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Abstract

This paper deals with path planning for car-like robot. Usual planners compute
paths made of circular arcs tangentially connected by line segments, as these
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profile is not continuous: to follow them precisely, a vehicle must stop and
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Abstract

This paper deals with path planning for car-like robot.
Usual planners compute paths made of circular arcs tan-
gentially connected by line segments, as these paths are lo-
cally optimal. The drawback of these paths s that their cur-
vature profile is not continuous: to follow them precisely, a
vehicle must stop and reorient its directing wheels at each
curvature discontinuity (transition segment—circle).

To remove this limitation, a new path planning prob-
lem is proposed: two curvature constraints are added to the
classical kinematic constraints taken into account. Thus,
the curvature must remain continuous, and its derivative
is bounded (as the car-like robot can reorient its directing
wheels with a limsted speed only). For this problem, the ez-
istence of solutions and the characterization of those of op-
timal length are shown. A method solving the forward-only
problem (i.e. the problem for a car moving only forward) is
then presented, and this method is compared to the classical
one w.rt. the complerity and computation time, the length
of the generated paths and the quality of the tracking.

1 Introduction

This paper focuses on path planning for a car-like robot:
given two positions of this robot, we search a path con-
necting these positions and avoiding collision with a set of
obstacles. The path considers only the geometrical aspects
of the movement (no time dimension), but needs to respect
two classical kinematics constraints: the direction of mo-
tion must remain parallel to the main axis of the robot at
each point, and the turning radius of the robot is lower
bounded.

Numerous methods have been proposed to solve this
problem, e.g. [14, 7, 17, 24, 22], using paths made of circu-
lar arcs of minimum radius tangentially connected by line
segments. The optimality (in length) of these paths has
been proved by Dubins in the forward-only case [5], and
by Reeds and Shepp for a robot doing backup-manoeuvres
[19]. The drawback of these paths is the discontinuity of
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their curvature profile, which makes them difficult to follow
by a real robot.

To reduce this disadvantage, paths with a continuous
curvature profile can be computed, these paths having
polynomial coordinates [11, 18] or polynomial curvature
[10, 4]. However, only a few works take simultaneously
into account the obstacle avoidance, the continuous curva-
ture profile and the kinematic constraints of a car-like robot
(in fact, the problem considered is rarely clearly stated).
Moreover, no comparison between these methods have been
proposed, and the improvement of the tracking has never
been measured.

On the contrary, this paper begins with a precise state-
ment of the considered problem: path planning for car-like
vehicle, including obstacle avoidance and classical kine-
matic constraints, with curvature continuity and bound of
the curvature derivative. Then, the existence of solutions,
of optimal solutions and their nature are discussed, using
controllability demonstrations and theory of optimal con-
trol. Especially, optimal paths are proved to be made of
line segments, circular arcs and pieces of clothoid®, and
will generally contain an infinity of pieces as soon as they
are long enough. After these theoretical considerations, a
method to solve the forward-only problem, i.e. the problem
for a robot going only forward, is described. This method is
equivalent to Dubins’ one, and the generated paths are very
similar to Dubins’ paths: the curvature discontinuity in the
latest paths has been replaced by pieces of clothoid. At
last, the sub-optimality of the continuous-curvature paths
obtained is proved, and the method is compared to Dubins’
one, w.r.t. the complexity, the computation time and the
improvement of the tracking. The results clearly show the
interest of this new planning method.

2 Related Works

As we mentioned in the introduction, related works can be
divided in three groups: the classical path planners (using
paths with a discontinuous curvature profile), the paths
generators (continuous curvature paths but no obstacle

1A clothoid is a curve whose curvature is a linear function of
the arc length.
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avoidance) and theoretical studies (without any planning
method).

Usual path planners, e.g. those presented in [14, 7, 17,
24, 22], consider the planning of a path respecting the two
classical constraints of the movement of a car (given in the
beginning of the introduction), linking two positions of the
robot and avoiding collision with a set of obstacles. They
generate solution paths made of circular arcs and line seg-
ments, these paths being locally optimal for the forward-
only robot [5] as for the robot doing backup-manoeuvres
[19]. However, these paths have a discontinuous curvature
which makes them difficult to track with a real vehicle.

