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Abstract

The recent development of a new kind of public transportation system relies on a particular double-steering kinematic structure
enhancing manoeuvrability in cluttered environments such as downtown areas. We callbi-steerable cara vehicle showing
this kind of kinematics. Endowed with autonomy capacities, the bi-steerable car ought to combine suitably and safely a set
of abilities: simultaneous localisation and environment modelling, motion planning and motion execution amidst moderately
dynamic obstacles. In this paper we address the integration of these four essential autonomy abilities into a single application.
Specifically, we aim at reactive execution of planned motion. We address the fusion of controls issued from the control law and
the obstacle avoidance module using probabilistic techniques.
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. Introduction

The development of new intelligent transportation
ystems (ITS), more practical, safe and accounting for
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environmental concerns, is a technological issu
highly urbanised societies today[18]. One of the long
run objectives is to reduce the use of the private
tomobile in downtown areas, by offering new mod
and convenient public transportation systems. Ex
ples of these are the CyCab robot—designed at IN
and currently traded by the Robosoft company
http://www.robosoft.fr/)—and the pi-Car prototype
IEF (Institut d’Electronique Fondamentale, Univeŕe
Paris-Sud).

The kinematic structure of these robots differs fr
that of a car-like vehicle in that it allows the steering
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both the front axle and the rear one. We call a vehicle
showing this feature a bi-steerable car (or BiS-car for
short).

Endowed with autonomy capacities, the bi-steerable
car ought to combine suitably and safely a set of abili-
ties that eventually could come to the relief of the end-
user in complex tasks (e.g. parking the vehicle). Part
of these abilities have been tackled separately in previ-
ous work: simultaneous localisation and environment
modelling, motion planning execution amidst static ob-
stacles and obstacle avoidance in a moderately dynamic
environment without accounting for a planned motion.

In this paper we address the integration of these four
essential autonomy abilities into a single application.
Specifically, we aim at reactive execution of planned
motion. We address the fusion of controls issued from
the control law and the obstacle avoidance module
using probabilistic techniques. We are convinced that
these results represent a step further towards the mo-
tion autonomy of this kind of transportation system.
The structure of the paper is as follows.

In Section2, we sketch the environment reconstruc-
tion and localisation methods we used and we recall
how the central issue regarding the motion planning and
execution problem for the general BiS-car was solved.
Section3 explains how our obstacle avoidance sys-
tem was designed and Section4 explains how it was
adapted to the trajectory tracking system. In Section5
we present the experimental settings showing the fu-
sion of these essential autonomy capacities in our bi-
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10,000 m2). For localisation purposes, we did not want
to focus on the detection of natural features in the envi-
ronment, since such detection is often subject to failure
and not very accurate. So, in order to ensure reliability,
we decided to install artificial landmarks in the envi-
ronment. These landmarks had to be detected easily
and accurately, and they should be identified with a
reasonable computation effort.Figs. 1 and 2show our
robot, its sensor and the landmarks: cylinder covered
with reflector sheets, specially designed for our Sick
laser range finder.

Moreover, in order to keep flexibility, we wanted to
be able to equip the environment with non-permanent
beacons. For this reason, we could not rely on a defini-
tive landmark map, and we had to build a system able
to learn the current state of the car-park area. This led
us to use SLAM1 methods. The method which was the
best suited to our needs was the geometric projection
filter (see[21] for reference, and[24] for implementa-
tion details). It consists in building a map of features
uncorrelated with the robot state. Such features are,
for instance, the distance between landmarks or angles
between three of them.

Owing to the accuracy of the laser range finder, to
the good choice of our landmarks, and to the strength of
the SLAM methods we use, we evaluate the worst case
accuracy of our localisation system to the following
value: about 10 cm in position and 2◦ in orientation.
We refer the reader to[24] for more details about the
w
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teerable platform the CyCab robot. We close the p
ith some concluding remarks and guidelines on fu
ork in Section6.

. Localisation, environment modelling, motion
lanning and execution

In the design of an autonomous car-like robot,
re convinced that localisation, modelling of the e
onment, path planning and trajectory tracking ar
undamental importance.

.1. Map-building and localisation

The CyCab robot is the size of a golf-cab capa
f attaining up to 30 km/h. Its “natural” environme

s the car-park area of the INRIA Rhône-Alpes (abou
ay we evaluate these values.

