g_m\}$ be the set of grasps and $\{{}^{G} \hat{q}_{\mathcal{M}_1}, {}^{G} \hat{q}_{\mathcal{M}_2}, \dots, {}^{G} \hat{q}_{\mathcal{M}_m}\}$ the set of relative position of \mathcal{M} w.r.t. $\mathcal{F}_{\mathcal{G}}$ resulting from \mathcal{G} . The set of submanifold generated by \mathcal{G} is then, $\mathcal{C}\mathcal{G} = \mathcal{C}_{\mathcal{G}}^{grasp} \cup \mathcal{C}_{\mathcal{G}}^{grasp} \cup \mathcal{C}_{\mathcal{G}}^{grasp} \cup \dots \cup \mathcal{C}_{\mathcal{G}}^{grasp} \cup \mathcal{C}_{\mathcal{G}$

The manipulation path planning problem can now be stated as follows: Given an initial configuration $\hat{q}_o \in \mathcal{C}_{free}$ and a desired final configuration ${}^{\mathcal{W}}\hat{q}_{\mathcal{M}\bullet}$ of \mathcal{M} , a set of stable placements, \mathcal{P} , and a set of grasps, \mathcal{G} , find a manipulation path $\hat{\sigma}^k$ such that $\hat{\sigma}^k(0) = \hat{q}_o$ and $\pi_{\mathcal{M}}(\hat{\sigma}^k(1)) = {}^{\mathcal{W}}\hat{q}_{\mathcal{M}\bullet}$.

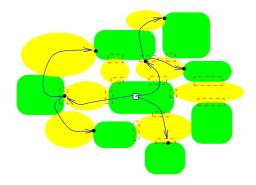


Figure 2: Schematic representation of the placement of landmarks.

3.0 Overview

The ACA is composed of two sub-algorithms: EXPLORE and SEARCH. Let $\hat{q}_o = (\hat{q}_{A_o}, {}^{\mathcal{W}} \hat{q}_{\mathcal{M}o})$ be the initial configuration of the system. EXPLORE tries to identify the set of reachable configurations in $\mathcal{CP} \cap \mathcal{CG}$ from \hat{q}_o . It does so by placing landmarks in $\mathcal{CG} \cap \mathcal{CP}$ in such a way that a manipulation path from \hat{q}_o to any landmark is known. Let L_n denote the n^{th} landmark, with ${}^{\mathcal{W}} \hat{q}_{\mathcal{M}_{(n)}} = \pi_{\mathcal{M}}(L_n)$ and ${}^{\mathcal{G}} \hat{q}_{\mathcal{M}_{(n)}}$ are the configuration of \mathcal{M} w.r.t. $\mathcal{F}_{\mathcal{W}}$ and $\mathcal{F}_{\mathcal{G}}$ respectively. Using this notation we have that $L_n \in \mathcal{C}_{\mathcal{W}}^{stable} \cap \mathcal{C}_{\mathcal{G}}^{grasp} \cap \mathcal{C}_{\mathcal{G}}^{gras$

to spread the landmarks all over the connected space from To do so, it tries to put the next landmark as far as possible from the current ones. By construction, a new landmark is reachable from at least one of the previously placed landmarks via a single manipulation path. Each time we obtain a new landmark, we use SEARCH to try to go to the goal. The SEARCH algorithm, a fast local planner, tries to plan a free transfer path from the current landmark L_n to the final configuration $\mathcal{W}\hat{q}_{\mathcal{M}\bullet}$ by minimizing the distance between the current configuration of \mathcal{M} and $^{\mathcal{W}}\hat{q}_{\mathcal{M}\bullet}$; if it fails, another landmark is placed by EXPLORE. Essentially, a tree of landmarks is formed with \hat{q}_0 as the root. Figure 2 shows the tree and the configurations where the landmarks have been placed. The sub-manifolds of \mathcal{CP} are schematically represented by a rectangle and those of \mathcal{CG} by an ellipse. Each of the landmarks (drawn with a •), is connected to its parent by a single manipulation path (continuous line). We have used dashed rectangles to show the reachable configurations (in $\mathcal{CP} \cap \mathcal{CG}$) from the root (shown as \square). The number of different grasps reachable from a placement is then the number of ellipses intersecting the square and the number of different placements reachable with a given grasp is the number of rectangles intersecting an ellipse.

