/ - Tutorial - \

Motion autonomy & Robust navigation
in Robotics

Christian LAUGIER
Research Director at INRIA Rhone-Alpes, France

e Turorial 1 32, C. Laugier)
Motion planning & Reactive control architecture

1. Basic geometric models & algorithms for motion planning
2. Dealing with real world constraints

=> kinematic, dynamicity, uncertainty & hazard
3. Reactive navigation techniques

e Tutorial 2 (34, O. Aycard)
\ Bayesian programming & Robust decision making /

-~

- Part1 -

~

Basic Geometric models & Algorithms
for Motion Planning

Motion planning

Geometric world modeling + A priori determination of the motions that will take a robotic
system from its current « configuration » (i.e. position & orientation of each individual
components of the robot) to a given goal « configuration »

= Motion planning is a fundamental problem in robotics
(largely addressed since the late 60’s))

2. Reactive navigation

On-line adaptation of a motion plan according to execution conditions (hazard perception in
particular)

_

Something to learn from biological systems
[Berthoz 01]

Spatial orientation & Memory of routes :
» Egocentric coding & Allocentric coding
» Survey of map like strategy : Mental map => Topo-kinetic memory
* Route like strategy : Memory of motions & perception (eyes, vestibular, muscles ...)
=> Topo-kinesthesic memory

Brain areas involved in: Network of structures contributing to
- Egocentric tasks => parietofrontal regions saccadic eye movements (brain areas,
- Allocentric tasks => parietotemporal regions vestibular system, muscles) [Berthoz 97]

/ How to construct computational models ?\

« “Mental Map” for Motion Planning (MP)
v’ Mainly geometrical & kinematic models
v’ Appropriates representations (Configuration space, Velocity space ...)
v’ Appropriates algorithms (collision checking, graph search, random search ...)

[Lumelski 86]

» “Route like strategies” for Reactive Navigation
v’ Mainly reactive architectures & probabilistic models
v’ Appropriate representations (sensori-motor schemes, behaviors ...)
v’ Appropriate approaches (reactive architectures, learning ...)

/ Basic Motion Planning Problem \

The Piano Mover’s Problem

* “Free flying” mobile (rigid object(s))
* Stationary obstacles
* A priori known geometric model

=> Compute a path (continuous sequence of collision-free “position-orientations™)
between a start and a goal “position-orientation”.
Report failure if no such path exists

=> The focus 1s on the geometric aspects of motion planning. Physical and temporal
issues are disregarded. Collision avoidance 1s the key issue.

Though simplified, this problem is already difficult. It is of practical interest and
several of its solutions can be extended for more involved motion planning problems

_ N _/

/ Extensions of the basic problem \

1- Mobile obstacles (not under control)
Planning a geometric path is not sufficient, time has to taken into account !

. t /_vs’ R
Configuration-Time Space <
2- Multiple mobile systems

— Centralised approach : The whole system is considered as a « multi-bodied mobile »

— Decoupled approach : Each mobile component is considered separately + Priority

3- Kinematic constraints

— “Holonomic” constraints
e.o. an arm carrying a elass of water (suppressing some rotation directions
g rying d g 194 4

W =R’ x SO’ and " Search - space" = R’ x SO'

— “Non-holonomic” constraints

e.g. a wheel rolling without slipping , or a car

=> any (x,y, 6) can be reached, but (dx/dy =tg 6) !!!

/ Extensions of the basic problem (C’ed) \

4- Dynamic constraints
The physical properties of the mobile reappear !
e.g. forces & torques, velocity & acceleration bounds, inertia, etc

5- Movable objects (manipulation)
To reach a goal, objects may have to be displaced (e.g. through grasping)

6- Uncertainty

— Perception & Sensing errors

— Partly known workspace

_

/ A key concept : “Configuration space”

[Udupa 77; Lozano-Perez 83

(i.e. continuous sequence of collision-free “position-orientations” of all the robot components)

« Configuration of a mobile system

Minimal set of independent parameters uniquely specifying the position
& orientation of every component of a mobile system

e.g. A disc translating in the plane (W= R?)
=> g = (x,y), position of the reference point A

« Configuration space

=> Space of all the configurations of the mobile system

e.8 Couce =R’ =W for the disc in the plane (particular case)

ﬂ key concept : “Configuration space” (C ’em

* “Correspondence” between C and W for the mobile A4
A(q): subset of W occupied by A4 at configuration ¢