.2. The obstacle map

The previous method localises the robot and bu
landmark map. But, we still miss a map of obser
bstacles in order to plan safe paths. To achieve
oal, we build a kind of simplified occupancy grid[8]
n the environment. This structure gives us infor

ions correlated with the probability that a given pl
s the boundary of an obstacle.

Both maps are built online, in real-time, by the ro
uring the construction phase.Fig. 1 shows how th
bstacle map evolves while we are exploring the
ironment. This map is made of small patches wh
re added according to the need of the applicatio

1 Simultaneous Localisation And Mapping.
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Fig. 1. Obstacle map evolution: experimental images during the obstacle map-building phase. The vehicle is driven within the car-park area as
long as needed. Simultaneously, the laser range sensor is used to detect the landmarks to build-up the localisation map.

this way, the map can be extended in any direction, as
long as memory is available. Once the map-building
phase has finished, the obstacle map is converted into
a pixmap and passed to the motion planning stage.

Fig. 2. CyCab robot and its landmarks for localisation.

2.3. Motion planning amidst static obstacles

The motion planner adopted for the CyCab was pre-
sented in[26]. Essentially, it is a two-step approach,
dealing separately with the physical constraints (the
obstacles) and with the kinematic constraints (the non-
holonomy). The planner first builds a collision-free
path without taking into account the non-holonomic
constraints of the system. Then, this path is approx-
imated by a sequence of collision-free feasible sub-
paths computed by asuitable2 steering method. Finally,
the resulting path is smoothed.

A key issue in non-holonomic motion planning is to
find a steering method accounting for the kinematics
of the robot. One way of designing steering methods
for a non-holonomic system is to use itsflatnessprop-

2 That is, verifying the topological property as explained in[26].
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Fig. 3. CyCab robot, its landmarks and its kinematics model show-
ing the coordinates of the flat output (pointH) with respect to the
reference frame of the robot placed at pointF. In our case we have
that (xF, yF, θ, ϕ) is the state of the robot.

erty[10] allowing also for feedback linearisation of the
nonlinear system (this is discussed in Section2.6). This
is what we did for the general BiS-car for which a flat
output—or linearising output—was given in[26].

2.4. Steering a BiS-car

The kinematics model of a general bi-steerable ve-
hicle and its flat output are shown inFig. 3.

The striking advantage of planning a path in the
flat space is that we only need to parameterise a
two-dimensional curve whose points and derivatives
define everywhere the currentn-dimensional state3 of
the robot (in the case of the BiS-carn= 4). The main
characteristic of such a curve is its curvatureκ from
which the steering angle can be computed.

Fig. 4shows the outcome of the motion planner us-
ing an obstacle map generated as described in the pre-
vious section.

2.5. User–planner interface

The user–planner interface in the CyCab is achieved
through atouch-screensuperposed to a 640× 480 pix-
els LCD display. Additionally, we use the keyboard to
allow for the entrance of data.

3 The configuration space in robotics is called thestate spacein
control theory, so we will use indistinctly both terms.

Fig. 4. Path computed by the motion planner using a real obstacle
map. The obstacles are grown as well as the robot before computing
the path.

The interface is used to display the current position
of the robot within its environment and capture the goal
position entered by the user. These positions together
with the obstacle map are passed to the motion planner.
The output path is then displayed allowing the user to
validate the path or start a new search.

Finally, the reference trajectory is generated using a
regular parameterisation of the path[16] and the user
is requested to accept to start the execution of the tra-
jectory.

2.6. Trajectory tracking using flatness

It is well known that a non-holonomic system can-
not be stabilised using only smooth state static feed-
backs[6]. Ever since then, time-varying feedbacks[25]
and dynamic feedbacks have been successfully used in
particular for the canonical tractor-trailer and car-like
robots[9].

Flat systems are feedback linearisable by means of a
restricted class of dynamic feedback calledendogenous
[10]. The interest is that we are able to use state-of-the-
art linear control techniques to stabilise the system.
We present here results coming from recent work on
feedback linearisation of the general BiS-car.

