Intra-Operative CT-Free Examination System for Anterior Cruciate Ligament (ACL) Reconstruction

K.Sundaraj*, C.Laugier* & F.Boux-de-Casson**

*INRIA Rhone-Alpes, France

**Aesculap BBraun, France

IROS'03, Las Vegas, October 2003

Overview

- **♯** ACL reconstruction problem & CT-Free navigation approach
- **♯** Physical simulation of the ACL graft
- # ACL Surgery using the OrthoPilot navigation system from Aesculap
- # Experimental Results
- # Conclusion & Perspectives.

Context of our Work

- **The ACL** is often injured or broken by a pivoting or twisting movement.
- # In some cases, the damaged ACL has to be replaced by a strong biologic substitute.
- **Use the Second Second**

- 1. Patella
- 2. Femur
- 3. ACL
- 4. Meniscus
- 5. Collateral Ligaments
- 6. Patella Tendon
- 7. Tibia

ACL Reconstruction

Procedure:

- 1. A natural graft is first harvested
- 2 bone tunnels are then drilled in the tibia and the femur
- 3. The graft is then inserted and fixed using screws

(it takes about nine months for the reconstructed graft to completely heal)

Main difficulties:

- Best Graft placement
 Mainly « isometric behavior »
- Even in the best case, the graft is subjected to stress during leg flexion (graft is bigger than the original ACL, hence contact exists with bones & surrounding ligaments)
- => Good Positioning & Orientation of the tunnels for the graft is VITAL

CT-Free navigation for ACL reconstruction

Camera View

- 1. Acquisition (per-operatively) of patient's knee kinematics & local geometry (« anatomic landmarks »)
- 2. Graft is harvested. Its shape & size is given to the navigation system
- 3. A physical model of the ACL graft is used to predict failures (using generic bio-mechanical data)
- 4. Tunnels are drilled, Graft is inserted and fixed
 - => Using geometric & physical simulation for interactively guiding the surgeon (Graft placement & Tunnels navigation)

Arthroscopic Examination

OrthoPilot Workstation (Aesculap-Bbraun)

Data Acquisition (per-operatively)

- **#** The dimensions of the ACL graft is obtained
 - Patient specific
 - General form of the graft is like a beam

Simple Beam Mesh

- # Patient's knee kinematics & local geometry (specific anatomic landmarks) are obtained
 - Patient specific and surgeon dependant
 - A set of transformations between the tibia with respect to a fixed femur

Specific Landmark Acquisition

ACL Graft Physical Model

- **Problem**: Calculate stress from deformation
- # Approach: Volume Distribution Method (VDM)
 - Inspired from the Long Element Method (LEM) [Sundaraj-Laugier-Costa:Iros01]
 - Objects that can be assimilated to an « elastic skin filled with some incompressible fluid » (a priori adapted to most of biological tissues)

Basic Idea

- Given a geometrical mesh, a displacement of any node causes a change in volume
- This change in volume is distributed to the other nodes using Pascal's Principle and Volume Conservation principle

$$\begin{cases} B_{i} \frac{\Delta V_{i}}{V_{i}} + \sum_{i} \frac{B_{ij}}{V_{i}} (\Delta V_{i} - \Delta V_{j}) - \Delta P = \rho_{i} g \, \delta_{i} + P_{envi} & \Delta P = P_{fluid} - P_{atm} \\ \sum_{i} \Delta V_{i} = 0 & \Delta V_{i} \approx A_{i} \cdot \Delta L_{i} \\ & => n+1 \text{ variables} \end{cases}$$

 B_i : Bulk modulus (normal stress)

 B_{ij} : Connectivity bulk modulus (shear stress)

 ρ : Fluid density

 δ_i : High of liquid column at node i

Model Simulation

- **Static Formulation** $(P_{ext} = P_{int})$
 - Sufficient for the ACL (ligaments exhibit negligeable viscoelastic effects)
 - => Solving K. $\Delta L=R$ where K is sparse, R= Pressure & Gravity effects

Boundary Condition

Pascal's Principle

Node Constraints

■ Fixed, Free, Contact & Displaced

Resolution Method

- Nonlinear Analysis (K changes for larges deformations)
- Iterative Bi-Conjugate Gradient

Model Generation

Geometrical Model

- A simple beam shape tapered at the ends
- Ends are fixed at the femoral and tibia tunnel outlets
- Generic mesh of the tibia and femur
 - => for 3D visualization

Physical Model

- Knee kinematics as position boundary conditions
- VDM deformable model for simulation
 - => Bulk modulus B_i and connectivity bulk modulus B_{ij} are obtained from the literature

Positioning with respect to a generic mesh of the femur and tibia

Model Generation (2)

PHYSICAL DATA OF THE VIRTUAL ACL GRAFT*

Height (H)	5mm
Width (W)	10mm
Length (L)	25mm
Cross Section Area (A)	50mm ²
Surface Area (S)	850mm ²
Volume (V)	1250mm ³
Resolution (Q)	138 elements
Bulk Modulus (B _i)	0.3 x 10 ⁶ Nm ⁻²
Connectivity Bulk Modulus (B _{ij})	4.0 x 10 ³ Nm ⁻²
Angle of Flexion (θ)	0°-90°

=> Normal stress

=> shear stress

Navigation principle (OrthoPilot)

- **# Position and orientation of diode markers** are read by infra-red cameras
- **#** Patients knee is flexed
- **# Spatial transformations are read at 1.5°** intervals
- **# OrthoPilot solves the geometrical problem** and proposes a solution to the surgeon

Tibia tunnel navigation

Femur tunnel navigation

Implementation

- **Unit of the Property of the P**
- **#** AlaDyn3D dynamic simulator
- Linked through a serial interface for data transfer
- **Graphical User Interface (GUI) has two views**
 - 3D Deformation and Stress
 - Control Station

3D Rendering

Control station

Experimental Results

- Input Data & Setup

 # Using a sample set of transformations from OrthoPilot's database (knee flexed from 0° -90°)
 - Using a sample position, orientation and dimension of the ACL graft from the database
- **Deformation & Stress** (simulation results from 10° to 90°)

Conclusion & Perspectives

Conclusion

- A prototype medical simulator has been developed as an help to the ACL reconstruction
- This simulator includes geometric, kinematics, and physical data processing
- These data can be used by the surgeon for choosing a good surgical solution (graft placement & tunnels placement and orientation)

Perspectives

- Perform cadaveric and clinical tests to validate the physical model
- Consider interactions of the ACL graft with the bones and surrounding ligaments
- Improve the GUI for surgery environment