* “Correspondence” between C and W for the obstacles B

Obstacles B = subsets of W, B.,i=1...k
C-obstacle (B) = subsets of C such as A(q) intersect B

Free space : q is iff Vi, A(q) "B, =3
Contact sets : q is in iff 3i, A(q) N dBi# D
Collision sets : g is in iff i, A(q) nint B, #

_

/ Path planning using C,, .,

* Representing the C

cbstacles

« Path planning for the robot A in W
& path planning for the point g in C
& search for a collision-free path, i.e. a curve of C
path TCI[O, 1] — Cfree (OI' Cfree i Ccontact)

(OI' Cfree i Ccontact)

Kee

It looks conceptually simpler but ...
how to do that in practice ?

qstart

/ Constructing C . .. \

Case study #1: Polygonal robot translating amidst polygonal obstacles
W=R,qg=(xy) =

\s\ \\\\\ \> Intuitive C-obstacle construction:

\\\ “sliding” A along B; boundaries
\‘ => CB, = locus of ref point R of A

Exact C-obstacle calculation :
=> using the Minkowski’s sum
(“growing B, inversely to the shape of A”)

Constructing C ;.. ... (C’ed)

Case study #2 : Polygonal robot translating & rotating amidst polygonal obstacles
W=R,q=(x,70) = C=R’°XS

=> X6

contact

Exact C-obstacle calculation still possible but complex ! [Avnain & Boissonnat 89]

(i.e. the boundary of C,,) = Set of ruled surfaces created by the translations
and rotations of Cspace segments associated with elementary contacts (edge, vertex)

C..onaes €lement associated
lo the (e, v,) contact

—

—— Exact representation of C

space

o)

Constructing C,

bstacles

Case study #3: 2-links planar manipulator arm amidst 2D obstacles
W=R,q=(6,,6) = C=§"

N L - B New problem (Cspace)
Initial problem (workspaLe)__ | e Ou B

How to do this in practice ?

° Cell decomposition Approximated C-obstacle (6—slices)

Exact or approximated decomposition of Cg,, ., for
constructing & searching a graph representing the
topological & geometric structure of C,,

 Roadmaps

Constructing & searching a network representing the
connectivity of Cy,, (geometric or probabilistic
approaches can be used)

* Gradient descent methods (e.g. Artificial potential fields)
Representing C

function, and searching this space using a gradient
descent method

.o USING an underlying energy / cost

“Cell decomposition” approaches

 Basic idea

Cell

decomposition Graph Search
simple gecmetry method

* CpuccYepresentation

Exact decomposition U ., ¢ =¢
=> Complete, Reduced number of cells ... But difficult to build !
(apply only for some simple cases)

free

Approximated decomposition U . ,¢: < C .
=> Complete at a given resolution only, Large number of cells
... Much more easy to implement (cells of predefined shape, e.g. rectangloids or 2™-trees) !

Approximated C-obstacle

-

Some “Cell decomposition” algorithms

« Exact decomposition using trapezoids (in R?)

C-space Upward extensions Downward extensions Erasing the trapezoids Constructing the
inside the obstacles connectivity graph

* Approximated decomposition using 2™-trees

Quadtree (2D)

/ “Cell decomposition” approaches (C’ed) \

* Searching for a “generic collision-free path”

Constructing a graph connecting cells sharing a
common frontier (connectivity graph)

Searching the graph (e.g. using a A* algorithm)

* Constructing a “collision-free path”

A possible solution (connecting middle points) An other solution (connecting closest safe points)
kMore robust according to uncertainty => Shorter, but closer to obstacles /

“Geometric Roadmap”

=> Apply only for low dimensional spaces

Retraction of C

free

(vertex, vertex) => median line
(edge, edge) => bisector
_ (vertex, edge) => parabolic arc

Voronoi diagram

Generalized Voronoi Diagram (GVD) /O 'Dunlaing & Yap 82] ~ “Freeways” (generalized cylinders) /Brooks 82]

* Visibility graph (wiisson 69]

Pruning the visibility graph
(deleting non-tangential edges)

“Probabilistic Roadmaps”

=> Apply for complex & high dimensional spaces

* Probabilistic Path Planner (PPP) P
[Sc\géfka & Overmars 95]

Visibility based PR
[Simeon 99]

Search function (local planner)

=> Manhattan paths, Random draws,

Rebound technique, Collision checking in W Explore function
=> Random draws &

Optimization algorithm (GE)

