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Abstract. Vehicle navigation in dynamic environments is a challenging task, especially when the motion of
the obstacles populating the environment is unknown beforehand and is updated at runtime. Traditional motion
planning approaches are too slow to be applied in real-time to this problem, whereas reactive navigation methods
have generally a too short look-ahead horizon. Recently, iterative planning has emerged as a promising approach,
however, it does not explicitly take into account the movements of the obstacles.

This paper presents a real-time motion planning approach, based on the concept of the Non-Linear V-Obstacle
(NLVO) (Shiller et al., 2001). Given a predicted environment, the NLVO models the set of velocities which lead to
collisions with static and moving obstacles, and an estimation of the times-to-collision. At each controller iteration,
an iterative A* motion planner evaluates the potential moves of the robot, based on the computed NLVO and the
traveling time. Previous search results are reused to both minimize computation and maintain the global coherence
of the solutions.

We first review the concept of the NLVO, and then present the iterative planner. The planner is then applied to
vehicle navigation and demonstrated in a complex traffic scenario.
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for which a complete trajectory to the goal is com-
puted once, e.g. (Erdmann and Lozano-Perez, 1986;

1. Introduction

Autonomous vehicle navigation among stationary ob-
stacles can now be considered as solved. This is not
the case for environments containing moving obsta-
cles whose future behavior is unknown: Their future
trajectories should be taken into account to anticipate
collisions and to compute a safe trajectory accordingly.
When this information is not available beforehand and
has to be estimated at runtime, wrong predictions may
be done and the safety of the vehicle depends on its
ability to react fast to updates. The available computa-
tion time depends on the dynamics of the environment
and on the controllability of the robot.

Existing autonomous navigation approaches are
classically split between motion planning methods

Fujimura and Samet, 1989), and reactive methods,
for which only the next move is computed, e.g.
(Fox et al., 1997; Ulrich and Borenstein, 1998; Ko
and Simmons, 1998; Minguez and Montano, 2000).
Planning methods are too slow, whereas reactive ones
have too little look-ahead. More recent methods, e.g.
(Fraichard, 1999; Brock and Khatib, 1999; Hsu et
al., 2000; Brock and Khatib, 2000; Minguez et al.,
2002; Frazzoli et al., 2002; Stachniss and Burgard,
2002), called iterative motion planners, tend to extend
the reactive methods with planning techniques. Instead
of computing only the next move, several steps are
computed, depending on the time available. Different
possibilities are explored in a search-tree, and a partial
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trajectory is incrementally built. The process can be
interrupted at any time to keep the vehicle reactive,
while the trajectory returned is the best among the
ones explored in the allocated time.

This approach is the most promising, however, it re-
quires animportant condition not yet satisfied in current
methods: The environment and its dynamics must be
represented in a more efficient way (e.g. in spaces of
lower dimension to reduce the response time).

This paper presents an iterative planner that uses the
Non-Linear V-Obstacle (Shiller et al., 2001) to esti-
mate efficiently the safety of the vehicle’s motion in
a predicted environment. This process is iteratively re-
peated to incrementally build a search tree, until acom-
plete trajectory to the goal is found, or until the available
computing time is exhausted. The tree is continuously
updated to reflect the environmental changes.

We first review the concept of Non-Linear
V-Obstacle in Section 2 and present a few extensions to
be used in intelligent vehicle applications. Our iterative
motion planner is detailed in Section 3. Experimental
results obtained on our simulator are interpreted for a
realistic traffic example in Section 4.

2. The Nonlinear V-Obstacle NLVO
2.1. Principles of NLVO

To understand the NLVO concept, let us first consider
a simple case under several assumptions. The derived
definitions will be later extended to handle more real-
istic problems.

2.1.1. Hypothesis and Notations. Let us consider a
single circular robot .4 and a single circular obstacle B
both moving in the plane noted as WW. A(¢) and B(t) are
the subsets of W occupied by .4 and B atinstant?. c 4 ()
and cp(t) are the configurations of A and B at instant ¢.
For convenience, A(t) is reduced to its center ¢ 4(¢) and
B(2) is grown by the radius of .4(¢) and is noted CB(t).
B—,: (t)and -1:1_[; (t) are the instantaneous linear velocities
of A and B at instant z. They are represented by two
vectors, attached respectively to c4(¢) and cg(t), in the
velocity space (Burke, 1985) of the robot noted as V.
The trajectories of .4 and B are considered on a
bounded time interval [ty, TH], where TH is known
as the time horizon (Fiorini and Shiller, 1998). The
trajectory of A is considered as linear and constant on
[to, TH]. The trajectory of B is arbitary. However, ¢5(t)
and TJ_; (1) are assumed to be known or predictable on

[to. TH] (see Large et al., 2004 for an example of a
prediction method and its integration with the NLVO
concept).

