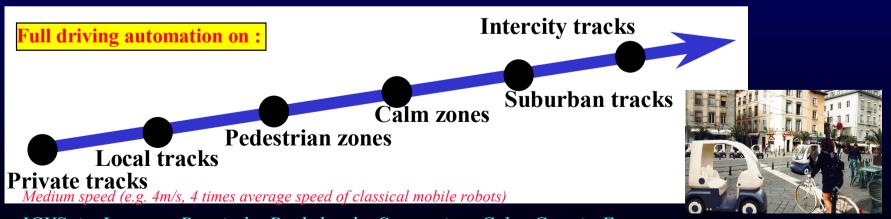
Towards "Automated Road": Some projects and new technologies

Christian Laugier INRIA Rhône-Alpes, France

- 1. General Framework & Main ITS Research Programmes
- 2. Decisional & Control Architecture for Autonomous Vehicles
- 3. Obstacle Avoidance in a dynamic environment (V-obstacles & Bayesian Prog)
 - 4. Automatic driving for a Bi-steerable car (Cycab)
 - 5. Conclusion and Future Work

Plenary Speech
ITSC '02 - Singapore, Sept. 3-6, 2002


Automated Road: Two main approaches

• The Automotive approach (ADASE)

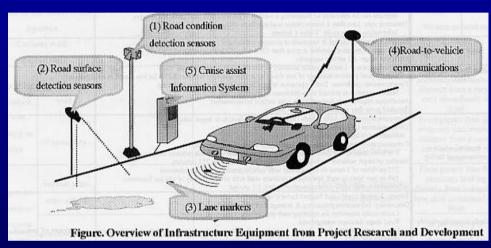
e.g AHS in Japan; Path & IVI in USA; Prometheus, Chauffeur, Carsense in Europe

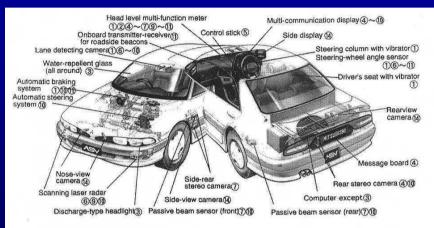
• The « CyberCars » approach

e.g ICVS in Japan; Praxitele, Parkshuttle, Serpentine, CyberCars in Europe

Main Research Programmes

🔷 Japan


- Oriented towards Automated Vehicle Guidance & Driver Assistance
- National project widely supported by MLIT
- Large scale demonstrations (1996 & 2000)
- Deployment program for the next 15 years


=> Cf. Talk of Dr. Sadayuki Tsugawa

ITS project in Japan

• ASHRA consortium & AHS (Advanced Cruise-Assist Hyghway System) project

Mitsubishi (Active & passive safety)

ICVS & IMTS projects

Toyota (Crayon system)

Honda ICVS


Yamaha (Cybercars)

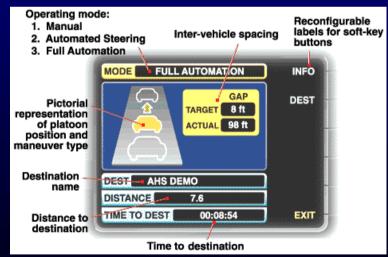
Toyota (IMTS)

Main Research Programmes

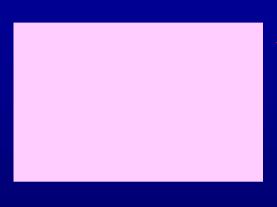
- Oriented towards Automated Vehicle Guidance
 & Driver Assistance
- National project widely supported by MLIT
- Large scale demonstrations (1996 & 2000)
- Deployment program for the next 15 years

USA

- Oriented towards Automated Highway Systems
- National project on AHS (ITS America)
- Large scale demonstration in San Diego (1997)


ITS project in USA

Development of fully-automated motorway traffic in USA


San Diego demonstration, August 1997

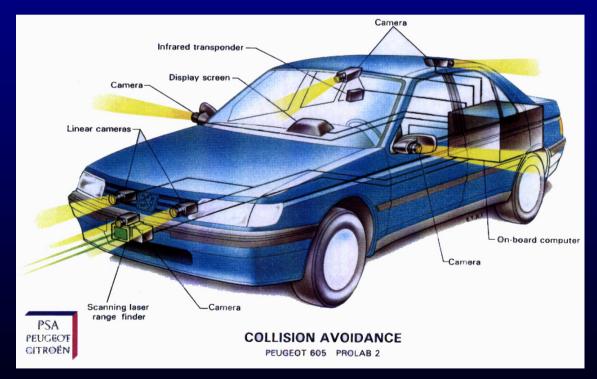
Human interface (Path, California)

Main Research Programmes (C'ed)

Australia, East-Pacific Asia

- Some isolated works, No National projects
- ITS initiative in Singapore (LTA=> ERP, Traffic control ...)