For a reference frame of the robot placed at point
F in Fig. 3, the flat outputy= (y1, y2)T of a BiS-car
are the coordinates of a pointH= (xH, yH)T = (y1, y2)T
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Computed as a function of the state as follows:

H = F + P(ϕ)�uθ +Q(ϕ)�uθ⊥,

whereP(ϕ) andQ(ϕ) are the coordinate functions rela-
tive to the robot’s reference frame (see[26] for details)
and where�uθ (resp.�uθ⊥) are the unitary vector in the
directionθ (resp. the directionθ +π/2).

Looking for a tractable relation between the controls
of the robot and the linearising output, we found an ex-
pression giving the flat output dynamics with respect to
a more convenient reference frame placed at the mid-
dle of the front axle of the robot (pointF) and having
orientationγ = [θ +β(ϕ)] ±π where the functionβ(ϕ)
is the characteristic angle of the velocity vector of the
flat output.

The convenience of this new reference frame relies
on the fact that the velocity of the flat output has a sin-
gle component in it. More precisely—assuming that
γ = θ +β(ϕ) +π—one can show that, in this reference
frame, the flat output dynamics is given by the follow-
ing expression[14]:

∂H

∂t
= υH �uγ,

υH = υF [cos(ϕ−β−π) −QF]+ωϕ
[
∂P

∂ϕ
− ∂β

∂ϕ
Q
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where (·)(p) stands for the total derivative of orderp.
See[7] for details.

3. Obstacle avoidance using probabilistic
reasoning

The previous approach considers trajectories in a
static environment. In order to make the execution
of these trajectories more robust, an obstacle avoid-
ance system should be prepared to react to unpredicted
changes in the environment. This section presents the
principles of our obstacle avoidance module.

3.1. State of the art on reactive trajectory tracking

Most of the approaches for obstacle avoidance are
local [11,5], that is they do not try to model the whole
environment. Their goal is rather to use sensor mea-
sures to deduce secure commands. Being simpler and
less computationally intensive, they seem more appro-
priate to fast reactions in a non-static environment. On
the other hand, we cannot expect optimal solutions
from a local method. It is possible that some peculiar
o hich
t only.
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(ϕ) = sin(ϕ − f (ϕ))

L cos(f (ϕ))
, (1)

here (υF , ωϕ) are the controls of the robot (i.e. t
eading and the front-steering speeds), (ϕ−β−π) the
ngle subtended between the velocity vector of
obot �VF and the velocity vector of the flat output�VH
seeFig. 3).

From expression (1) the open-loop controls of
obot can be found as soon as the trajectory of poiH
s known. As we are interested in stabilising the B
ar around a reference trajectory, we explored the
hat, owing to the flatness property, the system is
eomorphic to a linear controllable one[10]. The en
ogenous dynamic feedback that linearises the ge
i-steerable system is presented in[14]. Then, from lin-
ar control theory, it can be shown that the closed-
ontrol stabilising the reference trajectoryy* has the
bstacle configuration create a dead-end from w
he robot cannot escape with obstacle avoidance

.1.1. Potential fields
The general idea of potential fields methods,

osed initially by O. Khatib in 1986, is to build a fun
ion representing both the navigation goals and the
or obstacle avoidance. This function is built so a
ecrease when going closer to the goal and incr
ear obstacles. Then, the navigation problems ar
uced to an optimisation problem, that is, to find
ommands that brings the robot to the global minim
f the function. This later can be defined with resp

o the goal and the obstacles but other constraint
lso be added therein.

Numerous extensions to the potential fields h
een proposed since 1986. Among others, we can

he virtual force fields[3], the vector field histogram
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[4] and their extensions VFH+[28] and VFH* [29].
Basically, these methods try to find the best path to the
goal among the secure ones.

3.1.2. Steering angle field (SAF)
The SAF method, proposed by Feiten et al. in 1994,

use obstacles to constrain steering angle in a continu-
ous domain. Simultaneously, speed control is an itera-
tive negotiation process between the high-level driving
module and the local obstacle-avoidance module.

One of the first extension to this method was
published in[27]. It expresses the collision avoidance
problem as an optimisation problem in the robot
controls space (linear and rotational speeds).