2.1.2. Definitions. The concept of V-Obstacle (noted
as VO) has first been introduced in Fiorini and Shiller
(1993, 1998), as the set of all linear constant velocities
of a robot that induce a collision with an obstacle on a
bounded period of time.

VO = U{TJ—; eV |3t elw, TH], A(t)NB() # 8}
(D

A temporal element of a VO is the set of all velocities
that cause collision between the robot and the obstacle
at time ¢. It is noted as VO(¢):

vou =|_Jlvx e VIADONB® #0) ()

A VO is the union of all its temporal elements for
t € [ty, TH}:

TH
VO = U VO(1) 3)

1=Ip

A V-Obstacle is called linear (LVO) if the obsta-
cle is static or if its trajectory is constant and linear.
It becomes a non-linear V-Obstacle (NLVO) if the tra-
jectory of the obstacle is arbitrary (Shiller et al., 2001).
Obviously, the NLVO accounts for general as well as
for linear trajectories.

2.1.3. Construction of the NLVO. Let us first con-
sider the simple case of a LVO. From a geometrical ap-
proach (Fiorini and Shiller, 1998), the shape of a LVO
defined on [tg, TH] can be seen in V as a truncated
cone delimited by the tangents to CB(to) issued from
ca(tp), and translated by 5; (Figs. 1.1 and 1.2). The
truncated part is the apex of the cone. It corresponds to
the velocities that induce a collision after TH (Fig. 1.3).

The explanation given in Fiorini and Shiller (1998) is
repeated here. Let v;_;g be the velocity of A relative to
B. We can easily build the set of the relative velocities
va, s such that A and BB will collide at a future time. Itis
the cone delimited by the tangents to CB(#;) issued from
ca(ty). We call it CC as collision cone. By definition,
we know that IJ_,; = v‘;g + 5;. Hence, the set of the
absolute velocities of 4 leading to a future collision
is the translation of CC by the vector B;. Now, the

N
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Figure 1. Geometrical construction of LVO in V. 1. Construction
of CC (CC represents the set of all the relative velocities of A related
to B that induce a collision in a future time. It can be seen as the
velocities of .4 that would induce a collision with B if B would
not move. Hence, it can be easily built from c4(ty) and CB(1g)),
2. Translation of CC by v_B' to construct LVO, 3. Suppression of the
extremity of the cone according to TH (computing VO(TH) allows to
delimitate the “end” of the cone. The velocities of the cone located
between the appex (included) and the border of VO(TH) (excluded)
are dropped), 4. Example of a LVO computed in V. (the construction
of the LVO is independant of the current velocity va of .A). The
LVO is used to evaluate the safety of the potential future velocities
of .A. For example, the velocity v_,{, is safe, while v_,q'z will induce
a collision with the obstacle B at a time ¢ € [ry, TH] (the vector
representing v_,{z ends inside the LVO).

construction is equivalent to the union of all the VO(¢)
fort € [to, oof. We wanttobound thisrangeto [tg, TH]
for two main reasons:

— Inanenclosed area, any nonzero velocity of the robot
would induce collision at some future time.

— The behaviour of the obstacles is unknown. It would
be unrealistic to make any assumption on this behav-
ior on an unbounded period of time.

We can observe that slower velocities, represented by
shorter vectors issued from c,4(ty), lead to collisions
in a further time. In other words, the velocities of the
cone located between the apex and VO(TH) will induce
acollisionin JTH, oc: Thus, they have to be removed.

An analytical expression of the borders of the LVO
was derived in Shiller et al. (2001): VO(¢) is the image
of CB(t) in the scale drawing of ratio 1/¢ and of center
ca(ty) The velocities lying on the border of the LVO
and inducing a collision at instant ¢, are the tangency
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Figure 2. Construction of vo(t) and vou(r) for a LVO. VO(1) is
built as the image of CB(r) by the scaling transformation of center
ca(fp) and of ratio 1/r. The translated point of c4(fp) by B; (1) is
built. Two lines issued from this point and tangent to VO(t) can be
constructed. The tangency points are vog (1) and voy(r).

points noted as vo,(t) and vou(t) between VO(t) and
the translation of c4 () by 5; (Fig. 2). VO(t) is com-
puted as the image of CB(¢) in the scale drawing of
ratio 1/¢ and of center c4(%). The expression of vo,(t)
and vo,(t) is the expression of the borders of the LVO
parameterized by time.