On another hand, paths generators computes paths with
a continuous curvature profile [11, 18, 10, 4]. But few of
these generators consider mobile robots with a bounded
curvature, as for example [15, 23, 18], and none of them
do take into account obstacle avoidance. Moreover, these
works do not present any theoretical results concerning the
existence of solution paths or the nature of optimal solu-
tions.

Such theoretical results have been presented by Boisson-
nat, Cerezo and Leblond [1], and developed by Kostov and
Kostova [12, 13], concerning a problem similar to ours, for
which the curvature is continuous but unbounded and the
derivative of the curvature is bounded. Boissonnat, Cerezo
and Leblond showed the existence of solutions, character-
ized the optimal paths and proved that these paths are
generally made of an infinity of pieces (and thus cannot
be used). Then Kostov and Kostova presented a set of
sub-optimal paths to solve this problem.

3 Statement of the Problem

In order to state the problem we consider in this work, we
will present the model of our robot and the paths it can
follow.

3.1 The Car-like Robot

Our robot A is similar to a car-like vehicle moving on a
planar environment. Its body is a rectangle supported by
four wheels: the two rear wheels’ axle is fixed to .A’s body
and the two front wheels are directional. A position of this
robot is given by a configuration (z,y,6, k), where (z,y)
are the coordinates of a reference point R of the body, 8
is the orientation of the body (i.e. the angle between the
x axis and the main axis of .4) and & is the instantaneous
curvature of R’s curve and represents the orientation of the
front wheels (cf. Fig. 1). The idea of adding the instanta-
neous curvature to the classical configurations comes from
[1], its advantage will be described in the next section.

The robot .4 moves on a planar workspace W, which is
represented by a compact (i.e. closed and bounded) set of
IR®. This workspace is cluttered with a set of obstacles
B;, 7 € {1,...,b}, represented by polygonal regions. The
body of .4 must avoid contact and collision with these
regions.

The motion of A is also limited by two classical con-
straints, as the four wheels of .4 should roll without slid-

Figure 1: a car-like vehicle.

ing. Considering the rear wheels, whose axle is fixed to A’s
body, it implies that the movement of R remains at each
point parallel to the main axis of the robot, i.e.:

Zsinf —ycosf =0 1)

On another hand, the orientation between the direct-
ing wheels and A’s main axis is bounded, which implies
that the turning radius RG is lower bounded, or that the
curvature of R’s curve is bounded:

It < Ko (2)

At last, the orientation of the directing wheels can
change with a limited speed only, and thus the derivative
of the curvature of R’s curve remains also bounded:

] < Omax (3

3.2 TFeasible Paths

A path is a continuous set of positions of .A. It can be rep-
resented by a continuous curve of the configuration space
C C WX 8 X [~Kmax, Kmax]. As a consequence, its curva-
ture profile (the fourth coordinate of the configurations)
is continuous. It is feasible if and only if it respects the
constraints (1), (2) and (3), and is of finite length.

A feasible path can be represented by its projection on
W, ie. by the curve R follows along this path: the ori-
entation # along this path is deduced using the constraint
(1), its existence being ensured by the constraint (2). This
representation is usually used for graphic display.

A feasible path is smooth if and onmly if its projection
on W is C*: along such a path, the robot moves always in
the same direction (forward or backward), without back-up
manoeuvres. A smooth path can also be represented by its
starting configuration g(0), its length I and its curvature
profile & : [0,1] — [~ Kmax;, Kmax], (With [£] < omax).

3.3 Planning Problem

A path I is a mapping from IR to C, giving a configuration
q(s) for each s € [0,1], where [ is the length of II. Given a
start configuration g, = (z,,ys,8,,%.) and a goal one g, =
(%, Yg, 04, Kg), such a path is a solution to our problem if
and only if it links g, to g, and is feasible, smooth and
collision-free, i.e.:
1. End conditions: ¢(0) = g, and g(I) = gq,;
2. II is feasible and smooth, and therefore its curva-
ture profile is a continuous function x : [0,]] —
[—Kmax, Kmax), such that |&] < omax;



3. 1I is collision-free:
Vi€ {1,...,b}, Vs € [0,1], Alg(s) N B; =0

where A(q(s)) denotes the region of W occupied by
A when in the configuration g(s).

In this paper, the planners will only try to link comn-
figurations whose curvature is null. The generalization to
configurations with non-null curvature is a future work.

