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Detecting guaranteed collision-free robot trajectories in unknown and
unpredictable environments

Rayomand Vatcha and Jing Xiao

Abstract— For a robot to operate in a completely unknown
environment, where obstacles are unknown and whether and
how they move are also unknown, motion planning is largely
an open problem. One essential challenge is how to guarantee
that a robot can safely navigate in such an environment. We
introduce a general approach to detect in real-time, based
on sensing, if a future robot trajectory, which is a curve
in the unknown configuration-time space, will be guaranteed
continuously collision-free or not, no matter how obstacles
move. Our detection algorithm efficiently uses low-level sensor
data directly. Our approach does not need to identify obstacles
or assume any obstacle geometry, and as such, does not
base detection on predicting obstacle movements or assuming
possible ways of obstacle movements. It can be used by real-
time motion planners for any robot, including mobile robots
and manipulators, to guide the robots motion in unknown and
unpredictable environments. As long as a robot is moving along
a detected collision-free trajectory by our approach, its safety
is guaranteed, i.e., it will not be hit by any obstacle.

I. INTRODUCTION

Motion planning for a robot moving in an uncertain, dy-
namic environment is gaining more attention in the robotics
research community. One common assumption about the
available information for such planning is known obsta-
cle geometry. Another assumption is certain knowledge of
obstacle motion [1] [2]. If the motion of an obstacle is
unknown, a common approach is to predict the future motion
by tracking the past obstacle motion (e.g. [3]–[8]). There are
motion planners based on prediction for mobile robot motion
planning (e.g., [9]–[11]) and for mobile manipulator motion
planning [12].

However, prediction can only be sufficiently accurate for
a short period, i.e., immediately after the time when the pre-
diction is made. To compensate for that requires frequently
repeated prediction and computation for collision-checking.
Moreover, the planned robot motion is still not guaranteed
collision-free due to the possibility of wrong predictions.

There is less research addressing guaranteed collision-
free motions. The notion of “Inevitable Collision Regions”
(ICS) was introduced [13] for a mobile robot to characterize
guaranteed CT-obstacles in its CT-space. In [14], the motion
planner avoided prediction of obstacle motion by considering
all the possible obstacle motions so that the planned motions
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are guaranteed collision-free, however, at the expense of
assuming a much smaller free space for robot motion than
the actual free space in the robot’s configuration-time (CT)
space.

Most motion planning approaches assume the knowledge
of obstacle geometry or recognizable obstacles. However, it
is far from trivial to acquire such knowledge via sensing
in an unknown and dynamic environment. There is good
progress in detecting and recognizing obstacles in some city
road settings or off-road settings (e.g. [15], [16]), such as
vegetation (e.g., [17]), people (e.g., [18]), etc. However,
in very crowded and dynamic environments with many
unknown changes, such as human-centered environments,
recognizing all obstacles can be too challenging and also
unnecessary. Vast number of objects of different kinds can
appear or disappear, become separate into smaller objects
or combine into bigger ones. Thus, it is desirable to study
how to enable motion planning for robots without the need
of recognizing unknown obstacles that may also move in
unknown ways.

We have introduced a general approach [19] to detect
at sensing time τ whether a robot (which can be of high-
DOF, such as a manipulator) will be guaranteed collision-
free at configuration-time (CT) point (q, t) (t > τ ) with-
out requiring segmentation or recognition of obstacles and
predictions of their motions. The approach is based on two
unique concepts: atomic obstacles and dynamic envelope. We
have demonstrated that detection can be efficiently performed
[20]. We have further shown that [21] a guaranteed contin-
uously collision-free trajectory can be detected by checking
whether a special set of discrete CT points are guaranteed
collision-free. This paper summarizes these results.

II. ASSUMPTION AND NOTATIONS

It is reasonable to assume that even in an unknown and
unpredictable environment, all obstacle speeds are bounded
to be below a certain maximum possible speed vmax, which
can be an over-estimated upper-bound. For example, the
speed of fastest vehicle, fastest human runner, etc. are known.
Of course, an obstacle may have varied actual speeds in
[0, vmax). Throughout this paper, we simply consider any
obstacle’s speed to be on [0, vmax].