The construction of a generic NLVO proposed in
Shiller et al. (2001) extends the previous construction
of a LVO and is based on the following property: the in-
stantaneous linear velocity 5; (t) of B at time ¢ along
an arbitrary trajectory, is a first order approximation
of this trajectory at time ¢. In a similar way, the LVO
built from B(t) and 5; (¢) can be seen as the first order
approximation of a NLVO at time ¢.

The method consists of 3 steps, applied iteratively
for discretized values of ¢ in the time interval {ty, TH]
with a time step dt (Fig. 3):

— consider 5; (#) to be constant on {fg, t] and esti-
mate CB(tg) (noted as CB,) from CB(¢) under this
assumption;

— compute the LVO noted as LVO, associated with
CB.;

- compute the two tangency points vo,(t) and voy(t)
from the temporal element VO_(¢) of LVO..

2.1.4. Time to Collision. Using the previous defini-
tion of NLVO, it is straightforward to say whether a
given velocity will induce a collision in the future or
will be safe. However, this definition gives no informa-
tion about the time duration which is elapsed before the
robot A collides with an obsctacle, while moving at a
given constant velocity 4. This duration is called the
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Figure 3. Construction of NLVO. (1) Construction of CB. (CB. =
CB(t)—1t- Eg’ (1)), (2) Construction of LVO.. (from ¢ 4(tg) and CB.)
(3) Construction of vog(t) and vou(t) (in LVO.) (4) Example of a
NLVO computed in V (as seen previously, _v_,{, is safe. while 572
will induce a collision with B at a time ¢ € [ry, TH]).

time to collision. It can be obtained from the previous
construction for the velocities lying on the border of the
NLVO. In Large (2003), we proposed to also compute
this time for the velocities located “inside” the NLVO.

To do so, the velocity space V is extended by a time
dimension, corresponding to the time to collision. The
new space is noted V x 7. Hence, a point in V x T
corresponds to a linear and constant velocity of the
robot, and the associated time to collision. The idea is to
extend the construction of a NLVO in the space V, to the
space V x T: A temporal element VO(¢) is computed
for several discretized values of t € [fg, TH]. Its two
tangent points vo,(t) and vo,(¢) split its circumference
into two arcs of a circle. The velocities that induce a
collision with B; at time ¢ lie on the small arc of circle.
Hence, the set of velocities with time to collision ¢ lies
on this small arc.

The construction of a NLVO in V x T extends the
one in V and is as follows (Fig. 4): for each computed
VO(t), the small arc delimited by vo,(t) and vo,(t)
is discretised in n + 1 points, giving Py(¢) to P,(1)
(with vo, (1) = Po(t) and vo,(t) = P,(t)). The transfert
from V to V x T implies that the time to collision ¢
is added as a third coordinate. The 4 adjacent points
Pi(t), Piy1(t), Pi(t + dt) and P4, (¢t 4 dt) constitute
a trapezoidal face of (the polygonal approximation of)
NLVO in V x T (of dimension 3). Each one can be

A trapezoidal face of the NLVO
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Figure 4. Polygonal approximation ofa V-Obstacle inV x 7. Left
figure: The figure represents the construction of the trapezoidal faces
that approximate aNLVOin[t, t+di). The points P;(r) are computed
from the VO(¢). Each P;(r) has 3 coordinates: the 2 components of
the corresponding linear velocity, and the time to collision associ-
ated with this velocity. P;(r) points are then grouped as described
in the text to form quads or triangles as shown. Right figure: The
previous triangles (or quads) are computed for all the discretized
values of t € [ty TH] by steps of dt. They form the complete NLVO
in V x T. VO(ty), VO(TH) and some intermediate VO(t) have been
added (circles) for a better understanding, as well as the projection
of the NLVO in V.

splitted into 2 triangles to enhance the performances
(see real-time issues later in 4).

2.2. Extensions of the Basic Problem

In this section, the NLVO concept is extended to handle
more complicated and realistic problems (see Large
(2003) for details and extra extensions).