More formally, let \mathcal{L}_n denote the set of existing landmarks at step n, and Σ_n the set of single manipulation paths which start from the configuration corresponding to one of the landmarks, L_i and terminate at the grasp submanifold j accessible from L_i , i.e., $\Sigma_n = \{\hat{\sigma}: \hat{\sigma}(0) = L_i \in \mathcal{L}_n \text{ and } \hat{\sigma}(1) \in \mathcal{C}_{\mathcal{G}_{\hat{\mathcal{H}}_{\mathcal{M}_j}}}^{grasp} \cap \mathcal{CP}\}.$

To illustrate, suppose, n=2 and $\mathcal{L}_2=\{L_1,L_2\}$. Now given a manipulation path $\hat{\sigma}\in\Sigma_2$ (that is, a single manipulation path starting either at L_1 or L_2), the algorithm tries to choose a path $\hat{\sigma}_2$ that maximizes the distance $||\hat{\sigma}(1)-\mathcal{L}_2||$. The extremity of this path gives us L_3 , i.e., $\hat{\sigma}_2:\max_{\hat{\sigma}\in\Sigma_2}\min_{L_i\in\mathcal{L}_2}||\hat{\sigma}(1)-L_i||$, and $L_3=\hat{\sigma}_2(1)$ and

²Note that this is a distance between a point and a set.

$$\mathcal{L}_3 = \mathcal{L}_2 \cup \{L_3\}.$$

We can therefore express the EXPLORE algorithm as an optimization problem:

$$EXPLORE(n) = \begin{cases} \text{Maximize } ||\mathcal{L}_n - \hat{\sigma}(1)|| \\ \hat{\sigma} \in \Sigma_n \end{cases}$$

It has been shown in [1] that if $\exists \hat{q}_{\bullet} \in \mathcal{CP} \cap \mathcal{CG}$ such that $\pi_{\mathcal{M}}(\hat{q}_{\bullet}) = \hat{q}_{\mathcal{M}\bullet}$ and \hat{q}_{\bullet} is an accessible configuration from \hat{q}_0 then $\forall \varepsilon \geq 0 \; \exists N \; \text{such that at the } N^{th} \; \text{iteration of}$ EXPLORE, exists a landmark at a distance ε from \hat{q}_{\bullet} .

SEARCH algorithm is essentially a fast local planner that verifies if a given configuration is reachable from a landmark. Let ε denote the desired resolution and we call the SEARCH algorithm, $SEARCH_TRANSFER(L_n, \stackrel{\mathcal{W}}{\mathscr{q}}_{\mathcal{M}\bullet})$ which returns the value true if it finds a path and false otherwise. The ACA is written as follow:

```
ARIADNE'S\_CLEW(\hat{q}_{o}, ^{\mathcal{W}} \hat{q}_{\mathcal{M} \bullet})
begin
     Place a new landmark L_{n+1} with EXPLORE(n);

\varepsilon_n = ||L_{n+1} - \mathcal{L}_n||; 

\mathcal{L}_{n+1} = \mathcal{L}_n \cup \{L_{n+1}\};

            transfer = \dot{SEARCH\_TRANSFER}(L_{n+1}, \overset{\mathcal{W}}{q}_{\mathcal{M}\bullet})
      while (\neg transfer \text{ and } (\varepsilon_n > \varepsilon))
     if (transfer)
           return(history\_of(L_{n+1}));
      else not path exist with resolution \varepsilon;
end
```

The "history_of" routine is simply a concatenation of the manipulation paths of the ancestors of L_{n+1} and the transfer path found by SEARCH.

Implementing EXPLORE and SEARCH with Manhattan paths

As is probably apparent by now, we will implement EX-PLORE and SEARCH as optimization problems, however, with a special class of paths - the Manhattan paths which consist of moving one robot link at a time. The main motivation in considering Manhattan motions is that (i) they can be represented by a vector of \mathbb{R}^n , (note that in general a path is represented by a function not a vector), (ii) they define a naturally redundant search space which is well suited for writing the trajectory planning problem as an optimization problem in \mathbb{R}^n , and (iii) the class is resolution complete in that if a trajectory exists from one configuration \hat{q}_{\bullet} to another \hat{q}_{\bullet} and the minimal distance of this trajectory to the C-obstacles is $\varepsilon > 0$, then there exists a Manhattan path from \hat{q}_{\circ} to \hat{q}_{\bullet} [1].

