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Context & Scientific Challeng

« Overall challenge

Robots in Human Environme

ITS for improving Safety & Comfort & Efficienc Personal Assistant & House Keeping & Rehabilite

« Main Motivations

v Important socio-economic perspectives Transport, Aging society, Medical care &
Rehabilitation, Human assistance, Intelligent hame

v’ Increasing interest of industap Automotive industry, Robots, Health sector, S&y ...

v’ Challenging research topics> Dynamic world, Robust perception, Safety, Humarare
Motion, Complex Human-Robot interactions ...

v Robotics state-of-the-art Progress in ICT Technologiésomputers, sensors, micro-
nano technologies, energy ..9> Challenge potentially reachable




The main Technical Challeng:
e Current robots are often “Unsafe”

DARPA Grand Challenge 2004
v' Significative step towards Motion Autonorg
v .... But still some “Uncontrolled Behaviors

Requirement:. Machinesttst oW wWisd tthiesy ! !

v Perceiving & Understanding the physical world
v Behave Safely
v Share decisions with human beings

v" Include Adaptive capabilities & Learning capabilities




Autonomous Vehicle— Large scale experiment
CyberCarsHrhicEExpeemesrss (NRRAASSHE UHRaeEss )
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| Several successful large scale experiments IH# ol ” j

|-== “protected” public areas =" |
 Some CyberCars products in commercial use '_ —
for private areas (e.g. Robosoft, Frog ...)

Shanghai Public Demo 2007 Floriade 2002 (Amsterda




Autonomous Vehicle— Large scale experiment
CyberCarsFrithlicEEpeemesss (NRRASSHE UHRaeEss )
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Some technologles are almost ready for use Iin
“protected” public areas
. But ....
Open Urban environments are still beyond the
State of the Art
&
“Full autonomy” Is easier than Share control”

Shanghai Public Demo 2007



Autonomous Vehicle— Large scale experiment
Urban Challenge 2007

* 96 km through an urban like environment, 50
manned & unmanned vehicles

35 teams for qualification (NQE during 8 days
11 selected teams, 6 vehicles finished the race

* Road map provides a few days before the racg
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Autonomous Vehicle— Large scale experiment

Urban Challenge 2007

- — - ﬂ—

B - 96 km through an urban like environment, 50
manned & unmanned vehicles

2S5 s o7 ezl (U= g § e
Big step towards Autonomous Vehicles
.... But ...
Safety Is still not guarantee
&
Too many costly sensors are required
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Perceiving & Understanding the physical wo

A World full of Uncertainty & Continuously changing
—

Dealing with thephysical worldconstraints- Dynamicity, Space & Time, Real-timg
Reasoning unddyncertainty & Partial information Probabilistic Reasoning
SensingStationary & Moving entities SLAM , DATMO, Classification

Sensing is not sufficientWe also need to Reason about Contextual informa

Future world changdsave to be taken into accoureredictions & Risk assessme




Multi-Chijects Detectiom & Timcking
Traditional LaserEBzassedAgmroaeth

[Burlet, Vu, Aycard 07-08]
 Grid-rased Obsiades Detedion (usimg Oooupancy @Gsps)

Free Space
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Dynamic Obstacle\ 4|
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Incremental OG Mapping Moving Object detection => Chec
(sliding window) consistency “OG / Raw laser dats

e Multi-Qiyextts Trissotiimy
v Mapping & localization:Scan matching
v'Data Association:Multiple Hypotheses (for n time s

v Filtering : Interacting Multiple Models
Inspired from [Blakman 98] (radar) & [Wang O4]a$er + ICP)




Multi-aihjects Detectiom & Tiacking

“Hreddant”’ 2 Ugropeat |, \We ssalibesscramoo Z000 7 ((zamid2inClsips & Iheotestt welhice)
Grid-Based approach
Multiple Hypotheses & Interacting Multiple Models