Europe


- Oriented towards *Driving Assistance & Urban Transport*
 - => « Automotive » and « CyberCars » approaches
- Prometheus, Chauffeur, Praxitele, Cybercars ...
- Large scale demonstration (Paris 1994, Rijnwoude 1998, Amsterdam 2002)

Automotive approach: Prometheus (1986-94)

« Driving Assistance »

- **◆** Smart Cars & Smart highways (for Increasing Safety)
- Demonstration in Paris (Prolab2, Oct. 1994)

French Prolab2 experimental vehicle

Automotive approach: Chauffeur

« Automated Road for Trucks »

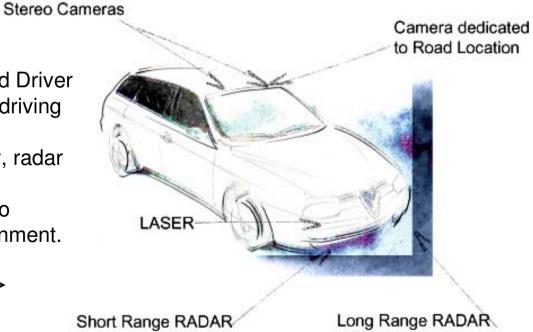
- Dedicated Infrastructure (automated lanes)
- Increasing Driving Confort and Safety
- Reducing Travelling Time (better predictibilty)

Chauffeur (EU, Daimler Benz/ Iveco)

Automotive approach: Carsense

« Sensing of Car Environment at Low Speed Driving »

IST Project 1999-12224 [Jan. 00-Dec. 02]


Partners:

- Car manufacturers: Renault, Fiat, BMW
- Part suppliers: Thomson-CSF, TRW Automotive, Ibeo, Autocruise, Jena-Optonik
- Research Institutes: Inria, Inrets-Leost, Livic, ENSMP

Objectives:

- Develop a sensing system for Advanced Driver Assistance Systems (ADAS) in complex driving situations.
- Based on image processing technology, radar and laser.
- Sensor information is merged in order to achieve a better perception of the environment.

<http://www.carsense.org>

Inria Contributions

• Obstacle detection using stereo vision (Imara/Rocquencourt)

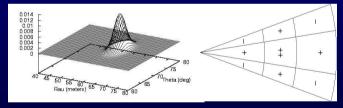
Objectives:

- Detect dangerous obstacles over the road surface
- Real-time execution for slow to moderate speeds
- Parallelizable program architecture

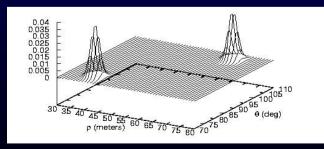
Techniques used:

• Enhanced disparity maps & Wavelet decomposition

• Multi-sensor data fusion using Bayesian Programming (Sharp/Rhône-Alpes)


Objectives:

 multiple-target (obstacles) tracking using several sensors (laser, radar, video)


Techniques used:

• Bayesian programming => formal framework to address uncertainty based on the Probability theory (generic language + inference engine)

Example: association and estimation (*m* sensors observing *n* targets)

Explicit modeling of the sensors' performance

Result: Multi-modal probability distribution of the targets' presence (m = n + 2)

Automotive approach: Arcos

« Vehicle-Infrastructure-Driver system for Road Safety »

French precompetitive research project funded by PREDIT [2002-2004] Predit = French Interministerial Land Transport Research & Innovation Programme

Goal: A decrease of 30% in the number of accidents, once the vehicles and the infrastructure are equipped

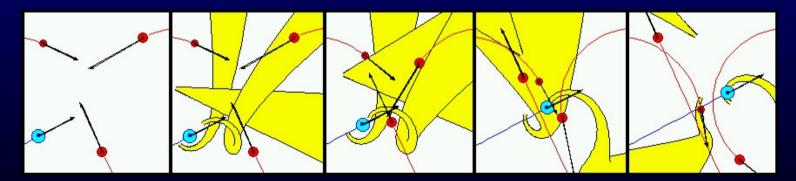
Partners (58):

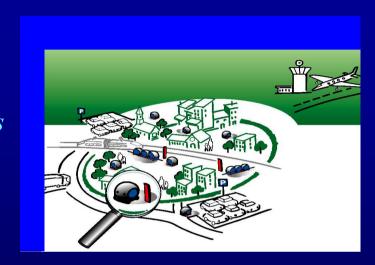
- Car manufacturers: Renault, PSA
- Private companies: Navtec, Nacam ...
- Research Institutes: Inria, Cnrs, Ensmp, Livic ...