3.1.3. Dynamic window
The dynamic window approach[11] proposes to

avoid obstacles by exploring command space in order
to maximise an objective function. This later accounts
for the progression toward the goal, the position of
closer obstacles and current robot controls. Being
directly derived from the robot dynamic, this method
is particularly well adapted to high speed movements.

The computational cost of the optimisation process
is reduced using the dynamic characteristics of the
robot (bounded linear and angular acceleration) so as
to reduce the searched space. This kind of constraints
are calledhard constraintssince the must be respected.
Conversely, when the objective function includes pref-
e lting
c
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the obstacles future trajectory. Consequently, these
obstacle avoidance methods are not applicable in real
situations yet.

3.1.5. Obstacle avoidance and trajectory
following

When we want to perform obstacle avoidance ma-
noeuvres while following a trajectory, a specific prob-
lem appears. On our non-holonomous robot, the path
planning stage took into account the kinematic of the
robot and planned a feasible path. When the reactive
obstacle avoidance generates commands, the vehicle
leaves its planned trajectory. Then, we cannot be sure
anymore that the initial objective of the trajectory is
still reachable.

A solution to this problem was proposed in[20].
This method tries to deform the global trajectory in
order to avoid the obstacle, respect the kinematic
constraints and ensure that the final goal is still
reachable. Even if theoretically very interesting, this
obstacle avoidance scheme is still difficult to apply in
real situations due to its computational complexities,
especially on an autonomous car. In our experiments
[20], the vehicle had to stop for several minutes in
order to perform the trajectory deformation.

3.2. Objectives

After all these results on obstacle avoidance, it
s new
s
p riate
t re-
a ink
a rob-
l ntly,
t ion
a

3

ed
a
s me
o nsor
o st ob-
s

rences on the robot movement, we call the resu
onstraintssoft constraints.

.1.4. Dynamic environments and velocity
bstacles

In the specific case of moving obstacles, spe
ethods have been proposed[17,2] using thevelocity
bstacle notion. Basically, this notion consists
rojecting perceived obstacles and their expe
ovement in the space of secure commands.
ach mobile object generates a set of obstacle

he command space. These obstacles represe
ommands that will bring to a collision in the future

In the general case, obstacle movement param
re not known a priori, so they have to be dedu

rom sensor data. Obstacle avoidance controls are
omputed in reaction to theses previsions. Curre
t is still quite difficult to get reliable previsions
eems obvious that our goal is not to propose a
olution to this problem. It has been shown[19,1] that
robabilities and Bayesian inference are approp

ools to deal with real world uncertainty and model
ctive behaviours. With this in mind, we wanted to th
bout the expression of the obstacle avoidance p

em as a Bayesian inference problem. Conseque
he originality of our approach is mainly its express
nd the semantic we can express with it.

.3. Specification

The CyCab can be commanded through a speV
nd a steering angleΦ. It is equipped withπ radians
weeping laser range finder. In order to limit the volu
f the data we manipulate, we summarised the se
utput as eight values: the distances to the neare
tacle in aπ/8 angular sector (seeFig. 5). We will call
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Fig. 5. Obstacle avoidance: situation.

Dk, k= 1, . . ., 8 the probabilistic variables correspond-
ing to these measures.

Besides, we will assume that this robot is com-
manded by some high-level system (trajectory follow-
ing for instance) which provides it with a pair of desired
commands (Vd,Φd).

Our goal is to find commands to apply to the robot,
guarantying the vehicle security while following the
desired command as much as possible.

3.4. Sub-models definition

Given the distanceDi measured in an angular sec-
tor, we want to express a command to apply that is
safe while tracking desired command. Nevertheless,
since this sector only has limited information about
robot surrounding, we choose to express the following
conservative semantic: tracking the desired command
should be a soft constraint whereas an obstacle avoid-
ance command should be a hard constraint, the closer
is the obstacle, the harder is the constraint.

We express this semantic using a probability distri-
bution over the commands to apply (V,Φ) knowing the
desired commands and the distanceDi measured in this
sector:

Pi(VΦ|VdΦdDi) = Pi(V |VdDi)Pi(Φ|ΦdDi), (3)

wherePi(V|VdDi) andPi(Φ|ΦdDi) are the Gaussian
distributions, respectively, centred onµV(Vd, Di) and
µΦ(Φd, Di) with standard deviationσV(Vd, Di) and
σΦ(Φd,Di). FunctionsµV,µΦ, σV,σΦ are defined with
sigmoid shape as illustrated inFig. 6. The examples of
resulting distributions are shown inFig. 7.

