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Abstract— This paper focuses on efficient occupancy grid
building based on wavelet occupancy grids, a new sparse grid
representation and on a new update algorithm for range sensors.
The update algorithm takes advantage of the natural multiscale
properties of the wavelet expansion to update only parts of the
environement that are modified by the sensor measurements and
at the proper scale. The sparse wavelet representation coupled
with an efficient algorithm presented in this paper provides
efficient and fast updating of occupancy grids. It leads to real-
time results especially in 2D grids and for the first time in 3D
grids. Experiments and results are discussed for both real and
simulated data.

I. I NTRODUCTION AND PREVIOUS WORK

The Simultaneous Localization And Mapping (SLAM) issue
has found very convincing solutions in the past few years, es-
pecially in 2 dimensions. Thanks to a number of contributions
[1] [2] [3] [4], it is now feasible to navigate and build a map
while maintaining an estimate of the robot’s position in an
unknown 2D indoor environment on a planar floor. In these 2D
conditions, the problem is theoretically and practically solved
even in a populated environment [5]. Some of the most impres-
sive approaches are based on grid-based fast-slam algorithms
[6] [7] [3], which offer a unified framework for landmark
registration and pose calculation thanks to occupancy grids
(OG) [8]. This approach yields several advantages: it provides
robots with the ability to build an accurate dense map of
the static environment, which keeps track of all possible
landmarks and represents open spaces at the same time. Only
a simple update mechanism, which filters moving obstacles
naturally and performs sensor fusion, is required. In contrast to
other methods, there is no need to perform landmark extraction
as the raw data from range measurements are sufficient. One of
the benefits is accurate self positioning, which is particularly
visible in the accuracy of the angle estimate. However, the
major drawback is the amount of data required to store and
process the grid, as a grid that represents the environment
has an exponential memory cost as the number of dimensions
increases. In 2D SLAM, this drawback is overcome by the
sheer power of the computer and its huge memory. But this
issue cannot be avoided for 3D SLAM even with today’s
desktop computing capabilities. Recently, methods to deal
with the 3D instance of the SLAM problem, in undulating
terrains [4] have used landmark extraction, clustering anda
special algorithm for spurious data detection. However, this
map framework does not handle out-of-date data; therefore
the extra cost of removing or updating data coming from past
poses of moving objects is not considered.

In this paper, we choose to use OGs in a hierarchical manner
related to those of [9] but embedded in the wavelet theory
which allows us to present a new algorithm called wavelet hi-
erarchical rasterization that hierarchically updates thewavelet
occupancy grid in the relevant area of the environment. It
does not require, as with the previous approach [10], any
intermediate representation for adding observations in the
wavelet grid. This leads to real-time dense mapping in 2D and
we propose a special instance of this algorithm that performs
well enough for real-time 3D grid modelling. This method is
intrinsically multi-scale and thus one of its major advantages
is that the mapping could be performed at any resolution in
an anytime fashion.
There exists a large panel of dense mapping techniques:
amongst the other popular representations of dense 3D data
are raw data points [4], triangle mesh [11] [12], elevation maps
[13], [14] or 2d-tree based representations [15], [9]. However
there are major drawbacks in using such representations. With
clouds of points it is not easy to generalize: roughly speaking,
there is no simple mechanism to fill in the holes. Moreover,
the clouds of points are generated by the successive records
of range measurements, thus the amount of data is prohibitive
after a few hours of recording. The triangle mesh represen-
tation is a kind of 212-D map and the space representation
is also incomplete. In simple elevation maps [11], for the
same reasons, holes in the environment such as tunnels are
not part of the set of representable objects. This problem is
overcome in [14] since there is a little number of vertical steps
for each part of the map. The most serious point is that most of
these methods lack a straightforward data fusion mechanism.
In particular, it is rarely simple to include information onthe
absence of features. Triangle mesh [12] and elevation maps
[14] suffer most from this problem. Therefore most of the
time these representations are obtained as a batch processing
or for a little environment.
For range sensors OGs represent the probability for the pre-
sence of a reflective surface at any world location. Therefore
the ability to update the map for both the presence and the
absence of data is a major advantage, which we call the
evolution property. With OGs this property does not come
from a batch process but is part of the probabilistic map model
definition. The cost is that a huge amount of memory is needed
to cope with the map discretization.
In [10], a wavelet grid-based approach was introduced, which
makes it possible to represent grids in a compact but flexible
format. In pyramid maps representations [8], [9], information