Computational time ~ 10 ms

Multiple Hypothesis Tracking of Moving Objects
using Grid-based Fusion

Julien Burlet, Trung-Dung Vu, Olivier Aycard
LIG & INRIA Rhdéne Alpes, France

» Two short range radars

« A laser scanner ALASCA Contact: Olivier.Aycard@inrialpes.fr
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Multi-clecis Detectiiom & Tirackimg)
“Pred/dant’ U ropstt, e ssalikeschienoo 20007 ((RamiEinG sips & IIhentest vehicis)

) | Grid-Based approach
BT T —r == Multiple Hypotheses & Interacting Multiple Models
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Quite good results ... But well known
robustness problems have still to be solved
(for reducing false positives & negatives

d Appearance & Geometric / Dynamic models

J Sensor Fusion




Improving Detection & Tracking using
Geometric & Dynamic models

Laser sensed objects are represented by clusters of points
Tracking clusters often leads to a degradation of tracking results
Object splitting (occlusions, glassiiacesasiakedkdsat e tlankythg

Geometric models help In
overcoming these proble
[Thrun & Petrovskaya 08]




INRIA T-Scans ModiebbasddAdppoaabh
Data-Diniven Mairkov<IsamNitories 2albo (IDMEGBAL]))

[Vu & Aycard 09]

Sliding window oveflT-scang Time Horizon)

Find the best explanation object trajectories
(tracks)based orspatio-Temporal consisten
In both Appearancémodel) & Motion

WIS DIMSERED 7, s 5 sequence of shapes

Sampling-based method (MCMC) to av0|d
enumerating all possible solutions

®" = argmax P(w|Z)
()]

= More Robust thanks to the
“Simultaneous Detection — Cl&@dagsiAtaton —Thaekikigy ppyoesss




DDMCMC —NMaodiells & Hypotheses processin
S0 [az]an:

Bus, Truck, Car, Bike
* Box model (fixed size)
e Dynamic model (v, a, turn, stop)

-/
/ ~

Pedestrian
* Point model
* Dynamic model (

/

(,\: v, We,les vioa. 8. O)T

L-shape & I-shape> Box model
Else wise=> Point object

Frame ro: 317
Velocity: 19, 380000 ka'h
You rate: 0,0065EL rds

Neighborhood graph

of hypotheses

Search oP(w | Z) over space of
moving object hypotheses

Results using Navlab dataset
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Improving Perception- Bayesian Filtering

Bayesian Occupation Filter paradigm (BO[Egué& PR

Patented by INRIA & Probayes, Commercialized by Probaye:

BOF
« Continuous Dynamic environment modelling \

« Grid approach based ddayesian Filtering

« EstimatesProbability of Occupatio® Velocity of each
cell in a 4D-grid

« Application toObstacle Detection & Tracking +
Dynamic Scene Interpretati

Successfully tested in real traffic conditionangs

Concealed industrial dataset (e.g. Toyota, Denso, ANR LoVe)
T[] space
Unobservable P (“shadow” of

Occupancy grid "HiiSEES ~ I the obstacle)

¥

Occupied
space

Sensed moving obstacle P([Og~occ] [z 9
c=1[x,y, 0, Qand z=(5, 2, 0, 0)




Improving Perceptior- Dealing with Temporary
Occultation(Tracking + Conservative anticipation)

[Coué & al IJRR 05]
Autonomous Vehicle Parked Vehicle (occultat

/Specification

® variables :

- V& \K&1: controlled velocities
- 79k : sensor observations

- GX: occupancy grid

Description
A

O PtZ[H\ Vk 1_“-’;\"’1 Gk] =

e Parametric forms :
\ « P(GK| 2%  : BOF estimatiol
P(VK| VK1 GK) : Given or learne

Inference

Thanks to the prediction capability of the BOF, fagonomous Vehicle
“anticipates” the behavior of the pedestrian arakes (even if the pedestrian is
temporarily hidden by the parked vehicle)




Improving Perceptior—Bayesian Sensor Fusion

ANR project “LoVe”

Occupancy &
Velocity Grids obstacles
Observation

Projection Fusion & Estimation Detection & Tracking

Stereo-vision data processing

Disparity data Observation grid  Estimated grid Tracks

Laser data processing

1
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Prediction & Collision Risk Assessment
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 Existing TTC-based crash warning assumes that motion is linear

* Knowing instantaneous Position & Velocity of obstaclesais
sufficientfor risk estimation !