There are two specific aspects to notice in
Figs. 6 and 7. First, concerning the meansµV andµΦ,
we can see that, the farther is the obstacle, the closer
to the desired commandµ will be, and conversely, the

Fig. 6. Evolution of mean and standard deviation ofPi (V|VdD
i ) andPi (Φ|ΦdDi ) according to distance measured.
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Fig. 7. Shape ofPi (VΦ|VdΦdDi ) for far and close obstacles.

nearer is the obstacle, the more secure isµ: minimal
speed, strong steering angle.

Second, the standard deviation can be seen as a con-
straint level. For instance, when an obstacle is very
close to the robot (smallDi), its speedmustbe strongly
constrained to zero, this is expressed by a small stan-
dard deviation. Conversely, when obstacle is far, robot
speedcan follow the desired command, but there is
no damage risk in not applying exactly this command.
This low level constraint is the result of a big standard
deviation.

3.5. Command fusion

Knowing desired controls and distance to the near-
est obstacle in its sector, each sub-model, defined by
Pi(VΦ|VdΦdDi), provides us with a probability distri-
bution over the robot controls. As we have eight sectors,
we will have to fuse the controls from eight sub-models.
Then we will find the best control in terms of security
and desired control following.

To this end, we define the following joint distribu-
tion:

P(VΦVdΦdD1, . . . , D8S)

= P(D1, . . . , D8) P(VdΦd)P(S)

P(VΦ|VdΦdD1, . . . , D8S), (4)

where variableS∈ [1, . . ., 8] express which sector is
c
d ific

pu-
t

sub-model, we defineP(S) as a uniform distribution.
The semantic ofSwill be emphasised by the definition
of P(VΦ|VdΦdD1, . . ., D8S):

P(VΦ|VdΦdD1, . . . , D8[S = i]) = Pi(VΦ|VdΦdDi).

In this equation, we can see that the variableSacts as
model selector: given its valuei, the distribution over
the commands will be computed by the sub-modeli,
taking into account only distanceDi .

Using Eq.(4), we can now express the distribution
we are really interested in, that is the distribution over
the commands accounting for all the distances but not
variableS:

P(VΦ|VdΦdD1, . . . , D8)

=
∑
S

(P(S)P(VΦ|VdΦdD1, . . . , D8S)). (5)

This equation is actually the place where the different
constraint level expressed by functionsσV andσΦ will
be useful. The more security constraints there will be,
the more peaked will be the sub-model control distri-
bution. So sub-models who see no obstacles in their
sector will contribute to the sum with quasi-flat distri-
bution, and those who see perilous obstacles will add
a peaky distribution, hence having more influence (see
Fig. 8). Finally the command really executed by the
robot is the one which maximiseP(VΦ|VdΦdD1, . . .,
D8) (Eq.(5)).

3

nce
s lated
C are
onsidered.P(D1, . . ., D8) andP(VdΦd) are unknown
istribution.4 As there is no need to favour a spec

4 Actually, as we know we will not need them in future com
ation, we do not have to specify them.
.6. Results

Fig. 9illustrates the result of the obstacle avoida
ystem applied on a simulated example. The simu
yCab is driven manually with a joystick in a squ
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Fig. 8. Probability distribution over speed and steering, resulting from the obstacle avoidance system.

environment. In this specific situation, the driver is con-
tinuously asking for maximum speed, straightforward
(null steering angle). We can observe on the dotted tra-
jectory that, first obstacle avoidance module bends the
trajectory in order to avoid the walls, and second, when
there is no danger of collisions, desired commands are
applied exactly as requested.

From the density of dots, we can figure out the robot
speed: it breaks when it comes close to the walls and
while its turning and try to follow desired speed when
obstacles are not so threatening.

3.7. Relation to fuzzy logic approaches

The design of our obstacle avoidance modules
may remind some readers of a fuzzy logic controller
[15,22,12]. It is rather difficult to say that one approach
is better than the other. Both fuzzy logic and Bayesian
inference view themselves as extension of classical
logic. Furthermore, both methods will deal with the
same kind of problems, providing the same kind of so-
lutions. Some will prefer the great freedom of fuzzy
logic modelling and others will prefer to rely on the

Fig. 9. Robot trajectory while driven manually with constant desired steering angle.
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strong mathematical background behind Bayesian in-
ference.

