"e-Motion" **Project-Team** *« Geometry and Probability for motion and action »*

INRIA Grenoble Rhône-Alpes & Laboratory of Informatics of Grenoble (LIG)

Scientific leader : Christian LAUGIER (DR1 INRIA)

http://emotion.inrialpes.fr christian.laugier@inrialpes.fr

Christian LAUGIER – e-Motion project-team

Scientific challenge

Overall challenge

Robots in Human Environments

ITS for improving safety & comfort & efficiency

Main Motivations

✓ Important socio-economic perspectives => Transport, Aging society, Medical care & Rehabilitation, Human assistance, Intelligent home ...

Personal Assistant & House Keeping & Rehabilitation

✓ Increasing interest of industry => Automotive industry, Robots, Health sector, Services ...

✓ Challenging research topics => Dynamic world, Robust perception, Safety, Human Aware Motion, Complex Human-Robot interactions ...

✓ Robotics state-of-the-art & Progress in ICT Technologies (computers, sensors, micronano technologies, energy ...) make this challenge potentially reachable

Required breakthroughs & Approach

Required breakthroughs

- ✓ Motion autonomy in Open & Dynamic environments
- ✓ Safe & Understandable Human-Robot interactions

• Main difficulties

✓ World & Task complexity
 ✓ Reactivity & Real-time constraints
 ✓ Incompleteness & Uncertainty
 ✓ Human in the loop

• Scientific approach

- \checkmark Revisit traditional approaches not fully adapted to the processing of Human environments
- ✓ Design new models & algorithms for "Perception & Decision & Action & Interaction" in Complex & Highly Dynamic environments populated by Human beings
- ✓ Focus on Robustness & Efficiency & Safety

Our approach: Combining Geometrical & Probabilistic approaches

Outline of the Scientific Project

Scientific positioning

- ✓ Field of Probabilistic Robotics & Cognitive Systems
- ✓ Pioneer work on Bayesian Programming & Motion Planning in dynamic environments

Research objectives

- ✓ Dynamic world Perception & Understanding
- ✓ Motion planning & Autonomous Navigation in the Real World
- \checkmark Bayesian approach to Cognitive Systems

Main Achievements

✓ Technological transfers with our start-up "Probayes" (ProBT library, BOF software) Industrial applications in Robotics (Toyota, Denso, Hitachi) and in some other domains such as Finance, Plant maintenance, Video games, or Threat evaluation

✓ Perception & Interpretation of dynamic environments using Sensor Fusion and Bayesian Reasoning. *Application to probabilistic "Risk Assessment" (in particular with Toyota)*

- ✓ Concepts of PMP & ICS for Motion Planning in Dynamic environments
- ✓ Bayesian models for some Human SMS (e.g. perception of shape from motion, colliculus)

Robotics Experimental Platform

Parkview

Cycab & Simulator

Koala

Autonomous Wheelchairs

Industrial Experimental Vehicles (soon a Toyota Prius vehicle)

Personnel

	Misc.	INRIA	CNRS	University	Total
DR / Professors		1	1		2
CR / Assistant Professor		2		2	4
Permanent Engineer			0.5		0.5
Temporary Engineer		4			4
PhD Students	4	Ø 5		1/0	11 9
Post-Doc.		1			1
Total	4	14	1.5	3	22.5
External Collaborators	4		1	2	5
Visitors $(> 1 \text{ month})$	2	2			4

• Permanent staff (6.5)

- 3 INRIA Researchers: Christian Laugier (DR1), Thierry Fraichard (CR1), Agostino Martinelli (CR1)
- 1 CNRS Researchers: *Pierre Bessiere (DR2)*
- 2 Associate Professors: Olivier Aycard (UJF), Anne Spalanzani (UPMF)
- 0.5 Permanent Engineer: Amaury Negre (CNRS, shared with EPI Prima)
- 2 Leaving: Emmanuel Mazer (CEO Probayes), Sepanta Sekhavat (Iran)

• Attractivity evidences

- Recruitment of Agostino Martinelli in 2006 (Italian, previously Ass. Researcher at EPFL)
- Average of 2 Visitors & Invited professors per year (from Spain, Germany, USA, Mexico, Israel, Singapore)

Research Objectives

- Objective 1: Dynamic world Perception & Understanding
 ~ 50 % activity of e-Motion
- Objective 2: Motion planning & Autonomous navigation in the real world
- **Objective 3: Bayesian approach to Cognitive Systems**

The addressed problem

Moving safely amidst Stationary & Moving obstacles (vehicles, pedestrians ...) in Open & Dynamic environments