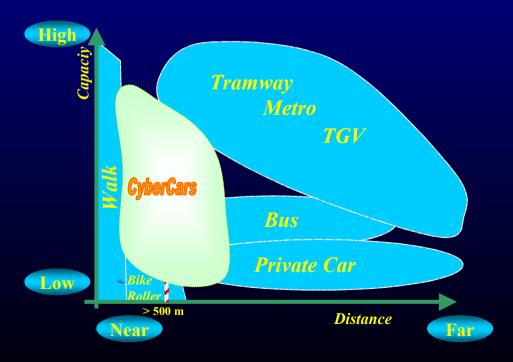
Technical objectives: safety would be improved based on 4 technical functions:

- managing the inter-distance of vehicles
- warning the driver of the collisions with fixed and slow obstacles
- warning the driver of veering off the road
- informing the cars about an accident ahead

Experimentations:

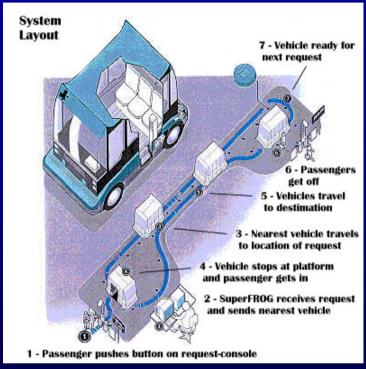

- 4 experimental platforms
- 3 experimental campaigns (one per year)
- Industrial property on results would protect them and valorize them (=> patent, confidentiality, etc)


Inria Contributions


- 1. Design of the structure of a data base that would be very open and extensible (especially through radio waves)
- 2. Algorithms for planning reachable trajectories and computing admissible bounds on driving parameters
- 3. Design of a module detecting the danger of collision and evaluating its gravity
- => Concept of "Velocity Obstacle" representing in a synthetic way, at each moment the set of the velocities leading to a collision

The « CyberCars » approach: Basic idea

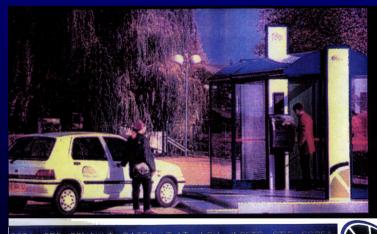
CyberCars are focusing on historical city centres



- Noor to door, 24 hours a day
- **▼** Small (urban size), silent
- **▼** User friendly interface
- Automatic manoeuvres : parking, platooning up to fully automated

Some CyberCars projects

« Automated Urban/Local Transit »

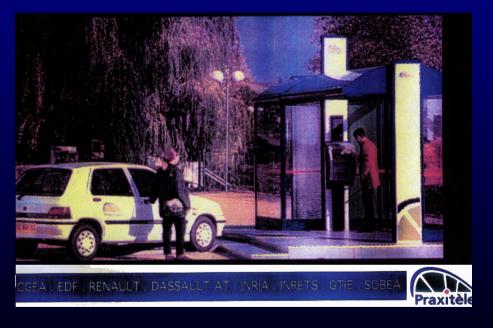


Serpentine (Switzerland)

Praxitele (France)

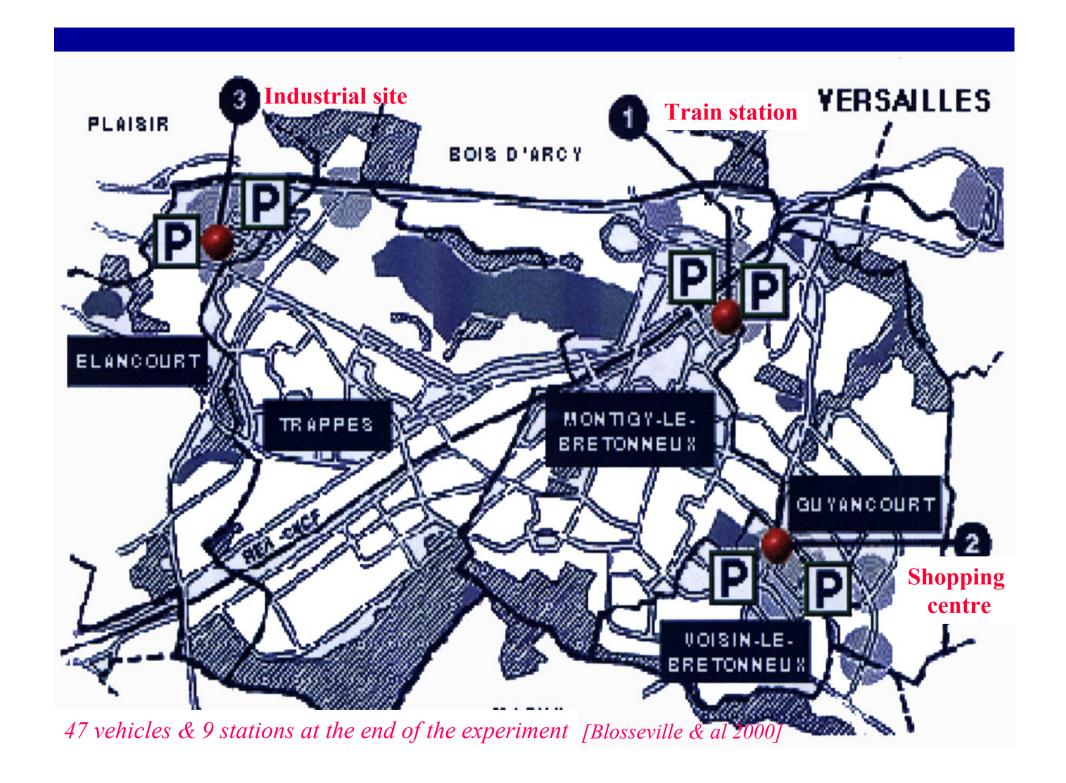
ParkShuttle (Frog, Netherlands)