As far as we can see, the choice between fuzzy logic
and Bayesian inference is rather a personal choice, sim-
ilar to the choice of a programming language: it has
more consequences on the way we express our solu-
tion than on the solution itself. To extend the analogy,
one might relate fuzzy logic to the C language whereas
Bayesian inference would be closer to Ada.

4. Trajectory tracking with obstacle avoidance

The method presented in the previous section pro-
vides us with an efficient way to fuse a security sys-
tem and orders from a high level system. Nevertheless
the perturbations introduced in the trajectory follow-
ing system by obstacle avoidance are such that they can
make it become unstable. In this section will show how
we integrate trajectory tracking and obstacle avoidance.

While following the trajectory, obstacle avoidance
will modify certain commands in order to follow as
much as possible desired orders while granting secu-
rity. These modifications may introduce delay or di-
versions in the control loop. If no appropriate action is
taken to manage these delays the control law may gen-
erate extremely strong accelerations or even become
unstable when obstacles are gone. This is typically the
case when our system evolves among moving pedes-
trians. Thus we designed a specific behaviour to adapt
smoothly our control system to the perturbations in-
d

4

4
sed

o t 1 m

and 15◦ around nominal trajectory. Furthermore, as this
control law controls the third derivative of the flat out-
put (Eq.(2)), it is a massively integrating system. For
this reason, a constant perturbation such as immobili-
sation due to a pedestrian standing in front of the ve-
hicle will result in a quadratic increase of the control
law output. This phenomenon is mainly due to the fact
that when obstacle avoidance slows the robot down,
it strongly breaks the dynamic rules around which the
flat control law was built. So, there is no surprise in its
failure.

4.1.2. Probabilistic control law
In order to deal with the situations that flat control

law cannot manage, we designed a trajectory tracking
behaviour (TTB) based again on probabilistic reason-
ing (Section4.2). As this behaviour has many simi-
larities with a weighted sum of proportional control
laws, we do not expect it to be sufficient to stabilise the
robot on its trajectory. Nevertheless, it is sufficient to
bring it back in the convergence domain of the flat con-
trol law when obstacle avoidance perturbations have
occurred. Basically, the resulting behaviour is as fol-
lows: while the robot is close to its nominal position,
it is commanded by flat control law. When, due to ob-
stacle avoidance, it is too far from its nominal posi-
tion, TTB takes control, and try to bring it back to
flat control law’s convergence domain. When it en-
ters this domain, flat control law is reinitialised and
s d in
F

4

a en
t n, it

ector m
uced by obstacle avoidance.

.1. Multiplexed trajectory tracking

.1.1. Validity domain of flat control law
Experimentally, we found that the control law ba

n flatness can manage errors in a range of abou

Fig. 10. Basic diagram of the control law sel
tarts accurate trajectory tracking (this is illustrate
ig. 10).

.1.3. Time control
Path resulting from path planning (Section2.3) is

list of robot configuration indexed by time. So wh
he robot is slowed down by a traversing pedestria

echanism and validity domains of the control laws.
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compensates its delay by accelerating. Nevertheless,
when the robot is stopped during a longer time, let
us say 15 s, it should not consider to be delayed of
15 s, otherwise it will try to reach a position fifteen
second ahead, without tracking the intermediary
trajectory. To tackle this difficulty, we introduced
a third mode to the trajectory tracking: when the
robot comes too far from its nominal position, we
freeze the nominal position, and we use the TTB to
reenter the domain where nominal position can be
unfrozen.

The global system is illustrated byFig. 10: we imple-
mented some kind of multiplexer/demultiplexer which
manage transitions between control laws. In order to
avoid oscillating between control laws when at the in-
terface between two domains of validity, we had to in-
troduce some hysteresis mechanism in the switching.
This is illustrated inFig. 10.

4.2. Trajectory tracking behaviour

Our trajectory tracking behaviour was built as a
probabilistic reasoning, in a way similar to the obstacle
avoidance presented above (Section3). Functionally, it
is very similar to a fuzzy control scheme as presented
in [15] and illustrated in[12].