is stored at each scale and there is a lot of redundancy but
multiscale information is available. Conversely, probabilistic
2d-trees record data at the leaves [15] [9] and the whole depth
of the tree must be traversed to update the representation
(fig. 3). Wavelet occupancy grids synthesize the advantages
of both approaches: there is no redundancy and they make it
possible to have multiscale editing by storing at finer scale
only the differences with the previous coarser scale (see
section II-B). Furthermore this representation allows com-
pression by the elimination of redundant information where
there are no significant additional details such as for empty
or uncertain spaces with a theoretical analysis of information
loss. In addition, this paper describe a real-time algorithm for
hierarchical updating of the occupancy representation in 3D
for the first time.
In order to build the map, a standard approach, [10], will
use an intermediate standard grid representation on which a
wavelet transform will be performed. Even if a 2D wavelet
transform can be performed in real-time, the extension to
the case of a 3D transform in real-time is not apparent. So
for a reasonable field of view, it makes the previous method
unfeasible for 3D data. Our algorithm overcomes this difficulty
with a hierarchical strategy that updates only the relevantareas
of the environment and at the proper scale. In a first section,
we will present the wavelet framework and the data structure
while underlining differences with probabilistic 2d-trees. In
a second section the sensor model within the occupancy grid
framework for the wavelet space is described. Next, we present
the wavelet hierarchical rasterization algorithm. Lastly, we
present our results in 2D on real data and in simulated 3D
data where correct localisation is provided. Although in all
the paper the algorithm is described for any kind of range
sensor, the implementation and the experimental section are
with laser data only.

II. WAVELETS

In this paper, the occupancy state is represented as a spatial
function. Our main contribution is an occupancy updating
technique that can be performed in a compact manner. At
the heart of the method is wavelet representation, which is
a popular tool in image compression. Indeed, there exists a
similarity between OGs and images [8]. The wavelet transform
known as the Mallat algorithm successively averages each
scale, starting from the finest scale (fig. 1, from right to left).
This produces an oracle predicting the information stored in
finer cells, then only differences from the oracle are encoded.
This averaging produces the next coarser scale and differences
with neighboring samples at the fine scale gives the associated
so called detail coefficients. There is no loss of information in
that process since the information contained in the finer scale
can be recovered from its average and detail coefficients. Since
two neighboring samples are often similar, a large number of
the detail coefficients turn out to be very small in magnitude.
Truncating or removing these small coefficients from the
representation introduces only small errors in the reconstructed
signal, giving a form of lossy signal compression. Lossless

compression is obtained by removing only zero coefficients.
In this paper wavelets are just used as a special kind of
vector space basis that allows good compression. It is beyond
the scope of this paper to give details about wavelet theory;
references can be found in [16] [17] [18].

A. Notations

Wavelets are built from two sets of functions: scaling and
detail functions (also known as wavelet functions). Scaling
functions,Φ(x), capture the average or lower frequency infor-
mation and a scaling coefficient is notedsl

t . Detail functions,
Ψ(x), capture the higher frequency information and a detail
coefficient for a detail functionf is noted dl

t, f . The set of
wavelet basis functions can be constructed by the translation
and dilation of the scaling and detail functions. Thus each of
the basis functions or coefficients is indexed by a scalel and
a translation indext. Moreover a detail function is indexed by
its type f . In this paper, the non-standard Haar wavelet basis
is used. For non-standard Haar wavelet basis, there is only one
mother scaling function and 2d−1 mother wavelet functions,
whered is the dimension of the signal. Expanding a function
O in the Haar wavelet basis is described as:

O(x) = s−N
0 Φ−N

0 +
l=0

∑
l=−N

∑
t

∑
f

dl
t, f Ψ

l
t, f , (1)

where f is an index from 1 to 2d−1, andN the level such
that the whole grid appears as one cell. As can be seen in
eq. 1, only one scaling coefficient and one scaling function
are required in the expansion of any functionO(x). As shown
in fig. 1, the scaling coefficients at other levels are computed as
part of the decompression (from left to right) or compression
(from right to left) processes.
The scaling coefficient for a certain levell and translationt
holds the average of values contained in the support of the
scaling function. The support of any Haar basis function in
dimensiond is a d-cube e.g. a square in 2D and a cube in
3D. If the finest level is 0 and coarser levels are indexed by
decreasing negative integers, the side of such ad-cube is 2−l

where the unit is in number of samples at level 0.