“Artificial potential fields” (GDM)

Repulsive field

U,(q)=F,(d) LA Frgion
U.(q)="F,(1/d)

U(g)=A-U(g)+#-U.(q)
d=C,,, distance

Local minimum (trap)

==
SN
)

“Constraint based method” (GDM) \

[Tournassad & Faverjon 88]

o o o« . ~|2
Minimizing HT(Q) -7 H Making use of derivatives in order

o0.>¢€ to take into account the motion

under i

e Task function
7(q) = Hqgoaz - qH
7(q)=J,-q

T :nominal value of 7(q)
J, :task jacobian

» Anti-collision constraint

0,26 —=dozK-dt

ie. J , dgnzK-dt

or n-dqg=K-J, -dt

robot

A simple motion planning example

Robot = disque(O, p)
Obstacles= disques(O,,1;)

O
kitborg

\Voronoi diagram: (O,, 0,....0,)

W= 9{29 Crobot = 9{2 XS

Symetry + holonomy = C =R

robot

Connectivity Graph :
= Remove (edge;; | d(O,,0,) <1, +r, +2p)

_/

A simple motion planning example (C’ed)

Nyar

Search Graph: Search: A" algorithm
= Addlng (qu'mrt’ Qg()a[’ edge[/ 2 boundarie‘g) f(S) = g(S) + h(S)

g(S) leng.hZL (QStarlﬁ S)
h(s): lenght —assessment (S, q 4,)

A possible solution including
10 straight motions & 11 re-orientations

Some industrial applications

—

system (Aleph Technologies)

f_’ 'qrt,;_,];vus-itir '

ol R @ﬂl_pusitiun
F " e

&

i

o5
=

Motion Planning for an articulated Rover

* 3 independent axles with 2 conical wheels
* The front & back axles can rotate along a lengitudinal axis
* The chassis is made of 2 articulated arms :
— linking the front and back axles to the central one
— rotating around the central axle
— articulated in order to modify the gap between the front and back axles

* The joints: - 6 velocity controls (wheels)
- 2 pesition controls (front & back axles gaps)
- 3 passive joints (vehicle/terrain “shape’ adaptation)
=> modeled using Spring-Damper connectors

WINRIA

RHONE-ALPES

Motion Planning for an articulated Rover (C’ed)

pP.1= Creer_Point (0.730688, -1.026698, -34.377465) ; Exec_Traj (trajectoire_0, 1igne_droite);
P-2= Creer_Point (0.903161, -1,121580, -22.918309); Exec_Traj (trajectoire_1, giration);
g;eer_go?.nt (1.093741, -1.180915, -11.459155); Exec_Traj (trajectoire_2, ligne_drcite);
¢ eer_Poz'.nt (1.290266, -1.200995, 0,000002); Exec_Traj (trajectoire_3, giration);
rear_ o?nt (1.486180, -1.220451, -11.459165); E 'T i (iactoi 4. 1i droite);
Creer_Point (1.677126, -1.239262, 0.000002); xec_Tra) (trajectoire 2, ligne.aroitel;
Creer_Point (1.868955, -1.259003, -11.459155) ; Exec_Traj (trajectoire.5, giration);
Creer_Point (2.064329, -1.278586, 0.000002); Exec_Traj (trajectoire_6, pente_montante);
o C(x:‘eer,P;:Lnt (?.261734, -1.298304, ~11.459155); Exec_Traj (trajectoire_7, ligne_droite);
P-10= Creer_Point (2.459179, -1.318172, 0.000002); ; i i i]
. , 0. Exec_Traj (trajectoire_8, giration);
p-1i= Creer_Point (2.656802, -1.337920, -11.459166); Exec T y Et ; toi 9’ gi e droite)'
p_12= Creer_Point (2.855045, -1.358103. 0.000002) : o IO A S e .