2.2.1. Multiple Obstacles. Considering now a world
populated by several obstacles B;, the set of veloci-
ties that will induce a collision with any obstacle on
{to, TH] is the union of all the NLVO associated with
each single obstacle. If a velocity induces a collision
with several obstacles, its time to collision is the short-
est duration the robot can travel at this velocity before
the first collision occurs.

2.2.2. Non-Circular Robot. Approximating the robot
shape by a single disk allows great simplifications of
the calculations. However, a finer approximation using
several disks is required in cluttered environments.

Two cases have to be distinguished, depending on the
type of motion executed by the robot (pure translation
or combination of translation and rotation).

In this paper, the considered robot is a car-like ve-
hicle. Its trajectories are usually smooth; they can be
approximized by a sequence of pure translations' over
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Figure 5. Approximating the NLVO associated with a non-circular
obstacle in translation. The robot shape is approximated by two disks
(A). The NLVO associated with the disks are computed (B and C)
and their union is computed (D) to approximate the NLVO associated
with the robot. A safe velocity can then be selected (E).

a small period of time.2 Under these assumptions,
we approximate the shape of the car by a conserva-
tive pavement of disks; Each NLVO associated with
the car and an obstacle is the union of all the sin-
gle NLVO (expressed in the same coordinates frame)
associated with a single disk and the obstacle (see
Fig. 5). The accuracy of the approximation and the
number of extra computation depend on the pavement
chosen.

2.2.3. Non-Circular Obstacle. The shape of any ob-
stacle B can be approximated by a conservative rep-
resentation constructed using a pavement of disks: the
trajectory of each disk can be easily derived from the
trajectory of the original obstacle B. The NLVO asso-
ciated with B is defined as the union of the NLVO asso-
ciated with each disk. However, in realistic situations,
the number of disks may become too large for real-
time calculations (especially for long shaped obstacles
accurately approximated). Hopefully, this approxima-
tion can be drastically simplified for LVO (i.e. for static
obstacles such as the borders of the road or for obsta-
cles having linear constant trajectories). In such cases,
CB(ty) is the original obstacle 5 grown by the radius of
the robot A: a disk is centered on each edge of B. The
radius of the disks are equal to the radius of the robot.
Then, the LVO associated to each disk is computed.
The outer borders of their union define the borders of
the LVO associated with B (Fig. 6).

2.2.4. Kinematics and Dynamics of the Robot. 'The
efficiency of the NLVO concept lies in the simplicity
of the calculations involved and the small dimension

caltyl

Figure 6. Approximations of a non-circular obsiacle. Obstacles
moving along arbitrary trajectories are approximated by conservative
pavements of disks and a trajectory is assigned to each disk accord-
ing to the obstacle one (left). For stationnary obstacles or obstacles
with linear constant trajectories, an enclosing generalized polygon
is computed such that each vertex is a disk. The disks that are in
collision first (here 1, 2 and 3) and their outer tangents define the set
of velocities with a time to collision equal to 1 (bold line noted as
5). The complete LVO is computed by scaling this line by 1/t.

of the space V (or V x T) where they are performed.
The reason comes essentially from the strong hypoth-
esis made on the trajectory followed by the robot (con-
stant and linear on [ty, TH]). When dealing with a real
robot, its kinematics and dynamics rarely satisfy such
constraints. A way to maintain these conditions for the
computation of NLVO is to consider periods of time
sufficiently small such that a move of the robot can be
considered as constant and linear on each period. The
set of all the positions that can be reached after this
period of time is computed from the real kinematics
and dynamics, then the set of the corresponding linear
velocities Vg, is derived. Only the velocities in Vg,
are considered for the computations of NLVO and for
the choice of the future velocity.

2.2.5. Uncertainties. Uncertainty comes from per-
ception errors and previous approximations. In order
to take this uncertainty into account, security margins
have to be added. Consequently, the radius of the robot
and of the obstacles are grown at each time-step, ac-
cording to the upper bound of uncertainty. In some
cases (i.e. when the uncertainty is too high), the NLVO
may totally cover the set of admissible velocities V,gm.
It suggests that all the potential velocities will induce
a collision on [#y, TH], however, the choice of a safe
velocity is still possible, since the information on the
times to collision is available (see expansion operator
in 3.1).

SR A A
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3. Iterative Motion Planner

The trajectory of the robot is computed as a list of con-
secutive moves from its current state to its goal. A move
is characterized by a constant linear velocity applied to
the robot during dt seconds, the period of time between
two consecutive decisions of the controller. Each move
is searched in the velocity space of the robot (V).