B. Tree structure

The key step in a wavelet decomposition is the passage from
one scale to another. The support of a Haar wavelet function at
level l is exactly partitioned by the support of the 2d wavelet
functions at levell + 1, (see Fig. 1 for dimension 1). This
leads to a quadtree for the case of a 2D space or an octree
for a 3D space. Each representation hierarchically maps the
whole explored space. A node of the tree stores 2d−1 detail
coefficients and potentially 2d children that encode finer details
if they are necessary to reconstruct the expanded function.
The key step of a node creation is described in fig. 2. Only
3 coefficients in 2D remain at each leaf while at each node
is recorded the mean occupancy of the underlying area. In
a standard quadtree, 4 coefficients are necessary and, for
example in [9], the storage of the mean is redundant, whereas
in the wavelet representation it is not.
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Fig. 1. The 1D image (upper, left) is:[8,10,9,5,0,0,4,4], and its
unnormalized (used here because it is simpler to display) Haarrepresentation
is: [5,3,1,−2,−1,2,0,0]. The image is then reconstructed one level at a time
as follows:[5]→ [5+3,5−3] = [8,2]→ [8+1,8−1,2−2,2+2] = [9,7,0,4]
and so on. Here 0 is the finest scale index or the scale where data is gathered
and−2 is the coarsest scale. As in one dimension there is only one kind of
detail function, the subscripts refers only to translation(t) indices of eq. (1).

The Haar wavelet data structure is exactly a 2d-tree for its
topology but not for the encoded data. Therefore the indexing
of a cell with wavelet OG is as fast as with probabilistic
2d-trees, however the retrieving of occupancy needs a small
number of inverse wavelet transform operations1. Furthermore
it not only stores spatially organized data, but also summarizes
the data at different resolutions, which enables hierarchical
updating. For example, fig. 3, the occupancy of all finest
squares inside the empty area (fig. 6) decreases of the same
amount, thus in the coarsest cell of the quadtree with waves
the update is a constant. Also, the mean of the update over
the waved square equals the value of the update for each finer
cell, so all finer wavelet coefficients of the update are zero.
As the update process is just the sum of the map wavelet
representation with the update wavelet representation (section
III), it produces efficient updates in areas that are coherent in
the observation. Coherent areas are those that are adjacentto
each other and have the same occupancy.
At the top of the structure, the root of the tree stores the
scaling coefficient at the coarsest level and the support of
the corresponding scaling function includes all the spatial
locations of the signal data or the bounding box of the
observed places.

III. O CCUPANCY GRIDS AND RANGE SENSORMODELS

OG is a very general framework for environment modelling
associated with range sensors such as laser range-finders,
sonar, radar or stereoscopic video camera. Each measurement

1The number of operations is a small constant (4 sums and 2 multiplications
in 2D, 7 sums and 3 multiplications in 3D) per scale and the numberof scales
is the depth of the tree which is logarithmic (ln4 in 2D and ln8 in 3D) in the
number of cells.
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Fig. 2. A key step in a Haar wavelet transform in 2D. Four scaling samples
at scalel generate 1 coarser scaling coefficient at scalel + 1 and 3 detail
coefficients at scalel that are stored in a wavelet tree node. In general the tree
node has 4 children that describe finer resolutions for each space subdivision.
But if each child is a leaf and has only zero-detail coefficients then all the
child branches can be pruned without information loss. And the tree node
becomes a leaf.
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Fig. 3. Hierarchical updates are possible with wavelets: ina probabilistic
quadtree all the pale/yellow squares are to be updated sincethey fall into the
empty space. With wavelets the scale of the large square with waves is the
last one that requires updating; therefore, the computationis efficient. The
frontier of the coarse cells of the quadtree are marked in dashed/black lines.