=> Rijnwoude International AGV Demonstration, June 1998


Automated Urban Vehicle - Phase 1

French consortium: Inria, Inrets, Renault, EDF, CGEA, Dassault

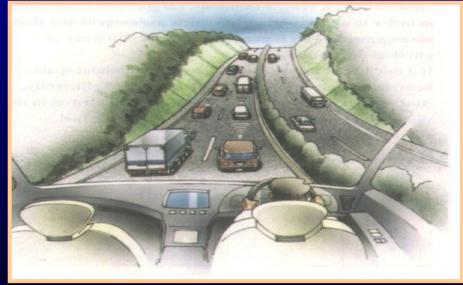
- Inria/Inrets PRAXITELE project (1993-97)
 - **♦ Public Urban Transit System based on Self-Service Electric Cars**
 - **♦ Large scale experiment in Saint Quentin-en-Yvelines (Oct. 97 April 99)**[Blosseville & al 2000]
 - ◆ No Motion Autonomy in the experimented system at SQY



Real experiment in SQY

Automated Urban Vehicle - Phase 2

French consortium + EU + Inria/NTU Lab in Singapore


- CyCab & LaRA (1998-2004)
 - Design of an application-oriented Computer Controlled Dual-Mode Vehicle
 - ◆ Development of the concept of « Motion Autonomy »

 Platooning & ACC+, Obstacle avoidance, Autonomous maneuvers ...

CyCab dual-mode vehicle

=> Commercialized by Robosoft

Concept of « Automated Road »

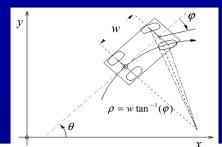
LaRA Program (leader: M. Parent) => 6 research institutes, 30 full-time researchers Testing grounds at LIVIC, 5 M€ of equipment

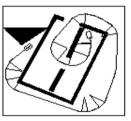
Automated Urban Vehicle European project: Cybercars (2001 - 2005)

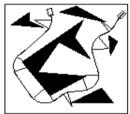
- ◆ Consortium: 10 industrial partners (Fiat, Yamaha, Frog ...), 7 research institutes (Inria, Inrets, Ensmp ...), 12 cities involved (Rome, Rotterdam, Lausanne, Antibes ...)
- **♦** Testing & Evaluation site at Inria Rocquencourt
- **◆** 10 M € for 3 years

Decisional & Control Architecture

Autonomous Maneuvering

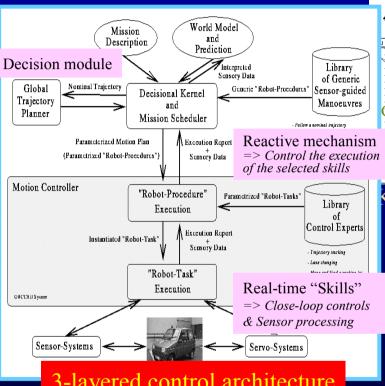



Electric Ligier Dual-mode Car



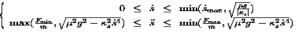
Cycab

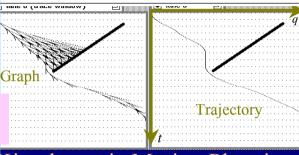
Decisional & Control architecture



Planning CC-paths (kinematic constraints ...) continuous curvature profile + upper-bound curvature & curvature derivative [Scheuer & Laugier 98]

Platooning [Parent & Daviet 96]


3-layered control architecture


Laugier et al. 98

Lane Changing & Obstacle avoidance [Laugier et al. 98]

Kinodynamic Motion Planning (Dynamic constraints ...) [Fraichard 92]