4 Properties of the Problem

Before searching a solution to this problem, it is interest-
ing to know whether such a solution exists. This question
can be answered by proving the controllability of the robot
in the considered problem. On another hand, it is also
interesting to know if optimal solutions (i.e. paths with
a minimum length) does exists, and to characterize these
solutions.

4.1 Controllability

We have proved two results, which are equivalent to the
controllability properties for the problems considered by
Dubins and by Reeds and Shepp (i-e. the classical prob-
lems, without curvature continuity).

The robot is controllable if and only if there exists a fea-
sible and smooth path linking any two configurations. The
controllability of the robot has been proved analytically (cf.
section 5.3). It means that there always exists a solution
to the problem considered, as soon as there is no obstacle
in the workspace.

On another hand, the robot is small-time controllable
when it does back-up manoeuvres: for each configuration
g and each neighbourhood V of g, there exists a second
(smaller) neighbourhood of ¢ where every configuration can
be reached from g along a feasible path included in V. It
means that the kinematic constraints do not limit the exis-
tence of solutions: a feasible and collision-free path exists
between two configurations if and only if a collision-free
path exists between these configurations [14, Prop. 5].

The small-time controllability of the maneuvering robot
can be proved using the theory of optimal control, and
more precisely the Brunovsky and Lobry Theorem [16,
th. IV.3]. If II is a feasible path, its derivate (when de-
fined, i.e. almost everywhere?) a function of the motion
direction v (1 = forward, -1 = backward, 0 = static) and
of the derivate of its curvature o:

§ = F(g,0,v) = vFi(q) + o F2(a),

where:

cos @

sin

Fi(g) = \Falg) =

= O OO

0

2 A property is verified almost everywhere on a set if and only
if there only exists a finite number of points of the set for which
it is not verified.

Theorem 1 (Brunovsky and Lobry) For g € R™, we
consider the system ¢ = »_-_ u:Yi(q), where u; TeMaIns
in {=1,0,1} fori € {1,...,p}. We suppose that the rank
of the Lie algebra associated with (Yi(q),? € {1,...,p}) is
equal to n.

Then, for all compact set K C IR”, there ezists a con-
stant k such that, for all vector field X bounded on IR™ by
k, the system ¢ = X(q) + > o, w:Yi(q) is controllable on
the compact K.

In our case, n is 4, p is 2 and:

w = v Yi(g) = Fi(q)
uy = %= | Ya(@) = OmexF2(q)

O max

Moreover, the Lie algebra associated with (Y1, Yz) is of di-
mension 4 [1, § 2.1] and X = 0 is bounded by any positive
constant. Thus, our system is controllable on any com-
pact, which implies that the associated robot is small-time
controllable (with manoeuvres).

4.2 Optimal Paths

We search the optimal feasible and smooth path between
two configurations g. and gz, without considering any ob-
stacle. This is a Lagrange problem of optimal control 3,
chapter 5], i.e. it can be stated as the optimization, for a
path TI represented as a function s — q(s) from [0,1] to C,
of the function:

1
11T, 0] = 9(0,a(0),,a()) + / fols, a(s), o(5))ds
0

with ¢ = 0 and fo = 1, and the functions q(s) =
(z(5),5(5),8(s),£(s)) € Il and o(s) verifying:

e the differential system
d(s) = f(s,q(s), (s)) = (cos 8(s),sin 8(s), k(3), 0 (s))
e the limit conditions
(0,9(0),1,g())) € B = {0} x {ga} X [0, lmex] > {25}
e and the constraints

{(s,q(s)) € A [0, Lmax] X C

[—Uma.x, Umax]

o(s) e U

where the upper bound lmax of the length of the path can
be deduced of the size of the workspace W.
‘We define the set Q(s, q), for (s,q) € A, as:

{(20,2)/30 €U, 20 > fo(s,4,0),2 = f(5,9,0)}
{(#0,cos 8,sin 8, k, ), 20 € [L, +oof, 0 € U},

Q(s,9)

‘We can then apply Filippov’s existence theorem for La-
grange and Bolza problems of optimal control, as stated in
[3, th. 5.1.ii}:



Theorem 2 (Filippov) If A and U are compact, B is
closed, fo, f are continuous on M = AxU, g is continuous
on B, and for every (s,q) € A the set Q(s,q) is convez,
then I[I1, 0] has an absolute minimum as long as a solution
exists.