Safe trajectory = {CP, CP, ...CP } Safe locomotion plan = {CM, CM, ...CM,_,}

A sequence of safe “control points A sequence of “control modes” for moving between CP;

ligne_droite= Creer_Mode("ligne_droite");
Add_Critere(ligne_droite, "avant.moyen", 0.9, 1.0);
Add_Critere(ligne_droite, “arriere_moyen", 0.9, 1.0);
Add_Terminaison(ligne_droite, TRUE, 0.8, 'pente_montante’,
"tangyage_montee");
Add_Terminaison(ligne_droite, TRUE, 0.8, "pente_descendante",
“tanguage_descente");
Add_Alarme{ligne_droite, TRUE,0.2,"GARDE AU SOL", "garde_sol");
Add_Alarme(ligne_droite, FALSE,0.2,"ROULIS TROP IMPORTANT", "roulis");
Add_Stabilite_params(ligne_droite, 4, 1.0, 1.0);
Add_Vitesse_params{ligne_droite, 1.0, 1.0);

Example of a “control mode” (“go straight”)
Constructed using “Pre, Post, and Failure” conditions

I 1N RIA

RHONE-ALPES

_

- Part 11 - \

Dealing with real world constraints

o- Lot .
How to take into account How to process the dynamics of both

Non-holonomic kinematic constraints ? the robot and its environment ?

/ Non-holonomic kinematic constraints \

with: (u, =V, u,=0)

Smaller turning radius bound & sweeping volume
=> Better maneuverability in cluttered environments

cos(6+ 1(p)

1

(w, =Vy u,= 9)
f(@): characterstic functio

xR
Y,
6
¢

/ Non-Holonomic Path Planning problem

Perfect rolling & Limited steering
q=(x,,0)
xsin@—ycosd =0
p > pmin

A classical solution
Shortest paths = line segments + tangential circular arcs
[Dubins 57] [Reeds & Shepp 90] [Laumond 86]

Continuous Curvature Paths (CC-paths) =

CC-curves + Bounded curvature & curvature derivative
* No obstacle: [ljima & al. 81] [Nelson 89] [Liscano & Green 89]

» With obstacle avoidance: [Scheuer 97] [Scheuer & Laugier 98]

[Fliess et al. 93]

/ A key concept : Differential Flatness \

A system is “differentially flat™ if there exist linearizing outputs y = (yi,..., ym)

differentially independent such that:

_7 ®) B
)= (X, u...u . l/l,...,lxlm) where x=(x;,....,x), u=(u,...u)

m

and

[J x:A(')/l, oocJ/l(al) e o o ym,oo
(ag+)
c U=B(y,...V .. VoV

| Standard car .4 . Differential flatness
¥ X

cos(6) X =(xg.y2.60.0) and u=y.9)

tan(¢) |¢ +

L
0

|15t derivative : Y = (cos 8,sin 8) = 6

0

sin(@) 0 Y =(xz,yr)
0
1

2nd derivative :6 = % =X

/ Differential Flatness of the Cycab

* Flatness property for the Cycab [Sekhavat & Hermosillo 00]
X:(styR999¢) and u:(VR9¢)
Cycab : f(@)=k-¢ ,Vk#1
Flat outputs : H = (y,(9), y,(9))
= Tooso ooty i 910,- 00, 60}

= "~ Lcos@, cos(kg,)

* Flat OlltplltS for the Cycab [Sekhavat & Hermosillo 01]
. Turning frame : (F,Z,ZL) with (@) = tan | %

[=cos¢ f'(p)iig,s —cos f(P) g, r(p
A(p)=cos’(p) /" (¢)—cos” f(¢)
B(¢) = cos(¢)sin(@) /' (#)—cos(f(¢))sin(f(¢))

TS0
M= @)+ ()
V()= [L0 B) A0) - 4050

0

Motion Planning using the Flat Outputs

Configuration space Equivalent “flat” space

| —

Motion Planner : Geometric Planner (Collision fiee path) + Steering Method (Feasible sub-paths)

/ Some implemented solutions \

» Global Geometric Planner : ACA [Ahuactzin 94] or PPP [Svestka & Overmars 98] ...

» Steering Method : Shortest paths [Dubins 57] [Reeds & Shepp 90] or CC-paths [Nelson 89] [Scheuer 97] ...

* LAAS Approach :

PPP + Shortest paths [Laumond 86]
* INRIA Approach :

ACA + CC-Path (“extended Dubins”)

+ Appropriate collision checker
[Scheuer & Laugier 98] /

Main steering methods

Shortest paths (Straight lines + Circular arcs)

Path —RJr // L;r/Z S[,‘m' Sy
Path =R’ /| L, /I R}

Shortest paz‘hs wzthout manoeuvre [Dubms 57] Shortest paths with manoeuvres [Reeds & Shepp 90]

e C C-paths (CC-curves +Bounded curvature & curvature derivative)

3

|Nnn-Cm|tim1mm vE. Cnntimu;us Cuorvatire Paths | Clothoids K(S) .S
(linear k'w.r.t the arc length s)

@

Local Path Planming: e le Dnbins

ﬁéln example : Planning & Executing parking\
maneuvers for the Cycab

-

- Part 11 - \

Dealing with real world constraints

How to take into account How to process the dynamtcs of both

Non-holonomic kinematic constraints ? the robot and its environment ?