Given a continuous space $X \subset \mathbb{R}^n$ and $\hat{q}_0 = (x_1, \ldots, x_n) \in X$, we define a single Manhattan path in X starting from \hat{q}_0 as the function $\hat{\gamma}: [0,1] \to X$ where

$$\gamma_{i}(\alpha) = \begin{pmatrix} \gamma_{1}(\alpha), \gamma_{2}(\alpha), \dots, \gamma_{n}(\alpha) \end{pmatrix} \in X \quad \text{and} \\
\gamma_{i}(\alpha) = \begin{cases} x_{i} & \text{for } 0 \leq \alpha \leq \frac{(i-1)}{n} \\ x_{i} + \Delta_{i}(n\alpha - i + 1) & \text{for } \frac{(i-1)}{n} \leq \alpha \leq \frac{i}{n} \\ x_{i} + \Delta_{i} & \text{for } \frac{i}{n} \leq \alpha \leq 1 \end{cases}$$

with $\Delta_i \in \mathbb{R}$ being the range of motion for joint i and is carried out in duration $\frac{1}{n}$. $\hat{\gamma}$ is therefore completely

defined by $\hat{\gamma} = (\Delta_1, \Delta_2, ..., \Delta_n)$. Note that the semantic of this path is "move link 1 a distance Δ_1 " followed by "move link 2 a distance Δ_2 ", and so on. Furthermore, the product of ℓ single Manhattan paths in X is a Manhattan path of order ℓ . Let $\hat{q}_o \in X$ be a point in X. The Manhattan path space of order k at \hat{q}_o , denoted by $\Omega(X;\hat{q}_0,k)$ is the set of all the Manhattan paths of order $\ell \leq k$ starting at the point \hat{q}_{\circ} .

We now denote the Manhattan path space of order k in $\mathcal{C}^{stable}_{\mathcal{W}\dot{q}_{\mathcal{M}}}$ starting at $\hat{q}=(\hat{q}_{\mathcal{A}},^{\mathcal{W}}\hat{q}_{\mathcal{M}})$ as $\Omega(\mathcal{C}^{stable}_{\mathcal{W}\dot{q}_{\mathcal{M}}};\hat{q},k)$. For brevity, we simply use Ω . Let us consider the configurations of the robot and the movable object shown in the figure 1. We can graphically represent the space of Manhattans paths of order 1 $(\hat{\gamma} = (\Delta_1, \Delta_2))$. Note that $\Delta_1, \Delta_2 \in [-2\pi, 2\pi]$ and that the space $\Omega(\mathcal{C}_{\mathcal{W}_{\hat{q}\mathcal{M}}}^{stable}; \hat{q}, 1)$ can be represented by $[-2\pi,2\pi]\times[-2\pi,2\pi].$ The space can be represented by $[-2^{n}, 2^{n}] \times [-2^{n}, 2^{n}]$. The space is formed by two complementary subsets, denoted by $\Omega \mathcal{B} = \{\hat{\gamma}^{k} \in \Omega : \exists \alpha \in [0,1] : \hat{\gamma}^{k}(\alpha) \in \mathcal{C}\mathcal{B}\}$, and $\Omega_{free} = \Omega/\Omega \mathcal{B}$. Note that $\Omega \mathcal{B} (\Omega_{free} \text{ resp.})$ depends on $C_{W\hat{q}_{\mathcal{M}}}^{stable}, \hat{q}$ and k. Because of brevity we are not showing it explicitly in our notation.

A similar construction is used to define Manhattan space for the transfer trajectories.

Let $\hat{q}_{\circ} = (\hat{q}_{\mathcal{A}_{\circ}}, \hat{q}_{\mathcal{W}_{\mathcal{M}_{\circ}}})$ be a configuration in \mathcal{CP} and ${}^{G}\hat{q}_{\mathcal{M}ullet}$ be the configuration for a grasp of \mathcal{M} . The transit path planning problem can now be stated as a minimiza- $\min_{\hat{\gamma}^k \in \Omega(\mathcal{C}^{stable}_{\mathcal{W}\hat{q}_{\mathcal{M}}}; \hat{q}_{\mathfrak{o}}, k)} f_a(\hat{\gamma}^k, G^{\hat{q}}_{\mathcal{M}\bullet})$ tion problem :

where
$$f_a(\hat{\gamma}^k, {}^G\hat{q}_{\mathcal{M}\bullet}) = \begin{cases} \|\Phi(\hat{\gamma}^k(1)) - {}^G\hat{q}_{\mathcal{M}\bullet}\| & \text{if } \hat{\gamma}^k \in \Omega_{free} \\ +\infty & \text{otherwise} \end{cases}$$

Clearly, if there is a transit path ${}^*\hat{\gamma}^k \in \Omega_{free}$ taking the robot to the goal grasp configuration then $f_a({}^*\hat{\gamma}^k, {}^G\hat{q}_{\mathcal{M}\bullet}) = 0$. For the simple planar arm, f_a is equivalent to the distance between the end-effector and the grasp point, however, for a real robot, a pre-shaping of the grasp would be easier to find [4].