Our approach is based on an iterative planner in V
and the popular A* algorithm. A search tree is defined,
such that a node n; represents a dated state s4(¢) of the
robot, and a branch b; ; represents a safe move of dt
seconds (i.e. a safe linear constant velocity VA applied
on this period) between two consecutive nodes/states:

ni = {sa(0)}
bi.j = (va) @)

nj = {salt +dt) = sa(t) + va - dr)

The A* algorithm considers two types of nodes: The
nodes already explored, and the nodes not explored yet
(called “open”). Exploring a node means to compute
the branches issued from it using an expansion operator
described below in Section 3.1. In our case, it consists
in computing the admissible safe velocities applicable
from the state of the robot associated with the explored
node. Each newly created branch generates a new open
node, while the last explored node is removed from the
list of “open”. Any node to be explored is chosen from
this list until the goal is reached (success), the list is
empty (fail) or the time available for the computation
is over (timeout). In order to guaranty that an optimal
trajectory among the ones explored will be found (if
such a solution exists), and that the number of explored
nodes will be minimal, a criteria of optimality must be
chosen and estimated for each open node. We have
chosen to minimise the travelling time. The method is
described in Section 3.2 by the heuristic function.

3.1.  Expansion Operator

The expansion of the tree consists of computing the set
Vaam Of admissible velocities according to the vehicle
kinematics and dynamics. Independently, we compute
the set of velocities NLVO that induce a collision be-
fore the given time horizon TH and their corresponding
time to collision. TH depends on the vehicle velocity,
the available computer ressources and for how long the
obstacles trajectories prediction have been made (typ-
ical values: 1.55 < TH < 30s).

The set of the admissible velocities that can be cho-
sen to expand a node is almost infinite. In order to con-
trol the size of the search tree, this set is discretized,
sorted and only the best five velocities are kept. The
sorting is based on 2 criterias, the time to collision and
the time to the goal.

3.1.1. Time to Collision. The first criteria taken into
account is the safety of the robot: a risk of collision
noted Cost,(v) is associated with each velocity v. Its
value is inversely proportional to the time to collision
noted Tc(v). For convenience, we normalized it be-
tween 0 and 1 included, such as 0 means “no risk” and
1 means “immediate collision”:

(TH —Tc(®») x tg ..

= fv e NLVO
Te) x(TH—-1) =~ ()
0 otherwise

Costw(!—}) =

3.1.2. Time to the Goal. The second criteria
Costop (D) is based on a normalization (Coston(V) €
[0, 1) of the travelling time to the goal, noted Ty (?)
and described later with the heuristic in Section 3.2.
Its purpose is to pre-sort the safe velocities that will be
chosen later by the heuristic to explore the tree:

-

Tou(V

- T,ﬁ%;u% if Tou (V) < t maxpy

Costop‘(t?) = i
otherwise

©)

with ¢ maxy,, the upper bound of the time required by
the robot to reach its goal.

3.1.3. Effects on the Optimality of the Trajectories.
The velocities are sorted according to a cost func-
tion Costgiopat(V). It is defined as Costgiopa(V) = o) -
Cost(V) + az - Costop(V), where the o; are real values
experimentally set.

The velocities with the minimal cost are chosen to
expand the node. In order to better map the free space,
a velocity cannot be chosen in the neighborhood (i.e. at
a fixed minimal distance in V) of another velocity that
has already been selected.

One may think that the expansion operator has an
impact on the optimality of the trajectory computed
from the tree, in the sense that the nodes which belong
to the optimal trajectory may never be selected based
on the previous criteria. This is mainly due to the as-
sumptions on the robot linear trajectory, needed for the
computation of the NLVO. However, this choice is very
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local (an elementary move of the robot) and the even-
tual loss of optimal points is limited by the mapping.
The heuristic search also contributes to compensate the
eventual gaps between the solution computed by our
approach and the one computed by a complete search.
The differences observed during our tests were always
negligible.