Automatic Parallel Parking [Paromtchik & Laugier 96]

Platooning

[Parent & Daviet 96]

• Electronic Tow-Bar

Platoon of vehicles (No tele-communication)

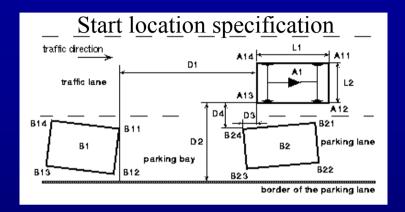
CCD Linear camera (high rate & resolution)

First experimental infrared target

Longitudinal control

X1 - Xf = dmin + h Vf
Af = Cv
$$\Delta$$
V + Cp (Δ X - h Vf - dmin)
with Cv = 1/h and Cp = min(1/h, Amax/Vf)

• Lateral control => making use of the « tractor model » (wheel angle = direction of the leader)


Platooning [Parent & Daviet 96]

PRAXITELE

Automatic Parallel Parking [Paromtchik & Laugier 96]

(D1,D2) - Available displacements F(D1,D2,D3,D4,D5) = 0

where: D5 - a safety distance D3 - an estimate

- 1- Obtain available (D1,D2) by range data processing
- 2- Search for T and ϕ_{max} (control parameters)
- 3- Drive the vehicle using sinusoidal controls $\phi(t)$ and v(t)
- 4- Determine the current vehicle's location relatively to the parking bay If the parked location is reached then stop, else go to step 1

Automatic parking maneuvers [Paromtchik & Laugier 96]

Lane Following/Changing

[Laugier et al. 98]

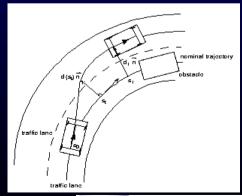
Trajectory Tracking

$$\dot{\theta} = \dot{\theta}_{ref} + v_{R,ref} (k_y y_e + k_\theta \sin \theta_e)$$

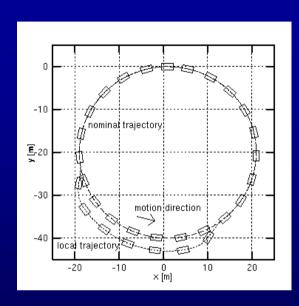
$$v_r = v_{R,ref} \cos \theta_e + k_x x_e$$

[kanayama 91]

- Lane changing & obstacle avoidance
 - *I- Generate and track a « local trajectory » connecting the nominal trajectory with a collision-free trajectory located in a « parallel free lane »*
 - 2- Track the new « safe trajectory » until the obstacle has been overtaken
 - 3- Generate and track a « local trajectory » connecting the « safe trajectory » to the nominal one
- Generating smooth « local trajectories »


Maximum allowed curvature

Minimum distance for lane changing

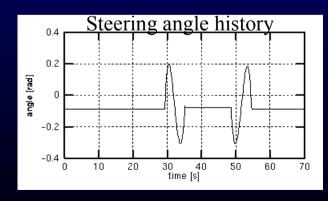

$$C_{\text{max}} = \min\left(\frac{\tan\left(\theta_{\text{max}}\right)}{L}, \frac{\gamma_{\text{max}}}{v_{R,ref}^2}\right)$$

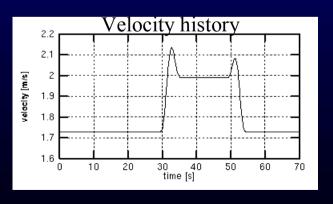
$$S_{T,\text{min}} = \frac{\pi}{2}$$

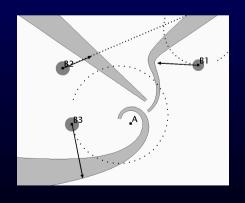
Associated trajectory [Nelson 89]

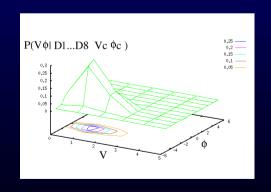
$$d(s) = d_T \left(10 \left(\frac{s}{s_{T,\text{min}}} \right)^3 - 15 \left(\frac{s}{s_{T,\text{min}}} \right)^4 + 6 \left(\frac{s}{s_{T,\text{min}}} \right)^5 \right)$$

Lane Following/Changing: Experimental results



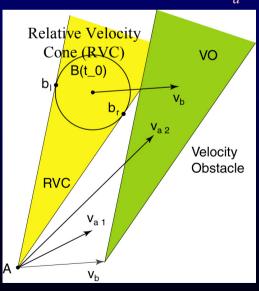





Obstacle avoidance in a Dynamic Environment

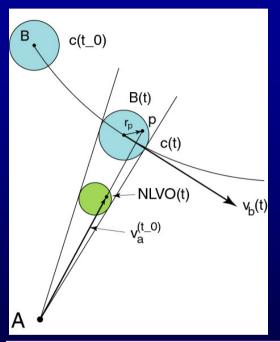
V-obstacles & Bayesian Programming

[Shiller & Large & Sekhavat 01] [Bessiere & Lebeltel 00]