A very similar optimization formulation exists for planning transfer paths.

Local Planners

We now illustrate simple local planners for transit paths. The case for transfer paths is similar. Let $\hat{q}_{\, 0}$ be an initial configuration in \mathcal{C}_{free} and $best_path(\hat{q})$ defined as follows:

$$best_path(\hat{q}) = \hat{\gamma}^k : \min_{\hat{\gamma}^k \in \Omega_{free} \subset \Omega(\mathcal{C}^{stable}_{\mathcal{W} \hat{q}_{\mathcal{M}}, \mathcal{M}})} f_a(\hat{\gamma}^k, ^G \hat{q}_{\mathcal{M} \bullet})$$

A local planer for transit paths can be written as follows:

```
SEARCH\_TRANSIT(\hat{q}_{o}, {}^{G}\hat{q}_{\mathcal{M} \bullet}, k)
        \hat{q}_1 = \hat{q}_0;
        i := 0;
                 \begin{split} &i=i+1;\\ &\hat{\varphi}_i=best\_path(\hat{q}_i)\\ &distance=f_a(\hat{\varphi}_i,^G\hat{q}_{\mathcal{M}\bullet});\\ &\hat{q}_i=\hat{\varphi}_i(1); \end{split} 
         while ((distance \neq 0) \text{ and } (\hat{q}_i \neq \hat{q}_{i-1}));
        if (distance = 0)
                 then return (\hat{\varphi}_1 * \hat{\varphi}_2 * \dots * \hat{\varphi}_i);
                 else return(null_path);
```

Note that $SEARCH_TRANSIT$ returns the null path if no path has been found for the grasp ${}^{G}\hat{q}_{\mathcal{M}\bullet}$, i.e., a local minima has been reached. Moreover, using bouncing techniques, we have an explicit coding of any manhattan path $\hat{\gamma}_k \in I\!\!R^{n*k}$ to a path in Ω_{free} . We will not go into details of this optimization here, however, we have used genetic algorithms to carry out this optimization as in [1].

SEARCH_TRANSIT is now used to build EXPLORE as follows. A single manipulation path $\hat{\sigma}$ starting at $L_i \in \mathcal{L}_n$ is generated by a concatenation of the transit path $\hat{\varphi}$ obtained by $SEARCH_TRANSIT(L_i, {}^G\hat{q}_{\mathcal{M}_i})$, and a transfer path $\hat{\tau}$ coded by a manhattan path $\hat{\gamma}^k \in \Omega_{free}$. This transfer path is obtained as follows. EXPLORE randomly generates m_2 transfer paths with a grasp configuration in \mathcal{G} . The sub-manifold where $\hat{\tau}$ is executed depends on $\hat{\varphi}(1)$. Remember that the algorithm $SEARCH_TRANSIT$ returns the null path if no path has been found for the grasp ${}^{G}\hat{q}_{\mathcal{M}_{j}}.$ In this case, the obtained manipulation path will keep the same grasp that corresponds to L_i (i.e. there is no change of grasp). Furthermore, for each landmark L_i , m_1 transit paths $\hat{\varphi}_j, \ j=1, m_1$ are generated. Therefore, in all, $m_1 \times m_2$ manipulation paths are generated from each landmark. The manipulation path $\hat{\sigma}$ that such that $\hat{\sigma}(1)$ is farthest away from \mathcal{L}_n is the chosen manipulation path and $\hat{\sigma}(1)$ gives the $n+1^{th}$ landmark.

The algorithm EXPLORE can be written as follows:

```
EXPLORE(t) begin for i = 1 to n for j = 1 to m_1 [5] choose a grasp {}^G\hat{q}_{\mathcal{M}_j} \in \mathcal{G}; \hat{\varphi}_{i,j} = SEARCH\_TRANSIT(Li, {}^G\hat{q}_{\mathcal{M}_j}); for k = 1 to m_2 \hat{\tau}_{i,j,k} = \mathrm{random\_manhattan\_path\_with}(\hat{\varphi}_{i,j}(1)); [6] \hat{\sigma}_{i,j,k} = \hat{\varphi}_{i,j,k} + \hat{\tau}_{i,j,k}; return(\hat{\sigma}); end Note that in reality we use genetic algorithms to [7]
```

Note that, in reality, we use genetic algorithms to solve the above optimization problems in EXPLORE as in [1]. The above explanation is a high-level description of this process. In particular, constants m_1 and m_2 are related to the number of generations used in the genetic optimization process. The search space Σ_n used by EXPLORE can be then represented by: $[1,2,\ldots,n]\times[1,2,\ldots,m]\times R^{k*n_d}$, where $[1,2,\ldots,n]$ is the id of the starting landmark, $[1,2,\ldots,m]$ the id of grasp in \mathcal{G} , n_d is number of dof and R^{k*n_d} represents the transfer paths.