To specify our module, we use a mechanism of
fusion with diagnosis[23]. If A andB are two vari-
ables, we will define a diagnosis Boolean variable
I
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Fig. 11. Variables involved in trajectory tracking behaviour.

bution:

P
(
VdΦdVrΦr�X, �Y, �θI�X

Vd
I
Vr
Vd
I�θ
Φd
I
Φr
Φd

)

= P(VdΦd)P(VrΦr)P(�X, �Y, �θ)P(I�X
Φd

|Vd�X)

P(IVr
Vd

|VdVr)P(I�Y
Φd

|Φd�Y )P(I�θ
Φd

|Φd, �θ, Vd)

P(IΦr
Φd

|ΦdΦr). (6)

Using this joint distribution and Bayes rule, we will be
able to infer

P(VdΦd|(VrΦr)(�X, �Y, �θ)[I�X
Vd

= 1]

[IVr
Vd

= 1][I�Y
Φd

= 1][I�θ
Φd

= 1][IΦr
Φd

= 1]). (7)

Basically, this equation expresses the fact that we
are looking for the most likely commands in order to
correct tracking error while accounting for reference
commands. Having all the diagnosis variables set to
one enforces this semantic. In the preceding joint
distribution (Eq.(6)), all the diagnosed variables are
assumed to be independent, and to have uniform
distributions. All the information concerning the
relation between them will be encoded in the distri-
bution over diagnosis variables. In order to define this
distributions, we first define the functiondσ(x, y) as a
Mahalanobis distance betweenx andy:

dσ(x, y) = e−(1/2)((x−y)/σ)2.

T

P

B
A which express a consistency betweenA and B.
henA andB will be called thediagnosed variable
f IBA .

Our goal is to express the distribution over
esired controls (Vd, Φd) knowing reference contro
Vr, Φr) planned by the path planning stage, and e
n position (�X, �Y) and orientation�θ with respec
o the nominal position.Fig. 11 illustrates these
ariables.

In addition to the preceding variables, we w
dd five diagnosis variablesI�X

Vd
, I
Vr
Vd
, I�Y
Φd
, I�θ
Φd

andIΦr
Φd

.
ariables linked to an error variable (�X, �Y, �θ)
ill diagnose if a given command helps correct

his error. Variables linked to reference comma
valuate if a command is similar to the refere
ne.

All these variables describe the relation betw
heir diagnosed variables in the following joint dis
hen, for two variablesA andB, we define

([IBA = 1]|AB) = dS(A,B)(A, f (B)).
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Let us see how preceding functionsSandf are defined
in specific cases.

4.2.1. Proportional compensation of errors
In the case ofI�X

Vd
, we setf(�X) =α·�X and

S(Vd, �X) = max((1− β, �X)σmax, σmin).

Expression of f implies that the maximum of
P(I�X

Vd
|Vd�X) will be for a value ofVd proportional

to the error�X. Expression ofSdefines the constraint
level associated to this speed: the bigger is the error,
the more confident we are that a proportional correc-
tion will work, so the smaller isσ.

The basic behaviour resulting from this definition
is that when the robot is behind it nominal position, it

will move forward to reduce its error: the bigger is its
error, the faster and with more confidence that this is
the good control to apply.

For I�Y
Φd

, we use a similar proportional scheme. Its
basic meaning is that when the robot has a lateral error,
it has to steer, left or right, depending on the sign of this
error. Again, the bigger the error, the more confident
we are that we have to steer.

Finally, the same apply forI�θ
Φd

, except that the steer-
ing direction depends not only of the orientation error,
but also of the movement directionVd.

4.2.2. Using planned controls
In the path planning stage, the trajectory was defined

as a set of nominal position, associated with planned

Fig. 12. Trajectory tracking: resulting command fusion.
Fig. 13. Collaboration of trajectory tracking an
d obstacle avoidance on a simulated example.
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Fig. 14. An experimental setting showing from left to right: the arbitrary placing of the landmarks; the manual driving phase for landmark and
obstacle map-building; the obstacle map generated together with the current position of the robot as seen on the LCD display; the capture of the
goal position given by the user by means of the touch-screen; the execution of the found trajectory among aggressive pedestrians.

speed and steering angle. They have to be accounted
for, especially when error is small.