Continuously changing environment

✓ Continuous world modeling using sensors
 ✓ Space & Time have to be considered
 ✓ Real-time processing is required

Sensed Stationary & Moving obstacles

✓ SLAM + DATMO
 ✓ Uncertainty is a key issue (perception, localization, tracking)

Complex partly known environments

- ✓ *Most probable world changes have to be predicted* !
- ✓ Iterative safe navigation decisions (based on world states estimation & prediction)

Project-team positioning

- Considerable research material exists on SLAM, Detection & Tracking, but robustness is still an issue !
- Few contributions on Prediction & Risk assessment
- Focus on Open & Highly Dynamic environments => Robustness & Efficiency issues

Three main topics

- Robust Detection & Tracking => Sensor Fusion + Grid based approach in space (OG) & Space/Velocity (BOF) + Towards a unique Detection & Tracking process
- 2. Localization & Mapping => Sensor self-calibration + Multi-modality Localization + Efficient multi-resolution 3D mapping
- 3. Prediction & Risk assessment => Prediction of the future behavior of the observed entities + Probabilistic Risk assessment

Main Topics & Achievements 6 PhD, 1 Book, 15 journal papers

Robust Detection & Tracking [Burlet 07][Coue 05] (coop. Denso, Toyota, Daimler)

Vision based Detection & TTC [Braillon 08][Negre 09] (Coop. Prima)

Simultaneous calibration of Odometry & Bearing sensor [Martinelli 08] (Coop. ETH Zurich)

World change prediction [Vasquez 07] (coop. ETH Zurich)

Risk assessment using GP [Tay PhD Thesis] (coop. Toyota)

Efficient 3D Multi-resolution Mapping using "Tensor maps" [Yguel PhD Thesis] (coop. Perception, Ibeo)

Laser based Multi-Objects Detection & Tracking "PreVent" EU project [Burlet, Vu, Aycard 07-08]

Grid-based Obstacles Detection

OG: 160m x 200m Resolution 20cm x-20cm

Multi-Objects Tracking

- ✓ Mapping & localization: Scan matching
- ✓ *Data Association:* Multiple Hypotheses (for n time steps)

✓ Filtering : Interacting Multiple Models
 Inspired from [Blakman 98] (radar) & [Wang 04] (laser + ICP)

Experimental validation

"PreVent" EU project, Versailles demo 2007 (Daimler-Chrysler & Ibeo test vehicle)

Computational time ~ 10 ms

Multiple Hypothesis Tracking of Moving Objects using Grid-based Fusion

Julien Burlet, Trung-Dung Vu, Olivier Aycard LIG & INRIA Rhône Alpes, France

Contact: Olivier.Aycard@inrialpes.fr

Also tested on a truck Volvo / Ibeo Currently under testing on a Wolkswagen / Ibeo demonstrator

Bayesian Sensor Fusion for "Dynamic Perception" *"Bayesian Occupation Filter paradigm (BOF)"*

Patented by INRIA & Probayes, Commercialized by Probayes

BOF

- Continuous Dynamic environment modelling
- Grid approach based on Bayesian Filtering
- Estimates *Probability of O<u>ccupation</u> & V<u>elocity</u> of each cell in a 4D-grid*
- Application to Obstacle Detection & Tracking + Dynamic Scene Interpretation

=> More robust Sensing & Tracking + More robust to Temporary Occultation

[Coué & al IJRR 05]

Robustness to Temporary Occultation Tracking + Conservative anticipation [Coué & al IJRR 05]

Christian LAUGIER – e-Ma

Thanks to the prediction capability of the BOF, the Autonomous Vehicle "anticipates" the behavior of the pedestrian and brakes (even if the pedestrian is temporarily hidden by the parked vehicle)

Application to Robust Detection & Tracking

Christian LAUGIER

World changes Prediction

[Vasquez & al 05, 06, 07, 08]

- Risk assessment requires to both *Estimate the current world state* & *Predict the most likely evolution of the dynamic environment*
- Objects motions are driven by *"Intentions"* and *"Dynamic Behaviors"* => Goal + Motion model
- Goal & Motion models are not known nor directly observable But *"Typical Behaviors & Motion Patterns"* can be learned through observations

Our Approach : Continuous "Learn & Predict" using GHMM & Topological maps (SON)

Research Objectives

- Objective 1: Dynamic world Perception & Understanding
- Objective 2: Motion planning & Autonomous navigation in the real world ~25% activity of e-Motion
- **Objective 3: Bayesian approach to Cognitive Systems**

Problem statement

New constraints:

- \checkmark Upper-bounded decision time
- ✓ System's dynamics
- ✓ Moving Objects' future behavior
- ✓ Look-ahead
- ✓ Uncertainty

Objective:

Goal oriented & Safe navigation in open & highly dynamic environments

Positioning:

 \checkmark Few contributions in the literature

 ✓ Taking into account all the new constraints coming from Open & Dynamic environments
 ✓ A new framework based on iterative safe motion decisions

✓ Focus on motion Safety

A new framework for MP in Dynamic environments 1 HDR, 1 PhD, 4 Journal papers [Fraichard 04] [Petti 06] [Martinez 08]

• Partial Motion Planning (PMP)

Repeat until goal is reached

- **1.** Get model of the future *(observation & prediction)*
- 2. Built tree of partial motions towards the goal
- 3. When time δ_c is over, Return "best partial motion" (e.g. closest & safest)

• Inevitable Collision States (ICS)

⇒ Avoiding instantaneous collision is not enough !
We also have to avoid states leading to "Inevitable Collisions" in the near future
⇒ Doing nothing may also be dangerous !

Key requirement: Model of the future (cf. Objective #1)

Integrating Probabilistic Uncertainty in PMP [Fulgenzi 07, 09]

Motion Planning combined with Risk assessment

- Detection & Tracking of obstacles
- Risk assessment based on behaviors prediction (HMM & Gaussian Process)
- **RRT** search (previously explored states are updated on-line with new observations)

Research Objectives

- Objective 1: Dynamic world Perception & Understanding
- Objective 2: Motion planning & Autonomous navigation in the real world
- **Objective 3: Bayesian approach to Cognitive Systems** ~25% activity of e-Motion

Positioning

Basic assumption

- ✓ Probability is an alternative to logic to reason with incomplete & uncertain knowledge
- Probability is an emerging cognitive paradigm for "perception, action, decision and learning"
- ✓ This framework can be used for modeling both Natural & Artificial systems

• Research topics & Achievements

- ✓ Formalization of Bayesian Probability => Bayesian Programming [Bessiere 97]
- ✓ Automatization of probabilistic inference & Development of industrial applications => ProBT inference engine (commercialized by ProBayes SAS)
- ✓ Bayesian robot programming
- ✓ Bayesian modeling of living systems

Working context

- ✓ Probayes SAS
- ✓ European projects BIBA & BACS
- ✓ Strong cooperation with LLPA Collège de France (A. Berthoz & J. Droulez)

Main Topics & Achievements 6 PhD, 1 Book, 9 journal papers (Robotics & Neurosciences)

Robots

Action selection & Attention focusing [Koike 06]

Bayesian learning [LeHy 07] [Dangauthier 08]

NUS National Universit of Singapore

Brain controlled wheelchair [Rebsamen 09] (coop. NUS Singapore)

Human perception of shape from motion

Problem addressed

- Inverse problem => The geometry produces the stimulus
- **Ambiguous** => Same optical flow for different physical situations
- Uncertain => Ocular defaults
- **Brain interpretation** => *Relies on prior hypotheses (e.g. convexity, rigidity ...)*
- **Bayesian model for the perception of moving planes** (coop. J. Droulez LPPA)

The same Bayesian model has produced identical perception results than 5 psychophysics experiments (for the perception of planes & motions)

Objectives for the next four years (1)

- Continuing to work on the three current research themes of e-Motion
- Improving our key technologies, with the objective to transfer some of them to the automotive industry. *Context* : *ADT ArosDyn* & *Toyota* & *Probayes*
- Experimental tests in real traffic conditions => *Toyota Prius experimental vehicle*
- More integration between objectives 1 & 2 & 3. Context: AEN -INRIA "Personally Assisted Living"
- More emphasis in objective 3 on the study of living systems => *Cooperation* with our neurophysiologist partners

Toyota Prius (future experimental vehicle)

Autonomous Wheelchair

Objectives for the next four years (2)

Objective 1 : Dynamic world Perception & Understanding

- ✓ Improved grid-based Bayesian filtering => *Models* + *GPU* + *SOC* with CEA
- ✓ Robust Detection & Tracking => Specialized fusion based Detectors + Better integration of Detection & Tracking (using classification & models)
- Accurate and Efficient Localization & Mapping => Efficient 3D multi-resolution models & Hybrid maps
- ✓ Risk assessment => Generalization to more complex traffic scenes + Learning behaviors + Integration with MP (objective 2)

Preliminary results using Data-Driven MCMC for Spatial-Temporal search [Vu 09]

Objectives for the next four years (3)