3.2.  Global Cost Function and Heuristic

Converging quickly to a nearly optimal solution (i.e.
to a trajectory that tends to minimize the travelling
time in our case) implies that we are able to evaluate
each open node before we choose the one to explore: A
global cost function is defined as the sum of the known
time needed to reach a node (number of consecutive
branches from the root to the node times dr), and the
estimated time needed to reach the goal from this node.
This last value is our heuristic and is independant of
the obstacles (which have already been taken into ac-
count by the expansion operator of the node). It is noted
Tou(s4(?)) and is computed by first estimating a simple
geometrical path to the goal, according to the current
robot state and its minimal turning radius (Fig. 7). A ve-
locity profile of type “maximal acceleration-maximum
speed-maximal decceleration” is computed along the
geometrical path, and the corresponding travelling time
Tou(s4(2)) is deduced. This value is a good lower bound
of the real travelling time and for this reason satisfies
the A* requirements, while requiring only few simple
calculations.

Figure 7. Geometrical Paths to the goal We consider a path com-
posed of a segment of line and an arc of circle. Two cases are possi-
ble (The robot turns at the maximum to align with the goal then go
straigth in its direction (left). When the goal is inside the minimal
circle described by the robot, the robot must go straight first, then
turn (right)).

3.3.  Updating the Tree

Rebuilding the whole tree from scratch at each iteration
of the controller has three consequences:

— therobot may never have time to compute a complete
trajectory to the goal;

— trajectories computed at two consecutive iterations
offer no guarantee to be coherent with each other;

- the same nodes may be unnecessarily explored sev-
eral times at different iterations.

We propose to update the search tree instead of re-
building it totally. Our approach is motivated by the
fact that, when the predictions on the obstacles trajec-
tories are correct, the nodes already explored (and any
trajectory passing by them) do not need to be explored
again at the next iteration, but should be kept to save
computation time. The method is as follows: We first
consider the sub-tree issued from the node that has been
selected at the previous iteration (which should corre-
spond to the current robot state). The nodes which are
not part of it are deleted. In this new tree, we choose
the next node to be explored from “open”. Before ex-
ploring it, the trajectory from the root to this node is
checked, starting from the root. If any collision is de-
tected, the first node in collision and the whole sub-tree
issued from it is deleted and another node is chosen in
the remaining tree. Since the root of the tree changes at
each iteration, we provided a function to dynamically
compute the cost of each node and to guarantee that
the solution is always the trajectory the most optimal
among the ones explored.

By updating, the drawbacks of rebuilding a tree from
scratch are avoided. Moreover, an interesting property
on the robot trajectory has been observed when we do
not replace immediatly the deleted nodes: In this case,
the robot naturally avoids the areas where the trajecto-
ries of the obstacles had not been correctly predicted
(i.e. that can be seen as area with a higher risk). In this
case, the trajectories found may be less optimal, but
this can be improved by associating a limited lifetime
to each node, hence forcing the update of the tree.

4. Intelligent Vehicles Applications

Embedding the NLVO concept in an iterative plan-
ner as presented in the previous section constitutes
a generic tool for motion planning with a wide field
of potential applications in robotics or virtual reality
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Figure 8. Linearization of the time to collision. The figure on the left is an example of a LVO representedin V x 7T . The plan P is perpendicular
to the plan V and is aligned with the axle of the LVO. The figure on the right represents the slope described by the middle axle of a NLVO (in
P). In this 2d space, the time to collision can be seen as a function of type z(r) = ¢/r with ¢ constanﬁsA). B represents the slope of the same

¢—1fy)-

NLVO whom the dimension corresponding to the time-to-collision has been linearized (z(r) = -THQ-—). Figures 4 and 9 show two examples

corresponding respectively to A and B.

(see Large (2003) for several examples). We pro-
pose to demonstrate its abilities for intelligent vehicles
applications.

4.1. Real-Time Issues

When navigating at high-speed among moving obsta-
cles, the computation time is critical, the data structures
and the algorithms need to be carefully designed to sat-
isfy real-time constraints. The more important ones are
presented here (see Large (2003) for complementary
techniques).

4.1.1. Linearization of Time to Collision. The shape
of a LVO in V is a truncated cone that can be easily
constructed from only 4 points (e.g. vo,(ty), vou(to),
vo, (TH) and vo,(TH)). However, this is not the case
in V x T where the straight line between vo,(#) and
vo, (TH) (or vo,(tp) and voy(TH)) does not match with
the real border of the LVO (Fig. 8). In order toreduce the
number of calculations, this has to be corrected using
a modified scale along the time to collision axis. For
all the objects represented in V x 7T, we replace the
coordinates associated with the time to collision ¢ by
the function z(¢) (Figs. 8 and 9):

_ (t —ty) x TH
W= GH % )

This transformation has no effect on the results: the
relative sorting of the velocities, based on their times
to collision, is not changed. The construction of any
LVO becomes significantly faster (ratio of mz_*—tdot“)
and the extra calculations induced by the linearization

(L —to)t

NLVOIRY . e

Figure 9. 3D approximation of a NLVO in V x T. With the lin-
earized time to collision, only the computation of P;(r) for t = ry and
t = TH is needed to represent the whole NLVO in V x T. The figure
shows the result for a LVO with n = 49 (right). VO(#y), VO(TH) and
several intermediate VO(r ) have been drawn (red circles) to compare
with Fig. 4.

can efficiently be handled through precomputed lookup
tables.