of the sensor consists of the range to the nearest obstacle for
a certain direction. Thus a range measurement divides the
space into three areas: anemptyspace before the obstacle,
an occupiedspace at the obstacle location and theunknown
space everywhere else. In this context, an OG is a stochastic
tessellated representation of spatial information that maintains
probabilistic estimates of the occupancy state of each cellin
a lattice [8]. In this framework, every cell are independently
updated for each sensor measurement, and the only difference
between cells is their positions in the grid. The distance
which we are interested in, so as to define cell occupancy,
is the relative position of the cell with respect to the sensor
location. In the next subsection, the Bayesian equations for cell
occupancy update are specified with cell positions relativeto
the sensor.

A. Bayesian cell occupancy update.

a) Probabilistic variable definitions:



• Z a random variable2 for the sensor range measurements
in the setZ .

• Ox,y ∈O ≡ {occ,emp}. Ox,y is the state of the cell(x,y),
where(x,y) ∈ Z

2. Z
2 is the set of indexes of all the cells

in the monitored area.
b) Joint probabilistic distribution: the lattice of cells

is a type of Markov field and in this article the sensor
model assumes cell independence. This leads to the following
expression for the joint distribution for each cell.

P(Ox,y,Z) = P(Ox,y)P(Z|Ox,y) (2)

Given a sensor measurementz we apply the Bayes rule to
derive the probability for cell(x,y) to be occupied 4:

p(ox,y|z) =

p(ox,y)p(z|ox,y)

p(occ)p(z|occ)+ p(emp)p(z|emp)
(3)

The two conditional distributionsP(Z|occ) and P(Z|emp)
must be specified in order to process cell occupancy update.
Defining these functions is an important part of many works
( [8], [19]). The results in [20] prove that for certain choices
of parameters3 these functions are piecewise constants:

p(z|[Ox,y = occ]) =







c1 if z< ρ
c2 if z= ρ
c3 otherwise.

(4)

p(z|[Ox,y = emp]) =







c1 if z< ρ
c4 if z= ρ
c5 otherwise.

(5)

whereρ is the range of the cell(x,y).
As explained in [10], the cell update requires operations that

are not part of the set of wavelet vector operations4 ( product
and quotient ). Thus a better form is necessary to operate
updates on the wavelet form of occupancy functions.

B. Log-ratio form of occupancy update

As occupancy is a binary variable, a quotient between the
likelihoods of the two states of the variable is sufficient to
describe the binary distribution. The new representation used
is:

log-odd(Ox,y) = log
p([Ox,y = occ])
p([Ox,y = emp])

(6)

In the Bayesian update of the occupancy, the quotient makes
the marginalization term disappear and thanks to a logarithm
transformation, sums are sufficient for the inference:

2For a certain variableV we will note in upper case the variable, in lower
casev its realization, and we will notep(v) for P([V = v]) the probability of
a realization of the variable.

3The sensor model failure rate, the sensor range discretization and the prior
occupancy probability are the parameters. Prior occupancy is chosen very low,
the world being assumed nearly empty. Only the last parameter isrelevant for
establishing that the functions are piece-wise constant [20].

4The product and the quotient operators are not base inner operators of a
vector space.
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Fig. 4. Update of a 2D OG after a sensor reading, initially each cell
occupancy was unknown,i.e. 0.5 probability. The sensor beam has an aperture
of 7 degrees. The sensor is positioned in (0,0).

log
p(occ|z)
p(emp|z)

= log
p(occ)

p(emp)
+ log

p(z|occ)

p(z|emp)

= log-odd0 + log-odd(z) (7)

Therefore the vector space generated by the wavelet basis
with its sum inner operator is sufficient to represent and update
OGs. This inference with sums was originally proposed by
Elfes and Moravec [8], but only for performance reasons. Here
it is also necessary to allow inference to be performed within
the compressed data.

C. Log-ratio form of sensor model functions

It is straightforward to derive from eq. 4 and 5 the sensor
model equations in log-ratio form that we note thus:

log-odd(z) =







0 if z< ρ
log(c2/c4) = log-oddocc if z= ρ
log(c3/c5) = log-oddemp otherwise.