The following notations describe a robot model in the
Cartesian space (i.e., the physical space).
• R(q): the region occupied by a robot R at configuration

q.



Fig. 1. The geometry of an atomic obstacle Oij that originates from
low-level sensor data (x, y, z), generated by a stereo vision sensor.

We also use the following different temporal notations in
the description of a robot’s operation:
• τ : time of sensing
• t: time of action

III. ATOMIC OBSTACLES: REPRESENTING OBSTACLES AT
A SENSING INSTANT

We introduce the concept of atomic obstacles that directly
uses low-level sensor data to represent real obstacles at
any sensing instant in an unknown, changing environment
without elaborate sensor information processing. Without the
loss of generality, the lower-level sensory data, generated
by whatever sensor (e.g., laser range finders, sonar, stereo
vision, etc.), can be treated as atomic obstacles of similar
and simple geometry at different locations. Collectively, the
atomic obstacles represent actual obstacles in an environment
for just one sensing moment, and we do not relate the atomic
obstacles of one sensing moment to those of the next.

As a concrete example, consider an overhead stereo-vision
sensor that provides an image of an unknown environment.
Every pixel (i, j) of that image maps to a surface region Wij

of 3-D points in the physical world. The sensor generates the
3-D point (x, y, z) in Wij that is closest to the image plane.

Since Wij occludes the space behind it, to be safe,
Wij and the infinite volume of points it occludes can be
viewed as an atomic obstacle Oij that a robot cannot collide
with at that sensing moment. Oij , associated with a pixel
(i, j) of the image, starting from the point (x, y, z), and
extending towards infinity, can be viewed as a trapezoidal
ray originating from (x, y, z) as shown in the Figure 1. The
environment can now be viewed as consisting of only these
atomic obstacles Oij for all (i, j)’s in the image; see Figure 2
for an example.

It does not matter that the atomic obstacles as defined
above change with the viewing direction, because we are
not concerned with what the actual obstacles look like or
how to relate them from one image to the next. Thus, the
low-level sensory data obtained at a sensing instant is only
useful until the next sensory data are obtained, and hence,
should be replaced entirely by the next sensory data. In other
words, there is no need for accumulating sensory data, and
the space complexity for storing sensory data is simply a

Fig. 2. An environment is viewed as a set of atomic obstacles at a sensing
instant. Reprint from [19].

constant. For example, for the stereo-vision sensor the space
complexity is the size of the image.

The atomic obstacles also need not be of the same size.
However, it is important that the atomic obstacles come
directly from sensory data and are of simple shapes.

IV. DYNAMIC ENVELOPE: DETECTING GUARANTEED
COLLISION-FREE CT-POINTS NO MATTER HOW

OBSTACLES MOVE

At some sensing instant τ0, we aim to detect if a future CT-
point χ = (q, t), with t > τ0, is guaranteed collision-free.
χ = (q, t) is not collision-free only if the following worst-
case scenario will happen during [τ0, t]: the nearest obstacle
to R(q) at τ0 will move towards R(q) with maximum speed
vmax and collide with R(q) at ti ∈ [τ0, t) and then it will
stop there to keep the collision. Since many other scenarios
are possible, one clearly should not, at time τ0, treat χ as not
collision-free by assuming the above worst-case scenario.

Instead, one should keep observing during the time interval
[τ0, t) how obstacles perform w.r.t. R(q) and discover if χ
is actually collision-free or not. This is the insight behind
the novel concept of dynamic envelope, which discovers
collision-free CT points by capturing actual scenarios without
assuming the worst-case scenario or any particular kinds of
obstacle motions.