How to deal with uncertainty & hazards
of the physzcal world ?

/ How to deal with dynamic constraints ? \

Path Planning Trajectory Planning

(1) Stationary Obstacles Moving Obstacles (3)
(2) Kinematic Constraints Dynamic Constraints (4)

* Objective :
To plan motions for a robot subjected to kinematic & dynamic constraints
(2 + 4) in a dynamic workspace (1 + 3), e.g. a car-like vehicle on the road network

* Approaches :
— Off-line planning (a few known moving obstacles)
=> Adding time & states constraints
— On-line planning (known & sensed moving obstacles, arbitrary number)
=> Deforming trajectories

\ => Selecting safe controls

[Erdmann & Lozano-Perez 86] [Bobrow et al. 85] [Jacobs et al. §9]
[Fujimura & Samet 89-90] [Shih et al. 90] [Shiller & Shen 90] [Xavier 92]

/ Kinodynamic Motion Planning (KMP) \

Moving obstacles : “Configuration-Time Space” Dynamic constraints : “State Space”

KMP : The State-Time Space approach (ST-Space)

Moving obstacles Dynamic constraint}

of constraints (obstacles & velocities
=> ST-Space obstacles

. Trajectory = Curve in ST-Space

=> Avoids ST-Space obstacles
[Fraichard, 92] => Verifies additional shape propertie

1. Unified modelling of different types

~

)

.o

S(qat)

/)

ST-Space : The Car-like robot case

[Fraichard & Laugier 92 & 93]

State-Time Space obstacles _ .
Moving obstacles Velocity bounds * Velocity bounds + Moving obstacles

=> ST-Space obstacles (1)

e Acceleration bounds + Time constraint
=> ST-Space curve shape constraints (2)

Fre (engive force Linit)
(oo liding constraint)
€ Smur (Hpeed limit)

17— \/E:] Velecity bounds

mjl'(f':}f‘: 3 jilg? — n.?-%’il Acceleration beunds

<
5%

-~

Feasible Trajectory =
\ Curve in ST-Space from (ql.,ql.,(}) to (g ¢sd g,t)
Trajectory and verifying (1) and (2)

Motion planning in the ST-Space (using KMP)

[Fraichard & Laugier 92 & 93]

» Canonical Trajectories :

— Piecewise constant acceleration
(finite & discrete set)

— Acceleration step 0, Time-step 7

» An edge is valid iff :
— It avoids ST-Obstacles
— It meets acceleration constraints

* Moving obstacles:
=> A priori knowledge / prediction
on a given ‘“‘time horizon” T

max

e Running time: P(7,0,7,,.)

ﬁakly dynamic workspace: \

* Reactive trajectory deformation (Elastic strips [Khatib & Brock 99])

\
i# =))
“Zero order” deformation \ : \ |

(path level)
No task constraint Task constraints to satisfy

S Dealing with NH Kinematic constraints [Lamiraux & Bonnafous 03 |

/ Sketch of the « second order method »

1 [Lamiraux & Bonnafous 03 |

dmin (CI)
2- Integrate this potential field along the trajectory U(path) = J:u(q(s)).ds
3- Compute a direction of deformation 1(s) that satisfies NH constraints & decrease U(path)
4- Apply this deformation scaled by a small real number t, until the collision desappears

[- Define a repulsive potential field u(q)=

q(s)+TNn(s)

\ q(s) 1O
(" ’\ obstacles \2 [obstacles \“‘] =

Controls characterizing s: u(s)= ([L]l1 (8),u,(s)... u, (8))

q(s) = Z%(S)-X Q)

U (SHTV(5)
Input perturbations : T
v(s) = (v, (5),v,(5)... v, (s)) K. TN + o)

Dynamic workspace :

=> On-line avoidance of obstacles moving along arbitrary trajectories (known or sensed)
=> The traditional state-time approach (zero order search) is not tractable (complexity &
real-time)

e Global Dynamic Windows /Khasib & Brock 00]

-] » Generating on the fly goal-directed motions

I
-:E

-I 1-m * Alternating reconstruction & planning phases

* Velocity Obstacles /Fiorini 95//Large & Shiller 00][Large et al. 03]