(8)

where ρ is the range of the cell(x,y), way to define each
constant is given in [20]5. One can notice that the update term
is zero if the cell is beyond the sensor readings, thus no update
is required in this case.

IV. H IERARCHICAL RASTERIZATION OF POLYGON OR

POLYHEDRON

This section describe the main contribution of this article
which consists of a fast algorithm for updating an occupancy
grid expanded as a non-standard Haar wavelet series from a
set of range measurements.

A. Problem statement

Given the sensor position, the beam geometry and the
measured ranges, it is possible to define the polygon (fig. 6)
or polyhedron viewed by the sensor within the grid. Each time
the sensor position changes or measured ranges change a new

5in the experiments: log-oddemp=−5.46 and log-oddocc = 16.97



Fig. 5. The hierarchical process of updating the grid: from the coarsest scale
to the finest. To save computing time, areas that are outside thepolygon of
view or totally included inside the areas classified as empty are detected and
processed early in the hierarchy.

relative position of the polygon or polyhedron and the grid
must be computed in order to update the grid. The standard
approach for updating occupancy grids, in the context of laser
sensors, will be to traverse the cells along each laser sensor
beam and update the cells. This traversal method induces
difficulties in calculating the coverage area for each laser
sensor beam in order to avoid inaccuracies such as aliasing.
An easier alternative will be to traverse every cell of the
grid and for each cell, perform a simple test to determine
the state of the cell. In this case, with a grid size of 1024
cells per dimension, a 2D square grid contains more than
1 million cells and a 3D cubic grid contains more than 1
billion. Even if real-time performance can be obtained in 2D,
it does not seem to be the case in 3D. Therefore the problem
is to find a method that efficiently updates the grid without
traversing every cell of the grid. As shown in fig. 6 and eq. 8,
a range measurement defines three sets of cells. The first set,
E, contains cells that are observed as empty. The second set,
U , contains cells that are considered as unknown. The third
set,B (for boundaries), contains cells that are partially empty,
unknown or occupied. The elements of the third set are mainly
found at the boundaries formed by the sensor beams at its
two extreme angles and at the neighborhood of an obstacle.
Section III-C states that theU set can be avoided in the update
process. Therefore an update step must iterate through the cells
that intersect either the polygon in 2D or the polyhedron in
3D that describe the sensor beam boundaries (fig. 5). The
following describes an algorithm that performs the correct
iteration through the grid in an efficient manner through the
use of wavelets.

B. Exhaustive hierarchical space exploration

The key idea in the exploration of the grid space (fig. 5) is
to define a predicate,existIntersection, which is true if a given
set of grid cells intersect the volume defined by the field of
view of the sensor beams (blue/dark gray plus red/medium
gray cells in fig. 6). The absence of intersection indicates that
the given set of cells are outside the sensor field of view and
do not need updating. WhenexistIntersectionreturns true, a
special sub case needs to be considered in addition: if the set
of cells is totally included in the sensor field of view, all the
cells belong toE (blue/dark gray cells in fig. 6) and their
occupancy is decreased by the same amount of log-oddemp,
eq. 7.
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Fig. 6. A range-finder beam. The range finder is located atΩ and its field
of view is surrounded by red/thick boundaries. It defines thethree kinds of
cell types. The band within the obstacle lies is at the top right end of the field
of view. Thus the cells marked with a “D” stand for cells where adetection
event occurs.

As the algorithm is able to detect uniform regions recur-
sively, the grid representation should allow to update those
regions, and wavelets provide a natural mechanism for doing
so. In this first version of the algorithm, the grid is traversed
hierarchically following the Haar wavelet support partition.
For each grid area, theexistIntersectionpredicate guides the
search. If there is an intersection, the traversal reaches deeper
into the grid hierarchy,i.e. exploring finer scales. Otherwise
it stops at the current node. Then the wavelet transform
is performed recursively beginning from this last node as
described in fig. 2 for the 2D case.