Objective 2 : Motion Planning & Autonomous Navigation in Real World

- ✓ **Probabilistic ICS** => *Taking into account uncertainty*
- ✓ Coupling PMP & ICS => Focus on safety guarantees
- ✓ Coupling PMP & Risk assessment => *Real sensor* & *GIS data* + *Risk factor in PMP*

• **Objective 3 : Bayesian approach to Cognitive Systems**

- ✓ Bayesian robot programming => Focus on modeling & learning sensory-motor skills
- More emphasis on Bayesian modeling of Living systems => Behavioral level & Central nervous system (new prospective issue)

Network of physiological structures contributing to saccadic eye movements [Berthoz 97]

Cooperation

Cooperation inside INRIA

- Robotics: Imara (common PhD students), Lagadic, Arobas, more recently Coprin
- Other domains: Prima (common PhD students), Perception, more recently Galaad
- Future AEN "Personally Assisted Living"

• International cooperation

- Large participation to European projects (NOE, IP, Streps)
- Formal cooperation agreements (Singapore, Mexico)
- Coordinator ICT-Asia NOE on ITS (Singapore, Korea, China, Japan, France)

Industrial cooperation

- 4 Start-up (ITMI, Getris Image, Aleph Technologies, Probayes)
- Long-term industrial collaborations with Probayes, Toyota, Denso

Knowledge dissemination

• Software

✓ ProBT & BOF (patented), Robot simulator, ColDetect, Markov models toolbox

Valorization

- ✓ Start-up Probayes & Several common R&D projects (Toyota, Denso, Hitachi ...)
- ✓ ProBT inference engine & BOF => Used in several industrial applications (Car safety, Finance, Plant maintenance, Video games, Threat evaluation)

• Teaching

✓ Engineer schools, Master, International Tutorials, Summer schools (SSIR)

• Visibility

- ✓ General chair & Program chair of some major international conference (IROS'97, IROS'00, IROS'02, IROS'08, FSR'07, IV'06)
- ✓ Organization of focuses workshops + Publications of Books & Journal special issues (STAR, IJRR, JFR, IEEE ITS, IJVAS)
- ✓ Invited talks & Keynotes (SRG'04 Singapore, ICARCV'08, FSR'09, ISRR'07 ...)
- ✓ Steering committees (IROS, IEEE TC on ITS), Editorial boards (IEEE TRO, IEEE ITS, RIA ...), NOE coordination (ICT-Asia)

Publications

	year1	year2	ycar3	year4											
PhD Thesis	4	2	4	4											
H.D.R (*)		1													
Journal	5	2	7	9											
Conference proceedings (**)	14	27	22	22											
Book chapter															
Book (written)				1											
Book (edited)		1	1	4											
Patent		2													
Technical report	7	13	4	2											
Deliverable															
Remark: The four first journals of the list are considered as journals of rank A by th GDR Robotique.	e R. th	emark: Th ie GDR Rob	e five first o otique.	onferences of t	he list are considered as conferences of rank A by										
		ा सब्दा ।	tornational	Conformer on	Robatics and Automation (ICRA 42%) (18)										
 International Journal of Robotics Research (IJRR, IF=1.318) (1) IEEE Transactions on Robotics (IEEE TR0, IF=1.976) (1) IEEE Transactions on Intelligent Transportation Systems (IEEE ITS, IF=1.689) (1) Autonomous Robots (IF=1.413) (2) Field Robotics (IF=0.960) (1) Robotics and Autonomous Systems (RAS, IF=0.633) (2) Advanced Robotics (IF=0.504) (1) 		 2. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS, 47%) (20) 3. International Symposium of Robotics Research (ISRR) (1) 													
									4. IEEE International Symposium on Intelligent Vehicle (IV, 29% + posters) (\mathcal{A}_{11})						
									5 Robotics Science and Systems (RSS 25%) (A)						
		6. International Symposium of Experimental Robotics (ISER) (ζ_{f})													
		7. International Conference on Field and Service Robotics (FSR, 44%) (8)													
		8. IEEE International Conference on Intelligent Transportation Systems (ITS, 57%) (4)													
		Other journals: <i>Biological Cybernetics, Machine Vision & Applications, Medical Image Analysis, RIA, Autonomous Vehicles</i>	(Other co CogSys, Symposia	onferen SYROC	ces: <u>NIPS,</u> O, ICCV, I	World congress of Psychophysiolog ICARCV, RFIA, European Robotics								

Christian LAUGIER – *e-Motion project-team*

Thank You ! Any questions ?

http://emotion.inrialpes.fr/laugier christian.laugier@inrialpes.fr

Christian LAUGIER – e-Motion project-team