« ConsistentPrediction & Risk Assessmeaalso require to reason
about “Obstacles behaviorqe.g. turning, overtaking ..gnd “Road
geometry”(e.g. lanes, curves, intersections ... using GIS)




Step 1 -Modeling (Predicting) the Future
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* Objects motions are driven bintentions” and“Dynamic Behaviors
=> Goal + Motion model

Goal & Motion models are not known nor directly observable ....
“Typical Behaviors & Motion Patternstan be learned through
observations




Learn & Predict paradigm

[Vasquez & Laugier & Fraichard 06-09]

* Observe & Learn “typical motions”

e Continuously “Learn & Predict”
v Learn => GHMM & Topological maps (SON
v’ Predict => Exact inference, linear complexit

State Prediction --...,
)

a

& == GOal Estimation

State Estimation

~
VAR

-
4

: S sl GOal Estimation

- !.i Experlments usmg Leeds parking d_ A
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Step Z2— Probabillistic Collision Ris|
Patent Inria & Toyota 2009

Additional Sensors [ Road Geometry ]
{light indicators, etc..)

ﬁ ' '\ e, ;_-r;,??i' Target \
il Tracker

Behaviour Estimation N targets

Ego-Vehicle
Trajectory

/




Probabilistic Collision Risk Assessment

[Tay & Laugier 08-09|

e Behaviors :Hierarchical HMM (learned)

Vector of L, for each
time step

...............................

Gaussian Process (Lane Change)

Intended Path Of VYehicle B

mix)){flz} —miz'))]

GP: Gaussian distribution over function

P{Y.)X., X.¥Y) = GP(uy..Ey.) &
p, = KX, X)[K(X,X)+e'T) Y © j o= P
Bv, = K{XoX)= K{X, X) [K(X. X)+ 0% K(X,X.] Goscde 4
Prediction: Probability distribution (GP) using mapped -~ e Sttt
past n position observation




Experlments Toyota Slmulator & Drlvmg DeV|oe

Stop

Own vehicle
Sl eeliraa Cooperat|on Toyota & Probayes
Gau33|an Process

High-level
Behavior prediction
for other vehicles
Observations + HM

gy

]
|
I
An other vehicle

Behavior @ -  E— S
(Pl-rlﬁ/(ljl{/(l:;uon Sy Prediction WL |

Observations Behavior models Behavior belief table

Risk : e
Alsssessment E ‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘ % ‘ .

Evaluation
(GP) ﬁﬁjj: Collision probability

Beh r belief table for Road geometry (GIS) + Own
eaecr?\\ilgmgeelﬁl %ﬁg chne vehicle trajectory to evaluate for own vehicle |

,,,,,,,,

Own vehicle

:
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Simulation Results intgessettoon

Good sensitivity to risks

........................ e
RIS
All collisions have previously been EESE——R [
DI c U cCOI0 PDE10IE C ] Qf




Simulation Results intgessettoon

No unnecessary risk panics in intersection
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New constraints:

v Upper-bounded decision time
v System’s dynamics

v Moving Objects’ future behavior
v Look-ahead

v Uncertainty

Positioning:
v Few contributions in the literature

v'Taking into account all the constraint
coming fronthe Real World

v A new framework based tterative
safe motion decisions

v Focus ormmotion Safety




[Fraichard 04] [Petti 06]

Repeat until goal is reached
1. Get model of the futu®bservation & Prediction)
2. Built tree of partial motions towards the goal

3. When timej,. is over, Returri Best partial motion ”
(e.g closes & safest

EWPi+13

-

ti+1

LI




[Fraichard 04] [Martinez 08]

Concept of “Inevitable Collision States”(ICS)

v Avoiding instantaneous collision is not enoughk also have tt
avoid STATES leading to inevitable collisions ia tiear future

v Doing nothing may also be dangerous.y. Stopping in the
center of an intersection increase the collisiakri