Algorithm 1 HierarchicalWavRaster( subspaceS, sensor beam
B )

1: for each subspacei of S: i = 0, . . . ,n do
2: if sizeof(i) = minResolution then
3: vi = evalOccupancy(i)
4: else if existIntersection(i, B ) then
5: if i ∈ E then
6: vi = log-oddemp /*eq. 8*/
7: else
8: vi = HierarchicalWavRaster(i, B )
9: end if

10: else
11: vi = 0 /*i ∈U*/
12: end if
13: end for
14: {sl+1,obs

S ,dl ,obs
f1,S , · · · ,dl ,obs

fn,S
}=waveletTransform({v0, · · · ,vn})

15: for eachdl
f ,S: do

16: dl
f ,S← dl

f ,S+dl ,obs
f ,S /*update inference*/

17: end for
18: returns the scaling coefficientsl+1,obs

S

Algorithm 1 gives the pseudo-code of the exhaustive hi-
erarchical grid traversal. Heren is the maximum index of
the space subdivisions that a node contains at one finer scale
i.e. 3 for 2D and 7 for 3D Haar wavelet transforms. The
algorithm is recursive and begins with the whole grid as the
first subspace defined by the root of the wavelet tree. Its result



is used to update the mean of the wavelet tree which is also
the coefficient of the scaling function at the coarsest level.
The sizeof function gets the resolution of the subspacei and
minResolutionrepresents the resolution of a cell in the grid.
TheevalOccupancyfunction evaluates the occupancy of a cell;
it can proceed by sampling the cell occupancy.
Such an algorithm is very efficient in 2D but as it refines
every area on the sensor beam boundaries it explores at least
the whole perimeter of the polygon of view in 2D (red/medium
gray cells in fig. 6). Equivalently in 3D, the explored part is
all the surface of the polyhedron of view and it is far too large
to be explored in real-time. That is why a better algorithm is
required.

C. Improved hierarchical space exploration

Most of the space where a robot is to move about is largely
empty. Thus it is not efficient to begin with a map initialized
with a probability of 0.5 since this probability will decrease
almost everywhere toward the minimum probabilitypemp.
Equivalently, since each boundary between an area observed
as an empty one and an area outside the sensor field of view
separates cells that are almost all empty, updating occupancy
along this boundary is useless. Following this remark algo-
rithm 1 is modified in a lazy algorithm that investigates finer
iterations through the grid only if an update is required.

S

(a)

S

(b)

Fig. 7. Two different cases for the iteration along a boundary of the field of
view that separates theE set and theU set. Fig. 7(a) artificial separation,S
(with waves) was totally empty and the observation of a part ofits interior (on
the right of the red boundary) does not bring any information gain. Fig. 7(b)
the separation brings information about the state of a part ofan obstacle: the
yellow/pale square area that is inside the field of view (on the right of the
red/thick boundary).

An update is almost always required for cells that are in
the obstacle neighborhood (cells marked with ’D’ in fig. 6 )
so iteration is always performed in areas that contain such a
cell. But for boundaries that separate cells that belong to the
U set and to theE set, iteration is required only if theE set
corrects the knowledge in the grid (fig. 7(b)); otherwise the
iterations can stop early in the hierarchy (fig. 7(a)).

In algorithm 2 three main differences appear: first an inverse
wavelet transform is performed to retrieve the information
about the current state of the traversed subspace (line 1−2).
Second, line 7, the intersection function returnsOCCUPIED

Algorithm 2 HierarchicalWavRaster( subspaceS, mean occu-
pancy of subspaceS: sl+1

S , empty boundpemp, sensor beamB
)

{vg
0, · · · ,v

g
n}= inverse

2: WaveletTransform({sl+1
S ,dl

f1,S, · · · ,d
l
fn,S
})

for each subspacei of S: i = 0, . . . ,n do
4: if sizeof(i) = minResolution then

vi = evalOccupancy(i)
6: else

spaceState = existIntersection(i, B )
8: if spaceState is UNKNOWNthen

vi = 0
10: else if spaceState is OCCUPIEDthen

vi = HierarchicalWavRaster(i, B )
12: else if spaceState is EMPTY andvg

i > pemp then
vi = HierarchicalWavRaster(i, B )