The example shown in figure 1 was solved using EX-PLORE and SEARCH-TRANSIT as explained in this section. The approximate run time was about 4 minutes on an IPX Sparcstation. About seven landmarks were needed for this example. Admittedly our experiments are somewhat preliminary, however, they show the promise of our approach.

6.0 Conclusions

One of the emerging paradigms in solving motion planning problems is to capture the connectivity of the configuration space by using a finite (but possibly large) set of landmarks (or nodes) in it. In this paper, we extend this paradigm to manipulation planning problem. Our approach offers the following advantages over the previous methods for manipulation planning (i) it does not assume that an inverse kinematics solution for the manipulator is available, and (ii) it does not assume a finite

number of robot configurations for each grasp, i.e., it is directly applicable to redundant manipulators.

Our initial experiments are with a simple 2-dof planar arm among polygonal obstacles. We are now in the process of extending the approach to realistic 3-D environments and manipulators with many degrees of freedom. We believe that for environments in 3-D, the search for a stable placement (or a pre-shaping configuration) can be incorporated in the optimization function. Furthermore, in the current implementation, a local planner is used to to compute the transit paths. This could be augmented by using EXPLORE function for transit paths also.

References

- [1] J.M. Ahuactzin: Le Fil d'Ariane: Une methode de planification générale. Application a la planification automatique des trajectoires, Ph.D. Tesis of the Institut National Polytechnique de Grenoble. Grenoble, France 1994.
- [2] J.M. Ahuactzin and Kamal Kant Gupta: On Manipulation Planning (in preparation), Technical Report, School of Engineering Science, Simon Fraser University, B.C. Canada 1995.
- [3] R. Alami, T. Siméon and J.P. Laumond: A Geometrical Approach to Planning Manipulation Tasks: The Case of Discrete Placements and Grasps, in Robotics Research 5, The MIT press, Cambridge, 1990.
- [4] Christian BARD: Interaction sensori-motrice en robotique: Application a la prehension automatisée pour une main articulée a plusieurs doigts, Ph.D. Tesis of the Institut National Polytechnique de Grenoble. Grenoble, France 1994.
- [5] C. Chen, Yong K. Hwang: SANDROS: A Motion Planner with Performance Proportional to Task Difficulty, Proceedings of the 1992 IEEE International Conference on Robotic and Automation, Nice, France - May 1992
- [6] Kamal Kant Gupta, Zhenping Guo: Motion Planning for Many Degrees of Freedom Sequential Search With Backtracking, Proceedings of the 1992 IEEE International Conference on Robotic and Automation, Nice, France - May 1992.
- [7] Lydia Kavraki and Jean-Claude Latombe: Randomized Preprocessing of Configuration Space for Path Planning: Articulated Robots, IROS, 1994.
- [8] Yoshihito Koga and Jean-Claude Latombe: Experiments in Dual-Arm Manipulation Planning, Proceedings of the 1992 IEEE International Conference on Robotic and Automation, Nice, France - May 1992.
- [9] Yoshihito Koga: On Computing Multi-Arm Manipulation Trajectories, PhD. Tesis, Department of Mechanical Engineering, Stanford University, 1994.
- [10] Jean-Claude Latombe: Robot Motion Planning, Kluwer Academic Publishers, Boston 1991.
- [11] Jean Paul Laumond and Rachid Alami: A Geometrical Approach to Planning Manipulation Tasks: The Case of Circular Robot and Movable Circular Object Admist Polygonal Obstacles. Tech. Rep. No. 88314, LAAS, Toulouse, France, 1988.
- [12] E. Mazer, J.M. Ahuactzin, G. Talbi, P. Bessière: "The ariadne's Clew Algorithm", SAB92 Honolulu 1992.
- [13] Mark H. Overmars: A random approach to motion planning, Utrecht University, Department of Computer Science, The Netherlands 1992.
- [14] Nancy S. Pollard and Tomás Lozano-Pérez: Grasp Stability and Feasibility for an Arm with Articulated Hand, Proceedings of the 1991 IEEE International Conference on Robotics and Automation.
- [15] Pierre Tournassoud, Tomás Lozano-Pérez and Emmanuel Mazer: REGRASPING, Proceedings of the 1987 IEEE International Conference on Robotic and Automation, Raleigh, North Carolina USA, March-April 1987.