It is easy to verify that C is a compact set of IR?,
which implies that A is a compact of R®. Trivially, U
is a compact of IR, B is a closed set of IR* and the
functions fo, f and g are continuous. Moreover, the set
Q(s,9) is the stripe [1,+00[X [—Omax, Fmax] Of the plane
(21 = cosb,z2 = sinf, z3 = k) in IR®, and is therefore a
convex.

Thus, we know that, if a solution to our problem exists,
there exists a solution whose length is optimal. To char-
acterize the composition of the optimal solutions, we use
a result obtained by Boissonnat, Cerezo and Leblond for
a similar problem [1]. The only difference between their
problem and ours is that their curvature is not bounded.
In this condition, using Pontryagin’s Maximum Principle,
they have proved that the optimal paths are made of line
segments and of pieces of clothoids, for which the deriva-
tive of the curvature is maximum (+0max). In our case,
the pieces of the optimal paths which are strictly included
in C verify the same properties, and therefore are of the
same kind. On another hand, those which are on the bor-
der of C corresponds (if the workspace W is wide enough)
to circular arcs, as their curvature is constant and equal to
*Kmax- To conclude, the optimal paths of our problem are
made of:

¢ line segments,

¢ pieces of clothoids of maximum derivative of the cur-
vature,

e and circular arcs of maximum curvature.

Unfortunately, Boissonnat, Cerezo and Leblond also
proved that the optimal paths of their problem are made of
an infinity of pieces when they contain a line segment. In-
tuitively, it should imply that the optimal paths are made
of an infinity of pieces, as soon as the configurations to link
are far enough. The same drawback exists in our case, and
therefore the optimal paths cannot be computed nor used.

4.3 Paths considered

Thus, to solve our problem, we chose to use simpler paths
than the optimal ones: these path are made of at most 9
pieces, of the same kind as the pieces of the optimal paths
(line segments, circular arcs and pieces of clothoids), and
are called SCC-paths (for Simple Continuous-Curvature
paths). These paths are very similar to Dubins’ paths, but
have a continuous curvature profile: the discontinuities of
the Dubins’ paths are replaced by pieces of clothoids (cf.
Fig. 2). The sub-optimality of these paths will be proved
in the results section (§ 6), after the description of the
planning method.

Kmax f———-roroeemena Kmax |-

“Kmax p----eereemness -Kmax

Figure 2: curvature profiles of Dubins’ and SCC paths.

5 Path Planning Method

Two configurations ¢, and ¢, being given, we search a fea-
sible and smooth (i.e. forward only) collision-free path link-
ing g. to g;. We will describe the outline of the method,
and then detail how this method is achieved.

5.1 OQutline of the Method

The path planning is performed using a classical method: a
fast and simple planner, called local planner, is associated
with a higher level method to obtain the global planner.
The local planner does not take obstacles into account, it
only search the shortest (feasible and smooth) path link-
ing two configurations, while the higher level method deals
with the collision avoidance. We will mainly consider the
local planner, which is our contribution to this method.
A more detailed presentation can be found in last year’s
proceedings [21], or in the French thesis [20].

The local planner is similar to the Dubins’ planner: it
searches at most six paths, the circular arcs of the Dubins’
paths having been replaced by continuous-curvature turns,
made of three pieces: in Fig. 2, A is replaced by the turn
made of the pieces 1, 2 and 3, and C is replaced by the turn
5-6-7. In order to apply Dubins’ method, we need to find
the set of the configurations that can be linked from a given
configuration with a continuous-curvature turn of various
deflection (i.e. variation of the orientation). It means that,
for a given configuration q, we will search the set described
by the final configuration of a continuous-curvature turn
starting at g, when the deflection of this turn changes from
0 to 2x.

5.2 Continuous-Curvature Turns

As shown in the Fig. 2, a continuous-curvature turn is made
of three pieces: a piece of clothoid of length ! and of con-
stant derivative of the curvature o, an optional circular arc
of curvature +xmax and a second piece of clothoid of length
I and of constant derivative of the curvature -o.