* Real-time computation of V-Obstacles (velocity space)

* Strategies for navigating among any moving obstacles

“Velocity Obstacle” principle

Velocity
Obstacle

RVG’=UA/b,be aB(1,)
VO =v, + RVC

Linear V-Obstacle

» Any absolute velocity of A, pointing
inside VO, would result in collision
at some time t € [0, o]

» A grazes B at tangency points
between RVC and B(t0)

[Fiorini 95][Large & Shiller 00]

VO =1, € V|3te [t, Th], A(t) N B(t) % ¢
with /‘Zl(l‘) = ,‘Zl(to)+v_4> -t . @(f) known on [tO Th}

AVC(t) : Velocities resulting in Adding a time horizon t,
a collision at time t

RVC(1) = %
AVC(t) =v, + RVC()

VOo(t)=v,+ U RVC(¢t)

Non-linear V-Obstacles

c(t)+ B
t—t,

NLVO | = U c(t)+ B

t>ty, [— tﬂ

NLVO (t) =

» Obstacle B moves along trajectory c(t)
* NLVO(t) = Absolute velocities of A at
that would collide with B(t)
* NLVO is the union of all NLVO(t) for t> t0

[Large & Shiller 00] [Large et al. 03]

» Tangency points form the boundary of NLVO
 These points are determined from ELVO(t)

=> Approximate boundaries of NLVO
(On-line computation !)

Obstacle trajectory Coce(t)=d (t)eiﬁ(t)

C‘v(t) _ dgt) eia(t)

wru>=cv0)+i§éﬁo

w10)=cvu)—i§éwn

Safe navigation using V-Obstacles

Large et al. 03

Y - -”‘-'r’ W’ \v A single velocity outside NLVO avoids the
\ %\ ﬁ"{ ‘B\{Jl— ‘\,\ S obstacle during the time interval for which
—\ A T SO

P\ the v-obstacle was generated
A &

Velocity selection strategy

Admissible Velocities Walls

Moving Goal

obstacle . |

No collision
“before Th

1 — Best velocity 2 - Gradicnt on 3 - Gradicnt on
towards thc goal “time to collision” “pscudo-distancc to NLVG”

Safe navigation using V-Obstacles

[Large et al. 03]

' | LIEX
ITP in Vspace = Graph search based on an E—
alternate sequence of : S

- Vspace evaluation at time t; (using NLVO) s Rl

]] 1 [Trajecto i
2- Selection (using a cost function) of some EECET M

T Goal [NLYO Circle

" Heading [Adm el
related safe velocities for the robot Py e

NN

[Non-Linear Velocity Obstacles Simulator - INRIA®2002

Onstacles / "Robaot"

I Stop Simul After Collision
" Enable Simul History
dd: ¥ &

Edit LA AR

cl o e — >

nlva: dt 040 | Th 100

| Starnt . Stop | Reset
Next | [wirite Nivo | |

Simulation el

Cmd

File: New | Load =

Contral:] b

Time: 00:00 00s dt

Display:
[Views: 4 Fa 1

‘Objectd || Contraller | Screen

hstan]|| Foomzip | @nve |[inonti. || O E 8 25 3 o Hho I EIS W RIS FM
ITP among 20 obstacles (including walls) :
. R [ima v-Obsmcles; BEshangrur Bamgemuy. - F LargeE2ddd
Computation time < 0.01sec on PII-450MHz

% INRIA

RHOMNE-ALPES

-

- Part 11 - \

Dealing with real world constraints

How to take into account How to process the dynamics of both

Non-holonomic kinematic constraints ? the robot and its environment ?

How to deal with uncertainty & hazards
of the physical world ?

/ Robust motion planning : The problem \

* Problem

Path planning: Perfect model assumption (robot, world)

Uncertainty problem: Reality is not the model (control, sensing, model errors)
=> Possible failure at execution time

* Dealing with uncertainty
— Model errors (shape & location): Growing the C-obstacles can be a solution, but
at the expense of completeness ...