Velocity Obstacles: Basic idea

Main difficulties & motivations

- => On-line Avoidance of obstacles moving along arbitrary trajectories (known or sensed)
- => The traditional state-time approach (zero order search) is not tractable (complexity & real-time) ... Instead, reason at the "velocity level" (first order search)!
- Initial concept of "Linear V-Obstacle" [Fiorini 93 & 98, Goshe 98]
 - => Mobile A and Obstacle B move along straight lines with constant velocities V_a and V_b


$$RVC = \bigcup A/b, b \in \partial B(t_0)$$
$$VO = v_b + RVC$$

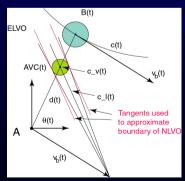
- Any absolute velocity of A, pointing inside VO, would result in collision at some time $t \in (0, \infty)$
- A grazes B at tangency points between RVC and $b(t_0)$.

Non-Linear V-Obstacles

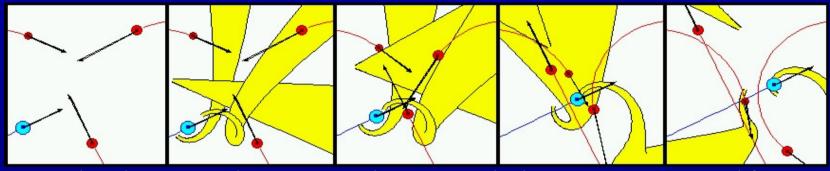
=> Obstacle B moves along trajectory c(t)

NLVO(t) = Absolute velocities of A at t0
that would collide with B(t)

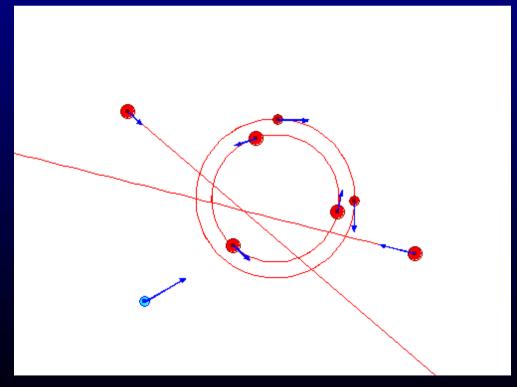
$$NLVO(t) = \frac{c(t) + B}{t - t_0}$$


$$NLVO_{t_0} = \bigcup_{t > t_0} \frac{c(t) + B}{t - t_0}$$

Obstacle trajectory : $c(t) = d(t)e^{i\theta(t)}$ $c_v(t) = \frac{d(t)}{t}e^{i\theta(t)}$


$$vo_r(t) = c_v(t) + i\frac{r}{t}\hat{c}_l(t)$$

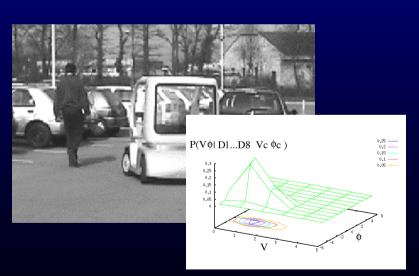
$$vo_l(t) = c_v(t) - i\frac{r}{t}\hat{c}_l(t)$$



=> Approximate boundaries of NLVO (On-line computation!)

Simulation results (online computation)

A single velocity outside NLVO avoids the obstacle during the time interval for which the v-obstacle was generated

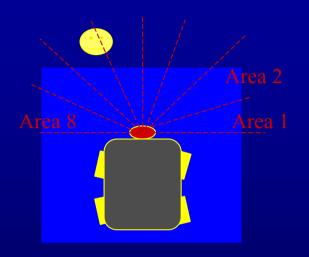

Obstacle avoidance using Bayesian Programming

Main difficulties & Motivations

- => On-line avoidance of sensed stationary or moving obstacles
- => Dealing with uncertainty using Preliminary Knowledge & Experimental data

Basic idea

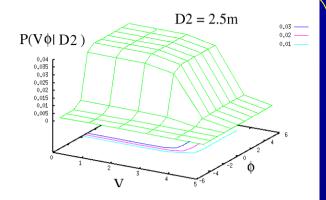
=> Controlling the vehicle using a probability distribution on (v,ϕ) e.g. reducing speed and/or modifying steering angle for avoiding a pedestrian or a car