4.1.2. Drawing the NLVO. The polygonal approxi-
mation of a NLVO in V x T (Cf. Section 2.1.4) can be
seen as the drawing of triangles in a 3D-space. Classical
graphical libraries (e.g. OpenGL?) can then be used to
optimize the process, especially to sort the velocities
on their time to collision, and benefit from hardware
acceleration when available.

First, the set of admissible velocities (Vagm) is com-
puted and its complement in V becomes a mask in the
3D-space. The virtual camera is positionned so that the
view of Vg is maximized (Fig. 10). The NLVO are
approximated by a set of triangles defined in V x T
(Fig. 4). For convenience, the dimension of time is
linearized as seen above. The triangles can now be
“drawn” in the 3D-space and the time to collision of all
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Figure 10.  Computing the time to collision using a 3D library. The NLVO are approximated by triangles (C) drawn behind the mask of the
admissible velocities (B). A virtual camera with no perception effect (A) is placed on top of the scene (D). Each pixel of the image (E) captured
by the camera is associated with a depth proportional to the time to collision. A null distance denotes a non admissible velocity.

Figure 11.  Examples of NLVO computed with openGL. The mask
is not represented here and the camera view has been changed to
show the construction of the NLVO in 3D (left). The NLVO and the
times to collision are read by positionning the camera as described
in figure 10 (right). The lighter shades of red indicate a short time to
collision (A), the darker red parts (B) indicate a long time to collision.
The non admissible velocities (the mask) are represented in light blue
(C). Note: In order to obtain a better image, the discretization of the
right captured image has been set to 450 x 250. However. the typical
resolution at runtime is closer to 32 x 32 for performance reasons.

the admissible velocities can be captured by the camera
(Fig. 11). Each pixel of the “image” corresponds to an
admissible linear velocity of the robot. Its Z-coordinate
(usually accessible through a Z-buffer) corresponds to
the time to collision associated with this velocity.

4.2.  Experimental Results

In contrast to the majority of collision avoidance meth-
ods, we explicitly consider the movements of the ob-

stacles. However, this implies that this information is
available, otherwise the benefit of the NLVO is lost and
navigating among fast moving obstacles may be unsafe.

To address this problem, we recently proposed a
complete framework (Large et al., 2004) for a real-
world problem: Navigating the parking lot of the Inria
using information obtained through a number of fixed
cameras covering the environment (Fig. 12). It is com-
posed of: '

— a learning-based prediction stage, which is able to
produce long-term estimates of the obstacles motion
in real-time,

- a motion planner as described in this paper.

Preliminary real-world experimental results have al-
ready been obtained for this first stage, but further de-
velopement needs to be done before it can be used by
the planner. Meanwhile, the planner has been validated
on a realistic simulated environment. We carefully de-
signed the simulator such that the inputs of the plan-
ner (dated estimation of the future obstacles trajec-
tories with uncertainties), the outputs of the planner
(next commands of the robot), the real-time constraints
(bounded computation time + delays) and the robot
behaviour (kinematics and dynamics) are as close as
possible to the reality.
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Figure 12.  Experiments on the parking lot of the Inria. Left image: The parking lot of Inria (Grenoble, France), is monitored by highly placed
video cameras. This infrastructure (Helin, 2003) is dedicated to the learning/prediction of the motion of the objects (vehicles and pedestrians)

in this area. Right images: Examples of images captured by the cameras.