14: else if spaceState is EMPTYthen
vi = log-oddemp /*eq. 8*/

16: end if
end if

18: vg
i ← vg

i +vi /*update inference*/
end for

20: {δ l+1
S ,dl

f1,S
, · · · ,dl

fn,S}=waveletTransform({vg
0, · · · ,v

g
n})

returns the scaling coefficientsl+1,obs
S = sl+1

S −δ l+1
S

only if the subspace intersects an obstacle and it returns
EMPTY if the subspace is included inE∪U . Third the value
of the minimum possible occupancypemp is a parameter of
the algorithm in order to compare the state of the traversed
subspace with information gain brought by the sensor obser-
vations (line 12).
The major difference between the maps produced by the first
and the second algorithm is that in the second algorithm there
is no a priori unknown area. Thus it is no longer possible to
store the position of the unexplored parts of the world. This
could be a problem if one wants to drive the robot towardterra
incognita. Nevertheless the information concerning unknown
areas is used all the same in the definition of the polygon of
view, so that occlusions are handled when observations are
processed.
One of the most important parts of the previous algorithms
are the intersection queries: the definition ofexistIntersection.
These functions must be really optimized in order to retrieve
fast algorithms. Each kind of range sensor requires its own im-
plementation ofexistIntersection. A simple implementation of
such a function is easy to write since it involves only geometric
intersection primitives, therefore we will not describe one
extensively here for lack of space. In our own implementation
we have used an explicit representation of a polygon or
polyhedron of the sensor view with vertices and edges and
implicit representation of a grid cell with its index. Then the
polygon-polygon or the polyhedron-polyhedron intersection is
computed, if this test fails an inclusion test is performed to
test if one object is included in the other.



The beams where a max-range reading occur, which could
be produced by non-reflective surfaces, are safely replacedby
totally unknown area. Therefore in presence of such readings
the polygon/polyhedron is splitted into several parts connected
by the laser-scanner origine.

V. EXPERIMENTS

We performed experiments6 on 2D real data sets and on 3D
simulated data with noise. In the 3D simulations a rotating sick
was used. For all the experiments the position of the laser were
given. For real experiments, corrected data sets were used7,
whereas for simulated ones8, the simulator provided us with
the correct sensor position. For 2D and 3D both, we use data
sets that contain only static obstacles and data sets that contain
moving obstacles also. We test first and second algorithm on
2D data sets and only second algorithm on 3D data sets.

A. Methodology

c) Memory: for all experiments we give the memory
used by an OG, a probabilistic-tree with and without mean
stored and a wavelet OG at the end of the mapping. As
probabilistic-tree and wavelet OG cover grids with size of
power of two, we do not use OG with equivalent size to
compare which would have been unfair. Instead, we compute
the bounding box of all the range measurements and use an
OG of the same size of that bounding box.

d) Computing time:in 2D we compare two things: first
the use of the polygon rasterization algorithm against ray trac-
ing with a Bresenham algorithm and OG rasterization using
inverse sampling with a standard OG, second the hierarchical
algorithms with probabilistic-trees and wavelet OG. We do not
give results for other algorithms than polygon rasterization on
hierarchical representations. Since all the cell accesseswith
the other algorithms are random accesses witch is totally
inefficient with hierarchical rasterization, the results are not
of interest. In 3D we only present the results with the wavelet
OG representation. The mean, min and max of the update time
per scan are computed.

e) Map quality: : in 2D, we evaluate map quality by
comparing the resulting map with the one obtained by the
OG rasterization using inverse sampling by computing thel2
norm of the difference of the 2 grids. In 3D the quality is just
visually estimated.

B. Results

f) Memory: These results show that the wavelet and
probabilistic-tree performs the same concerning memory sav-
ing, witch follows the theory. As predicted, the Probabilistic-
trees with the mean are however a bit more expansive. Both
representations saves, in average, about 91% for 2D grids and
94% for 3D grids of the required memory compared with a
classic OG representation. The amount of memory saved is
larger in 3D than in 2D because the proportion of empty space
is far more important.