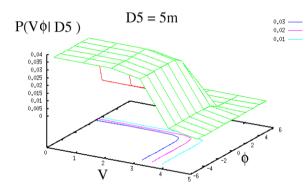


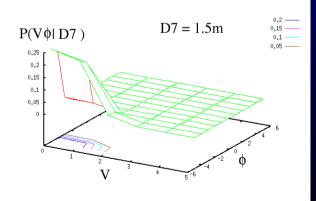
=> Using API « OpenPL », soon commercialized by a start-up

Programming principle

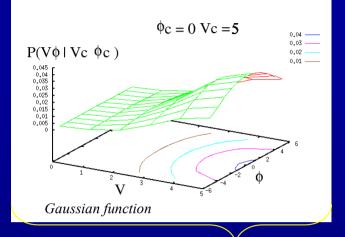
- $V = translational speed; \phi = steering angle$
- Sick laser range finder
- Area 1 $D_i = D$ istance to the nearest obstacle in area i
 - In each area a speed V and a steering angle ϕ are computed, with a given confidence, in order to avoid the sensed obstacle
 - Probabilistic Command Fusion weights the values of each area (+ task controls), thanks to the confidence

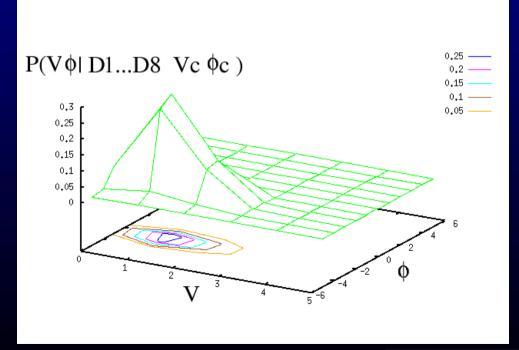

Joint distribution for the fusion


$$P(V \otimes \phi \otimes D_1 \otimes ... \otimes D_8) = P(V \otimes \phi) \prod_{i=1}^8 P_i(D_i / V \otimes \phi)$$

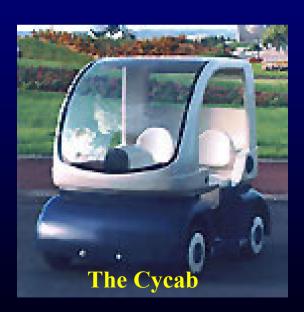

where :
$$\begin{cases} P(V \otimes \phi) = \text{Uniform} \\ P_{i}(D_{i}/V \otimes \phi) = \frac{P_{i}(D_{i})P_{i}(V/D_{i})P_{i}(\phi/D_{i})}{\sum_{D_{i}} P_{i}(D_{i})P_{i}(V/D_{i})P_{i}(\phi/D_{i})} = > Probabilistic joint distribution for area i \end{cases}$$

Problem solving

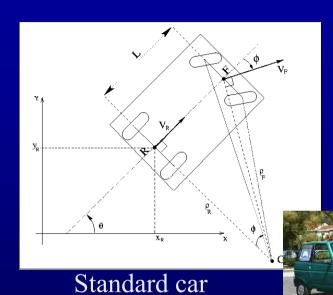

$$P(V \otimes \phi / D_{1} \otimes ... \otimes D_{8}) = \frac{P(V \otimes \phi) \prod_{i=1}^{8} P_{i}(D_{i} / V \otimes \phi)}{\sum_{V, \phi} P(V \otimes \phi) \prod_{i=1}^{8} P_{i}(D_{i} / V \otimes \phi)}$$



Command fusion

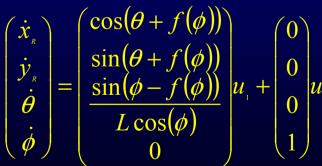


Experimental result



Automatic driving for a Bi-Steerable Car

[Sekhavat & Hermosillo 01]


Standard Car vs. Bi-steerable Car

$$\begin{pmatrix} \dot{x}_R \\ \dot{y}_R \\ \dot{\theta} \\ \dot{\phi} \end{pmatrix} = \begin{pmatrix} \cos(\theta) \\ \sin(\theta) \\ \tan(\phi) \\ L \\ 0 \end{pmatrix} u_1 + \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} u_2$$

$$u_1 = V_R$$
 $u_2 = \dot{\phi}$
 $f(\phi)$: characteristic function

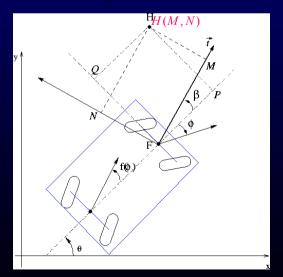
BS-car

=> Smaller turning radius bound & sweeping volume

=> Better maneuverability in cluttered environments
... But Planning & Control much more difficult!