4.2.1. Simulated Environment. Several environ-
ments have been tested in simulation for intelligent
vehicles, such as roads intersections, round-abouts or
expressways (see Large (2003) for examples also for
service robots). Our simulator is written in assembly
language and C/C++ (FLTK* and OpenGL for graph-
ics) and is totally dedicated to validate the NLVO con-
cept. Real-life constraints such as uncertainties, lim-
ited range of perception for the robot, or undecisive
behaviour of obstacles have been modelled. To do so,
we defined a set of geometrical reference paths that the
obstacles can follow. Each path corresponds to a par-
ticutar behaviour of an obstacle. Moreover, constraints
on minimum/maximum velocities, temporary breaks or
complete stops can be defined along the path. A simu-
lation session starts by randomly setting the parameters
associated with the obstacles. These parameters are the
instant when the obstacle will appear, the reference path
it will follow (i.e. its behaviour), and with which accu-
racy it will do it. For each obstacle, a trajectory is then
computed, so that it will not collide with the obstacles
that have already been created and which are still on
the road. When a complete environment is generated
for a period of time sufficiently long, the simulation
is launched. It consists in creating a robot on demand
with an initial state and a final state. The robot must
find its way from one state to the other without collid-
ing into any static obstacle (borders of the road) or any
moving obstacle (other vehicles). When several robots
are present at the same time on the road, each one con-
siders the other as an obstacle and needs to estimate its
trajectory. In the example presented later, we extracted

the geometrical path from the current computed tra-
jectories of each robot. A new velocity profile is then
applied to this path, assuming that each robot will keep
constant its current linear velocity. This introduces er-
rors that oblige the robots to update their predictions.
When the future trajectories are not available, the future
moves of the obstacles are approximated from their last
previous moves.

4.2.2. Example of an Expressway Junction. The pre-
sented example shows a dangerous junction on an ex-
pressway. Vehicles can enter, exit, or continue on the
same lane. Figure 13 illustrates a car-like robot (red)
adapting its speed to enter safely on the expressway.
Another car-like robot (blue) does the same to con-
tinue on the main lane. The other vehicles are created
as mentionned above (predefined behaviour). This ex-
ample illustrates a case of passive cooperation between
the two cars and illustrates how each car can react in
real-time to changes in the environment: The blue car
follows a smooth trajectory, that can be easily predicted
by the red one. Hence, the red adapts its speed to the
blue one which does not need to modify its own speed.
On the other hand, the blue car may not necessary con-
sider the red one as a potential danger in the beginning
since the estimated future trajectory at this time is not
the real one. Hence, the blue car “concentrates” on its
goal and goes straight at a maximum velocity. The ac-
celeration of the blue car in order to reach its maximal
velocity obliges the red car to increase its own veloc-
ity. This has an effect on the blue car which needs to
deccelerate a bit to let the red car pass. After the red

b o AR 5 A )
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Figure 13.  Navigation Example. See comments in the text. Images are read from left to right, top to bottom.

car has merged on the left lane, both cars accelerate in
order to reach their maximal velocity.

5. Conclusion and Perspectives

In this paper, we first reviewed the principles of the
NLVO concept and its adaptation to handle realistic sit-
uations. This concept is then embedded into an iterative
planner to compute safe trajectories to a goal among
moving obstacles. The approach demonstrated for a
challenging realistic traffic scenario. The main advan-
tages of this method are the following: the robot reacts
quickly to any change in its environment; the computed
trajectories avoid dangerous areas of the environment
where the predictions are not correct; the future trajec-
tories of the obstacles are taken into account to better
anticipate the collisions; simple kinematics and dynam-
ics of the controlled vehicle are taken into account; a
risk of collision is computed in real-time for any po-
tential move of the robot.

The next step is to implement the planner on real
robots or vehicles. Firstly, we need a method to predict
the obstacles trajectories. We are now working on the
integration of such a method and our planner in a com-

plete framework (Large et al., 2004): A delimited area
(road intersection, carpark) is monitored by fixed video
cameras (Helin, 2003) to learn typical motion patterns
of the obstacles. The future trajectory of each obstacle
is deduced from the prior observations and serves as
input for the motion planning stage.

Future work will aim at expressing the NLVQ in aref-
erence frame that would “follow” a nominal trajectory
of the robot. This would allow the approach to better
take into account the kinematics/dynamics of the robot,
and is particulary interesting for intelligent vehicles.
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Notes

1. Induced errors can be compensated by growing the robot shape
if needed. Other approximation methods can be found in Large
(2003) when the robot motion cannot be approximized by a se-
quence of pure translations.

. The period of the robot controller in our case.

. ‘Open Graphical Library’ (OpenGL): http://www.opengl.org

. ‘Fast Light ToolKit’ (FLTK): http://www.fltk.org
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