PMP + ICS «— Moving

Static Obstacle
Obstacle

Collision States

| s O
Moving

Obstacle Cg \
A K
! - f ICS z
g = ICS-free /
: . trajectory W
ICS-CheckMartinez 08] '
ICS-Avoid [Martinez 09] T L Moving
Prob-ICS[Bautin 09 Obstacle™™




ulgenzi & Laugler & Spalanzani 0/-09

Probabillistic Collision Risk & Partial Motion Planning (PCR-PMP

v’ IntegrateObstacle Detection & Trackinig the Decisional Process
v Risk assessmebased on Behavior Prediction (HMM & GP)

v’ Search function combinid@erception, PMP, and RRT2> Previously
explored states are updated on-line using new Observations & Predictions

Observation

'l'

redlctli)n

Pedestrian

O~

' _ Reconstructed scene Prediction & MP & Navigation
(Detection & Tracking) (Simulator) (Simulator)




ulgenzi & Laugler & Spalanzani 0/-09

* No collision when the robot is movin

« Some collision when the robot stop t
move(pedestrian generated collisions
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Share Control & Humanfuaimdt| irier et taTss
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 Human beings are unbeatabletaking decisions in complex situations

 Technology is better fdsimple” but “fast” control decisions(ABS, ESP ...)

=> Monitoring & Understanding Human Actions & Intgons is
mandatory

/i




Human Driver Inattention

* Driver inattention is a major cause of accident

Distribution of Distraction

driver attention status (visual, auditory, cognitive ... ) Fatigue
(physical, nervous, mental ... )

When necessary, bring back the
Human Driver to the Attentive State !

Courtesy Zhencheng James H
Kumamoto University




Monitoring Driver Actions & Intentions

* Detecting Driver Inattention —Biological signal processing

Example of EEG signal

Clearly not appropriate for Car Driving !

o Detecting Driver Inattention —Behavior signal processing

e & Pim ‘ ;/L/
d P w. ) "/
' . Head /Eye A
Steering movements Pedal signal Visual analysis §

Driver Behavior Perception Car Behavior Perioapt

Courtesy Zhencheng James H
Kumamoto Univ




Monitoring Driver Actions & Intentions

Even if some pioneer commercial systems exist for
Fatigue detection
(e.g. Zelinky’s company in Australia)

.... This Is still an open issue
 Driver mode
U Learning behaviors & skills
 Driver behavior assessment from multiple sensors

Driver Behavior Perception




Conclusion & Future Research Avenues

e Robots in Human Environmentsis a new challenge fdardbotR dbalbticscs
Systems and Futurepdipatamns(service robots, aging society, automobile ..

* Dynamics, Uncertainty, Robustnes<;fiffieiencarach& Satgare major
Issues to be more deeply addressed

* Probabllistic models areclearly keytools foraddressing these iss!

* Prediction & Risk Assessmenhave also théentnoodoee dbseeve
levels of the Decisional proce&s obvious Safety reasons.




Conclusion & Future Research Avenues
Intelligent Vehicle issue

* Thanks to the recent progress in Robotics & ICT, Automobile &
Transportation systems will drastically changes in the ne201jealsye
(Driving assistance, Autonomous driving capabillities, V2V & 12V
communications, Green technologies ...)

o |ICT-Car comogpitis gradually becoming a reality. But cooperative
research is still needed for solving tabove-mentioned problenr
(RobustnessS &eatgt\E fhithe g \C dlaibeveniataciicinn)




Current & Future car equipments

Steering by wire
Brake by wire
Shift by wire

=N
e

Radar, Cameras, Night Vision, Various sensors

;. .... Cost decreasing & Efficiency increasing (futorass
Wireless CommugiEation: production, SOC, embedded systems ...) Il

Nl
Speech Recognition & Synthesis




New technology appearing on the market




Thank You !
Any guestions ?

http://emotion.inrialpes.fr/laugig
christian.laugier@inrialpes.fr