Differential Flatness of the BS-car

• Flatness property for a BS-car [Sekhavat & Hermosillo 00]


$$X = (x_R, y_R, \theta, \phi) \quad and \quad u = (V_R, \phi)$$

$$Cycab : \quad f(\phi) = k \cdot \phi \quad , \forall k \neq 1$$

$$Flat \ outputs : \quad H = (y_1(\phi), y_2(\phi))$$

$$\Rightarrow \quad \kappa = \frac{\sin((1+k)\phi_0)}{L\cos\phi_0\cos(k\phi_0)} \quad if \ \phi \in \{0, -\phi_0, \phi_0\}$$

• Flat outputs for the Cycab [Sekhavat & Hermosillo 01]

Turning frame:
$$(F, \vec{t}, \vec{t}^{\perp})$$
 with $\beta(\phi) = \tan^{-1} \frac{B(\phi)}{A(\phi)}$

$$\vec{t} = \cos \phi f'(\phi) \vec{u}_{\theta+\phi} - \cos f(\phi) \vec{u}_{\theta+f(\phi)}$$

$$A(\phi) = \cos^{2}(\phi) f'(\phi) - \cos^{2} f(\phi)$$

$$B(\phi) = \cos(\phi) \sin(\phi) f'(\phi) - \cos(f(\phi)) \sin(f(\phi))$$

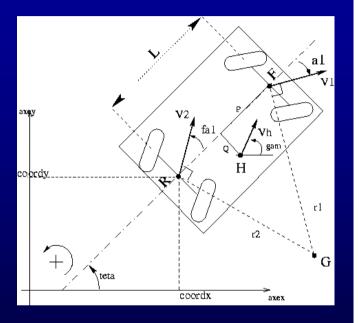
$$M(\phi) = \frac{L \cos^{2}(f(\phi))}{\sqrt{A^{2}(\phi) + B^{2}(\phi)}}$$

$$N(\phi) = -\int_{0}^{\phi} \frac{L \cos^{2}(f(u))(B'(u)A(u) - A'(u)B(u))}{(A^{2}(u) + B^{2}(u))^{\frac{3}{2}}}$$

Controlling a BS-car

[Hermosillo &Sekhavat 02]

• Relation between the « Robot Controls » and the « Flat Output »


$$\vec{P}_{H} = v_{H} \vec{\gamma}$$
 $v_{H} = v_{F} (\cos(\varphi - \beta) - NF) + \omega_{\varphi} ([\partial M / \partial \varphi] - [\partial \beta / \partial \varphi] N)$

Open-loop controls of a BS-car

$$\omega_{\varphi} = v_{H} \left(\frac{d\kappa}{ds}\right) / (\partial \mathbf{K} / \partial \varphi)$$

$$v_{F} = \frac{v_{H} - \omega_{\varphi}([\partial M / \partial \varphi] - [\partial \beta / \partial \varphi] N)}{\cos(\varphi - \beta) - NF}$$

$$\kappa = \mathbf{K}(\varphi) = -\frac{\partial \beta / \partial \varphi}{\partial M / \partial \varphi - \beta N} \qquad F(\varphi) = \frac{\sin(\varphi - f(\varphi))}{L\cos(f(\varphi))}$$

Linearizing Feedbacks & Closed-loop controls

$$\dot{\xi}_{2} = (\overline{w_{1}} + \kappa^{2} \xi_{1}^{3}) \dot{s}
\dot{\xi}_{1} = \xi_{2} \dot{s}
v_{H} = \xi_{1} \dot{s}$$

$$\dot{\chi}_{i} = \alpha \chi_{i} + \beta w_{i}
\dot{\chi}_{i} = \alpha \chi_{i} + \beta w_{i}
\alpha = \begin{pmatrix} 010 \\ 001 \\ 000 \end{pmatrix} \beta = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

$$\chi_{1} = \begin{pmatrix} y_{1}^{(0)} \\ y_{1}^{(1)} \\ y_{1}^{(2)} \end{pmatrix} \quad w_{1} = y_{1}^{(3)}$$

Experimental results SLAM & Motion planning & Control of the Cycab

Conclusion

- Some major issues of "Automatic Cars" have been addressed, and it has been shown that large technical progress have been made during the last decade
- Three major technical problems have been presented and discussed:
 (1) Autonomous maneuvering, (2) Obstacle avoidance in dynamic environments,
 - (3) Automatic driving for a Bi-steerable car (designed for city centers)
- Original solutions have been proposed, implemented, and tested on real vehicles (SBM, NLVO, Bayesian Programming, BS-Car Automatic Driving)
- However, all these techniques have still to be robustified in order to be really applicable in normal traffic conditions (sensing, hazards processing ...) => it's the purpose of current work

 Carsense and Cybercars EU projects, Arcos 2003 French National project