Let us consider firstIVr
Vd

. We setf andSas follows:
f(Vr) =Vr and S(Vd, Vr) =σVr ∈ [σmin, σmax], rather
close toσmax. By this way, planned speed is used as
an indication to the trajectory following system. The
distribution overIΦr

Φd
is defined using the same reason-

ing.

4.3. Results

Fig. 12 illustrates the basic behaviour of our
trajectory tracking behaviour. In both graphs, de-
sired command will maximise eitherP(V |�XVc)
orP(Φ|�Y�θΦc). Since curveP(V|�XVc) is closer to
P(V|�X) than toP(V|Vc), we can observe that longitudi-
nal error (�X) has much more influence than reference

Fig. 15. Executed trajectory among static obstacles and moving pedestrians. Rear middle point (R inFig. 3) trajectory is drawn.
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Fig. 16. Executed trajectory with respect to planned trajectory, and multiplexer mode.

Fig. 17. Applied speeds with respect to planned speed, and multiplexer mode.

command on the vehicle speed. In the same manner,
steering angle is a trade-off between what should be
done to correct lateral error (�Y) and orientation error
(�θ), lightly influenced by reference steering angle.

Fig. 13shows the collaboration of obstacle avoid-
ance and trajectory following on a simulated example.
Planned trajectory passes through an obstacle which

was not present at map building time. Obstacle avoid-
ance modifies controls in order to grant security. When
errors with respect to nominal trajectory is too big, our
control law selector switch to the trajectory tracking
behaviour. Here it is a big longitudinal error, due to
obstacle avoidance slowing down the vehicle, which
trigger the switching.
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Fig. 18. Applied steering with respect to planned steering, and multiplexer mode.

4.4. Discussion

Using the multiplexed control laws we managed to
integrate, in the same control loop, our flat control, ac-
curate but sensible to perturbation, with our TTB, less
accurate but robust to perturbations. By this way we ob-
tained a system capable of tracking trajectory generated
by our path planner while accounting for unexpected
object in the environment.

Finally, when the robot has gone too far from ref-
erence trajectory, or when reactive obstacle avoidance
cannot find suitable controls anymore, it may be nec-
essary to replan a new trajectory to the goal. This has
not been implemented on the robot yet, but this should
not be considered neither a technical nor a scientific
issue.

5. Experimental setup

We tested the integration of these essential au-
tonomy capacities in our experimental platform the
CyCab robot. The aim was to validate the theo-
retical considerations made for the BiS-car and to

get insight into the limitations of the whole motion
scheme.

The computation power on-board the CyCab is a
Pentium IITM 233 MHz running a Linux system. All
programs were written in C/C++ language.

During the experiments the speed of the robot was
limited to 1.5 m s−1. The control rate of the robot was
fixed at 50 ms. The throughput rate of the laser range-
finder was limited to 140 ms;5 therefore the control sys-
tem has to rely momentarily in odometry[13] readings.

Fig. 14shows a set of pictures showing a complete
application integrating the stages described throughout
the paper.

Figs. 15–18illustrate how a planned trajectory is
executed while avoiding moving pedestrians. In this
environment, the control law using flatness could only
be used at the beginning and at the end of the trajec-
tory. On the remaining of the trajectory, speed and
steering angle are adjusted in order to maintain se-
curity while keeping pace with the plan as much as
possible.

5 This rate is fair enough for our needs, even though we could use
a real-time driver.
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6. Discussion and conclusions

In this paper, we presented our new steps toward
the autonomy of a bi-steerable car. The integration
of localisation, map building, trajectory planning
and execution in a moderately dynamic environment
was discussed. Control law using the CyCab flatness
property was found to be insufficient for trajectory
tracking among moving pedestrians.

Even if this integration was successful and provides
satisfactory results, we are convinced that a reactive
behaviour cannot be sufficient for the autonomy of ve-
hicle in a real urban environment. For this reason, we
are working on the perception and identification of road
users (pedestrians, cars, bikes or trucks). By this way,
we will be able to predict future movement of “obsta-
cles” and react accordingly, in asmarterway than the
simple scheme proposed in this paper.
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