— Control & sensing errors : Necessity to use sensors both to “monitor the actual
robot motion” and “command corrective motions”

* Robust motion planning

Given a priori information about such uncertainties (e.g. bounds), the issue is to
compute safe motion strategies, i.e. that take uncertainty into account explicitly

so as to guarantee that the goal will be reached reliably /

ﬁ{obust motion planning : Main approaches

» Assembly planning: Contacts, high accuracy required for assembly
— Skeleton refinement /Lozano-Perez 76] [Taylor 76] [Brooks 82] [Puget 89]

— Preimage backchaining /Lozano-Perez 84] [Erdmann 86] [Lazanas & Latombe 92]

* Mobile robots: Odometry = increasing configuration uncertainty
— Usually dealt with at execution time

— Specific solutions (e.g. uncertainty fields) /Takeda & Latombe 94] [Bouilly et al. 95]
[Lambert 96] [Fraichard & Mermond 98] [Lambert & Fraichard 00]

/ Robust motion planning : Car-like robots\

[Fraichard & Mermond 98]

* The problem : NH constraints + Uncertainty (Odometry & Control & Sensing)

=> Cumulative & unbounded “configuration uncertainty”
=> Relocalization devices: “Landmarks ~

* A possible approach :

1- Design of a ‘local’, i.e. uncomplete, robust path planner (LRPP)

2. Embedding of LRPP within a global path planning scheme
e.g. ACA [Mazer et al., 98], or PPP [Svestka & Overmars, 98]

»> LRPP

1- Computes Reeds & Shepp paths
2- Evaluates the uncertainty evolution
3- Performs robust collision checking

Uncertain configuration: (q,U) where: u = (d,00)
» Global Path Planning

\PPP was selected (easy to implement, efficient)

Uncertainty evolution

* Configuration uncertainty
— Travelling uncertainty (in %) K& => Actual travelling distance bounded by
— Steering uncertainty => Actual steering angle bounded by

* Uncertainty evolution
The problem is to determine the set of configurations “possibly reached”
at the end of an elementary path

Steering uncertainty
(arc of curve)

Position uncertainty

(disc)
Orientation uncertainty P ' A cémputed

(circular arc) o | Kk uncerfainty model

Travelling uncertainty
(circular arc)

Robust collision checking

=> Collision checking is performed in the workspace (swept region analysis)

» Workspace region occupied by the vehicle
— With orientation uncertainty
— With orientation + position uncertainty

» Region swept along an elementary path
— Conservative approximation
— Recursive and resolution-dependent
collision checking function

_

Some experimental results

* Landmark
On-board linear camera + on-site reflectors

Reflector,

(d.0)+(x,y) = relocalization (q.u) = (q.u,,0)

* Computed solutions

Workspace + landmarks

Dealing with hazards at execution time

Motion planning + Reactive navigation

e Combining on-line planning & navigation functions

Dynamic path planning
M = Adriane’s Clew Algorithm
[Ahuactzin 94]

Reactive navigation

=> Path tracking & Obstacle avoidance
[Raulo & Ahuactzin &Laugier 00]

Joint distribution for the fusion :
PV ®¢p®D ®.®D)=PUV ®¢)[][P(D,/V ®¢)

i=1

PV ® ¢) = Uniform
where { _P(D)P(VID)P($ /D)

Pi(Di/V ®¢)= Z Pi(Di)Pi(V /Di)Pi(¢/Di)

-~

- Part 111 -
Reactive Navigation techniques

~

/ Decisional & Control Architectures

* Deliberative approaches /Moravec83][Nilsson84]

— Sequential processing (SMPA)
sensing => modeling => planning => action (motion execution)
— High-level reasoning but time consuming & high uncertainty

* Reactive approaches /Brooks86][Zapata90]
— Parallel decomposition into simple behaviors
sensing => sensor-based behaviors => action (controls)
— Real-time processing, robust, incremental ... but no high-level reasoning

___dlegutput ___ _
|
1
1
I

Subsumption architecture
[Brooks86]

subsuming signal

I
activited cutpur . -".":;fnhibition mechanism

Sensor Inputs = e hewiour o = == To ACTLEors

Behaviors = finite state machines communicating using messages
e.g. Move towards a goal, Explore, Avoid obstacles, Follow a wall

Decisional & Control Architectures (C’ed)

 Hybrid approaches
— Adding a “reflex layer” to a SMPA architecture /[Payton86][Gat90]
— Adding a “planning layer” to a reactive architecture [Arkin87] [Connel92]
— Three-layered hybrid architectures [Alami et al. 98] [Laugier et al. 97]

- [Mission Planning } MISSION PLANNER

Hierarchical

control status & failure Component

' Cartographic
g [« MarBuct P J pemesll Recactive architecture including [JEREE
control status & failure a SymbOlic layer [COHI’I@” 92]