6All experiments were done with an Intel(R) Pentium(R) IV CPU 3.00GHz.
7CSAIL (MIT), FR-Campus, FR079, FR101, thanks to Cyrill Stachniss [21]
8Inria static parking, Inria parking with a moving car

g) Computing time:For the comparison of update algo-
rithm on the same OG representation, polygon rasterization
and Bresenham performs almost the same witch is interesting
since Bresenham does not handled beam width and is there-
fore far less accurate than polygon rasterization. They both
performs far better than the inverse sampling. The second al-
gorithm performs better for both representations: probabilistic-
tree and wavelet OG, even if an inverse wavelet transform is
computed in the last case (10 times faster in 2D, and 20 times
faster in 3D). The probabilistic-tree performs better on static
environments, although the difference is not of importance.
Probabilistic-tree with mean performs only slightly better on
static environments than wavelet OG, since, as wavelet OGs,
they compute the mean. Concerning a dynamic environment,
wavelet OG is slightly faster, which we reward the true multi-
scale nature of this representation.

h) Quality: For 2D and 3D grids, comparisons with a
standard grid construction algorithm show that there are no
significant differences. In the 3D results (fig. 8), part of the
ground (on the right of the map) is not entirely mapped
because the density of measurements is not uniform but
depends on the vehicle velocity. As the map is considered
empty a priori unseen parts of the ground appear as holes.
Thus it would be interesting to use a ground model to initialize
the map in the future works. Then, ground measurements
would only correct thea priori and that would save a lot
of computing time, as the ground is the main obstacle.

VI. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

The objective of this work is to present new algorithms
that make OG building in wavelet space feasible. We show
that wavelet space is naturally a good space to represent huge
functions such as occupancy functions in 3D. In contrast to
previous works, we do not need intermediate representationto
build and fuse OGs in wavelet space with the new wavelet hi-
erarchical rasterization algorithms. Thanks to the hierarchical
organization of the computation, computing time is definitely
sufficient for real-time in 2D and enough for real-time in 3D.
With that achievement, the main contribution of this work is
to present an OG updating algorithm which is also useful in
3D. The use of Haar wavelets bring no significant computation
speed-up or pittfall compare to probabilistic-tree with mean but
is slightly better in memory saving. Our long-term objective is
to use the unified grid-based fast-slam framework in 3D envi-
ronments. The requirements for an environment representation
suitable for fast-slam are:

1) fast updating and scan matching to construct the map
and calculate the current robot’s pose in real time,

2) a hierarchical grid representation to handle multiple
maps in multiple particles efficiently,

3) a small amount of memory per grid to ensure efficiency
in the previously stated conditions.

The last two requirements and half of the first one are fulfilled
by this work; thus it is now possible to consider very powerful



(a) (b)

Fig. 8. The wavelet OG obtained from a simulation of 3D data gathering with a rotating laser range-finder. Fig. 8(a) and 8(b)provide two views of the
reconstruction of the grid from the wavelet grid at scale−1 (cell side of 0.20m) and scale−2 (cell side of 0.40m). It is noticeable that salient details as the
lamp-post or the 4 pole landmarks before the wall are accurately mapped. The wall is interestingly smooth too, and that is a feature obtained by the oracle
of the scaling view: details appear at finer views.

algorithms such as a navigation grid-based fast-slam or grid-
based multiple-target tracking in 3D based upon wavelet
occupancy grids.

B. Future Works

In the future we will explore several major areas of improve-
ment. As the intersection query is the most time-consuming
part of the algorithm, we plan to work first on optimizing
this part of the algorithm. Another area of improvement is
the kind of wavelets that is used to compress the map. Haar
wavelets are the poorest kind of wavelets for compression
properties, so it will be interesting to work with higher
order wavelets that are able to compress much more complex
functions such as quadrics because it will approximate a map
with locally Gaussian occupancy density in a far better way
for example. Finally, the tree structure of the data allows
parallel traversal of the environment and we plan to develop
parallel instances of the hierarchical rasterization algorithm.
The proposed algorithm is a general one and its validity area
is theoretically the set of all range sensors. We plan to apply
this algorithm using other kinds of range sensors such as a
stereo camera. However, our main objective is now to derive
a localization algorithm based on this grid representationto
obtain a complete grid-based slam algorithm in 3D.
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