If a continuous-curvature turn contains only two sym-
metric pieces of clothoid (without any circular arc), it
is called degenerated. The non-degenerated turns verify
! = liim = Kmax/0max a0d 0 = F0max, and correspond to a
deflection greater than Bim = Kmax®/Cmax.

Continuous-curvature turns are symmetric paths, i.e.
their curvature profile is a symmetric curve (cf. the turns
1-2-3 and 5-6-7 in Fig. 2). As a consequence, these turns
are symmetric in C, and their projection in W are also
symmetric (cf. [8, Prop. 1]): this is illustrated for a non-



degenerated turn by Fig. 3.

Figure 3: a continuous-curvature left turn.

All the left non-degenerated turns (for which o = max)
starting at a given configuration ¢ contains a circular arc
of the same circle Ci(q) of center (u(g) (cf. Fig 3). Due to
their symmetry, their final configuration gi(g, ) remains
on the same circle C,f (q) of center u(g), for all the deflec-
tions B € [Bim, 2n]. The radius Rr of C{ (g) and the dif-
ference v, between the orientation of the tangent to le (@)
at qi(g, B) and the orientation of q.(q, 8), are two constant
values depending only of the values of Kmax and Omax.

Concerning the degenerated turns, their constant deriva-
tive of the curvature o can be chosen in [0, Omax] for the
turn to finish on the same circle C,f (), and with an orien-
tation doing the same angle with the tangent to the circle,
for all the deflections B € [0, fum]. The same results can
be obtained for the right turns, by symmetry.

5.3 Local Planning

Once the sets of the final configuration of the continuous-
curvature turns are known, the local planning method is
the same as Dubins’ method: at most six paths linking
the given configurations are computed, and the shortest
path is selected. The at most six paths are made of two
continuous-curvature turns connected by a line segment or
a continnous-curvature turn. If the line segment is noted
s, and the turns are noted ! or » when it correspond re-
spectively to a left or a right turn, the considered paths are
noted 1sl, Isr, rsr, rsl, rir and Irl. If there always exists
at least four paths in Dubins’ case, we have proved that
there exists at least two paths in our case. It proves thus
that the forward-only robot is controllable in our case.

Figure 4: two examples of local planning.

Fig. 4 shows two examples of local planning, the first
one corresponding to a shortest SCC-path of type Irl, the
second being of type lsr.

5.4 Global Planning

Having defined a local planner, a collision checking method
and a high level method are needed in order to achieve
global planning.

The region swept by the robot while following a SCC-
path is evaluated accurately along the line segment and
circular arcs: this region is a generalized polygon, ie. a
polygon whose edges are line segments or circular arcs.
This region is hierarchically approximated using motion
polygons (cf. Fig. 5) along the clothoid pieces: the region
cannot be computed exactly as clothoids are not analytic
curves, hierarchical approximation is the most efficient rep-
resentation.

Figure 5: the motion polygon.

The high level method used to obtain a global planner
is the Probabilistic Path Planner introduced by Sestka and
Overmars [24].

6 Results of this Method

In this section, we will mainly compare Dubins’ local plan-
ning with ours, w.r.t. the complexity, the length of the
paths generated and the quality of the tracking. We will
also present some experimental results obtained with the
global planner we implemented.

6.1 Complexity of the Computation

Dubins’ and our local planner have the same algorithm, the
formulas in our case being a little more complex: Dubins’
case correspond to our case, when o'max — 00 (or-y =0 and
Rr = 1/Kmax). They have therefore the samne complexity,
and equivalent computing time: the computation of a SCC-
path is between 1.5 to 2 times longer than the computation
of a Dubins’ path (cf. Table 1, presenting the results of a
million tests).

Time (ms) Minimum | Average | Maximum
Dubins’ Paths 1.1 1.83 2.2
SCC-Paths 2.3 3.05 3.5

Table 1: computation time of the local planners.

Including collision checking to local planning increases
similarly the time needed in both case: the computation
time ratio is the same with or without collision checking
(cf. Table 2).

But, if the standard deviation is near 0.06 for both plan-
ners without collision checking, it is increased with collision



Time (ms) Minimum | Average | Maximum
Dubins’ Paths 7.5-8 8.5-9 10-11
SCC-Paths 9-9.5 10.5-11 16-17

Table 2: computation time including collision test.

checking to 0.35 in Dubins’ case, 0.75 in ours. This repre-
sents the fact that collision checking takes a wide range of
computation time: collision (or non-collision) can be easily
detected as it can be very hard to point out.