SPATIAL REASONER

(navigator)

REPRESENTATION

Behaviors

PLAN SEQUENCER

Few seconds Way-points-& (pilon

control status & failure 1 .
[Symbolic] associated behavzo% T

o
S | [Local Planning

-

Actuators
<—>L Reflexive Planning J<—>

TOCESS | Component
parametrization MOTOR PERCEFTUAL

1 f

] Actuation Sensing

cvent
detectors

SCHEMA CONTROLLER Reactive
T fs, At l

Real time
Figure 3: Payton’s architecture. [

Subsumption
rs. At l scipoint Combining a reactive architecture
RO vith a deliberative layer [Arkin87]

Hierarchical architecture including
a “reflex layer” [Payton 86]

situation
recognizers

[Servo]

b dsdt y

Sensols Actuators

SSS architecture

Automatic driving architecture (Inria)

Planning CC-paths

(kinematic constraints ...)
continuous curvature profile + upper-bounded
curvature & curvature derivative

[Scheuer & Laugier 98 |

Platooning /Parent & Daviet 96]

World Model

and
Prediction

Mission
Description
Decision layer

Interpreted
Scosory Data

Library
of Generic

Global Gengrie " Robol-Procedures” Sengor_guided
Trajectory

Planner

Nominal Trajcclory ..
- Decisional Kernel
and Manoeuvres

Mission Scheduler

—

- Sialiow & nom inal rajeclary

meaimiy REACtive mechanism
sasotybu => Control the execution
of the selected skills

Parameterized Motion Flan

{Parametrized "Robol-Procedures™)

Motion Controller

"Robot-Procedure” Parametrized "Robot-Tasks
Execution -

. Exccution Reporl
lnstantiatcd "Robol-Task™

+
Seosory Data

- Trajeclory imcking

- Laaz changing

URECAL) Systeen

7 => Close-loop controls

"Robot-Task" [ra———
Execution Real-time “Skills”
S

& Sensor processing

<> (5o

m

3-layered control architecture
[Laugier et al. 98 |

Lane Changing & Obstacle avoidance

[Laugier et al. 98]

L Fpu (emgine force limit)
{mwr eliding constraint)
{peed limit)

Kinodynamic Motion Planning
(Dynamic constraints ...)
[Fraichard 92]

Automatic Parallel Parking
[Paromtchik & Laugier 96]

Model learning & Improved Trajectory Tracking

[Large & Laugier 00]

Simplified
Model

Learned
Model
(ANN)

Memory
(previous ctrl}

% INRIA

RHOMNE-ALPES

Model learning & Improved Trajectory T mck@\

Experimental results

iy

Our control system
after a first training

models

Learned
model

L40

giror [m]

&0

'It?lpme steps

« Plataoning)) [Parent & Daviet 96]

CCD Linear camera + Infrared target
(high rate & resolution)

Automatic parking maneuversiraonchix & Laugier 9]

_ _Start location spe

fraff

O(1) = G ky A(1), 0<t<T
v(t)=v,, k, B(t), 0<t<T’

0<t<t’
zlt-t) ,
A(t) =qcos P , 'St T -,
-1, T—-t'<t<T

B(t) = 0.5(1 - cos4m/T), 0<t<T

=> On-line motion planning using sinusoidal controls ¢(t) and v(t)
(search for control parameters T and @gmax)

Autonomous navigation in a learned environment
[Pradalier & Hermosillo 03]

{:> Several functionalities have to be robustly combined}

Incremental world modeling & localization + Motion planning + Autonomous sensor-based navigation

Motion planning
|

Reactive navigation

Robust obstacles tracking & avoidance
Bayesian Occupancy Filter (BOF) [Couéetal 03]

Dynamic occupancy grid

2 ser & biects
P(/E.=1] | 211212221222 c)
c=|x,y 0,0}
Zp,= (55,1,0,0)
Zy;= (54,1.1,0,0)

__Prediction

,..,U L —1 a[):zfl)

/ Conclusion (Tutorial 1) \

« A formal framework and various algorithmic tools exists for solving
basic motion planning problem

* New techniques have also been developed for taking into account
some of characteristics of reel problems (kinematic constraints, moving
obstacles, uncertainty & hazards)

.. BUT
* The scalability is still an open problem (i.e. how to master the
complexity of most of real world applications ?)

e Coping with the full characteristics of the physical world (dynamicity,
uncompleteness ...) is still a largely open problem.

_