6.2 Length of the Paths

First of all, let us demonstrate the sub-optimality of the
SCC-paths, with a large bound: the length of a continuous-
curvature turn of deflection B is less than B/kmax +
Kmax /Omax; when the SCC-path contains a line segment,
the length of this segment is less than the distance be-
tween the two circles it connects: cf. the second example
of Fig. 4, q1g2 < 122 because the angle Q14192 is more
than #/2. The distance 2:8; between the two circles is
itself less than the distance d between the positions of the
two configurations ¢, and g, plus twice the radius Ry of
the circles. As a conclusion, the length of the SCC-paths is
always less than d + 2Ry + 67/Kmax + 3Kmax/Omax, Where
d is the distance between the positions of the two con-
figurations to connect, which is smaller than the distance
between the two configurations, which is itself smaller than
the length of the optimal path.

Experimental comparison between the length of Dubins’
paths and the length of the SCC-paths intuitively shows
that a smaller bound than this one (i.e. 2Ry + 67 /Kmax +
3Kmax/Omax) may surely be found. However, it would need
complex computation, and has not yet been determined.

Minimum | Average | Maximum
Ratio 1 1.077 8.27

Table 3: ratio of lengths.

The experimental comparison are sum up in Table 3.
Moreover, 82% of the SCC-paths are less than 10% longer
than the corresponding Dubins’ path, and thus the stan-
dard deviation of the length ratio is less than 0.2.

6.3 Quality of the Tracking

Examples of tracking have been simulated, using a
Kanayama’'s law as described in [9]. The maximum dis-
tance between the planned path and the followed path are
given in Table 4, for two different speeds (1-3 m/s). In
the “wide turns” paths, the turns (circular arcs in Dubins’
case, or continuous-curvature turns in our case) are fol-
lowed by long line segments: in Dubins’ case, the control
method can come back to the planned path before arriv-
ing to the next turn. In the “zigzags” paths, the turns are
adjacents: the tracking errors of the turns add one to the
other. With a velocity of 3 meter per second, the control
method comes to a blocking situation with Dubins’ zigzags.
In our case, the tracking errors always remain reasonable,
and are equivalent for both types of paths.

The SCC-path planner has been used with a reactive

Distance (cm) | Dubins’ Path | SCC-Path
Wide Turns 35-180 <1-11
Zigzags 150-00 <1-16

Table 4: distance between followed and planned path.

fuzzy controller [6], to control one of the experimental ve-
hicle (a Ligier, cf. 6) of the SHARP project.

s

Figure 6: the experimental vehicle.
6.4 Examples of Global Planning

Figure 7: global planning.

Fig. 7 shows a few examples of global planning, where
the rays delimit the circular arcs of the SCC-paths. These
results are rather similar to those obtained with Dubins’
paths, the major advantage being the continuity of the
curvature (discussed in the previous sections).

7 Conclusion and Future Works

This paper describes a new path planning problem, adding
two curvature constraints (continuity and bound on its
derivative) to the classical kinematic constraints of a car-
like robot. The new results are the characterization of the
problem, w.r.t. the existence of solution and the optimality
of these solutions, and experimental comparison between
Dubins’ local planner (usually used) and the continuous-
curvature local planner. The complexity of this one is
equivalent to the complexity of Dubins’ one, and its com-
putation time is less than twice Dubins’ one. On another
hand, Dubins’ paths are more than ten times harder to
track than continuous-curvature paths. The continuous-
curvature local planner is thus more efficient than Dubins’
one.
Future works will explore two main directions:

1. improvement of the forward-only planning; this in-
cludes the development of local and global planning



between configurations with non-null curvature (the
global planning will then be complete), and the de-
termination of the type of the shortest path (this is a
generalization of the work of Bui et al. presented in
[2]), so that local planning will not require to compute
at most six paths;

2. study of the case with manoeuvres; the controllabil-
ity in this case has been proved in this paper, as well
as the nature of the optimal paths, but the positions
along these optimal paths corresponding to changes
of direction of motion still need to be point out; the
planning of continuous-curvature paths with manoeu-
vres will there be a simple consequence of the previous
results.
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