Definition 1: For a CT-point χ = (q, t), a dynamic envelope
E(χ, τi), as a function of current sensing/time τi ≤ t, is
a closed surface enclosing the region R(q) such that the
minimum distance between any point on E(χ, τi) and R(q)
is

di = vmax(t− τi) (1)

The following are major properties of a dynamic enve-
lope E(χ, τi), which capture non-worst case future obstacle
motions, without assuming any particular kinds of obstacle
motion:

1) A dynamic envelope shrinks monotonically over sens-
ing time with speed vmax, i.e., E(χ, τi) ⊃ E(χ, τi+l),
where l > 0, τi < τi+l ≤ t.

2) An obstacle outside E(χ, τi) will never intersect
E(χ, τi+l), since an obstacle cannot move faster than
vmax.



(a) As E(χ, 0.1) contains atomic obstacles, it is uncer-
tain if real obstacles 2-8 will collide with the robot at
χ.

(b) At τi =1s, the real obstacle 6 is just “squeezed out”
of E(χ, 1), i.e., obstacle 6 did not conduct worst-case
movement.

(c) E(χ, 1.89) contains no atomic obstacle, meaning
that no real obstacles 2-8 conducted worst-case move-
ments.

Fig. 3. Dynamic envelope of a planar rod robot at χ = (q, t) = ((3, 3), 3).
The atomic obstacles are red circles. Their clusters represent real obstacles.
Reprint from [19].

3) An obstacle intersecting E(χ, τi) can be “squeezed”
out of E(χ, τi+l), for certain τi+l, if not moving
towards R(q) in the maximum speed vmax.

Thus, at sensing time τi < t, if the dynamic envelope
E(χ, τi) is detected free of atomic obstacles, it is also free of
actual obstacles, and the robot will surely be collision-free at
χ = (q, t); else the robot may or may not be collision-free
at χ = (q, t) (i.e., it is uncertain).

Figure 3 shows an example. χ = ((3, 3), 3) and vmax = 1
unit/s. At τi = 1.89s, χ is perceived collision free.

Fig. 4. Grouping atomic obstacles for faster collision checking, Reprint
from [20].

V. COLLISION DETECTION IN REAL-TIME

The concept of dynamic envelope, coupled with atomic
obstacles, enables the detection of collision-free CT-points
regardless of how obstacles look like and how they move
in an unknown and changing environment. By observing a
shrinking dynamic envelope over time and performing inter-
section checking between a dynamic envelope and atomic
obstacles at each sensing moment, one can catch the ear-
liest sensing moment when the dynamic envelope does not
include atomic obstacles, i.e, a (future) CT-point is detected
guaranteed collision-free.

As each atomic obstacle corresponds to a pixel of an
image from sensing, such as a stereo vision image, depending
on the image resolution, there can be a great number of
atomic obstacles. For example, even an image with a coarse
resolution of 188 × 120 generates up to 22,560 atomic
obstacles. Thus, key to real-time efficiency for checking
if a CT is guaranteed collision-free is how to manage the
large number of atomic obstacles. To minimize the number
of intersection computations between dynamic envelope and
atomic obstacles, the following strategies are introduced [20]:
• Extraction: Consider only those atomic obstacles that

are likely to intersect with a dynamic envelope, i.e.,
the atomic obstacles whose indices (i, j) are on the
projection P (E) of the dynamic envelope on the image
plane.

• Grouping: Partition pixels on P (E) into multi-size
super pixels, such that each super pixel corresponds to
a m×n image region of P (E), with varied m(≥ 1) and
n(≥ 1) values1. The atomic obstacles corresponding
to a super pixel on P (E) form a combined atomic
obstacle. With such grouping, intersection checking is
reduced to that between the dynamic envelope and
combined atomic obstacles (which are far fewer than
the atomic obstacles). Figure 4 shows such grouping of
atomic obstacles.

• Hierarchical Checking: Perform intersection checks
efficiently through multi-level simplified computations
by subdividing a combined atomic obstacle into smaller

1When m = n = 1, the super pixel is reduced to a normal pixel.



ones when an intersection is detected between a dy-
namic envelope and that combined atomic obstacle.
Thus, if no intersection is detected at a high-level,
than there is no intersection for sure; else, re-check
intersection at a lower level.

The collision detection algorithm achieves real-time effi-
ciency, as confirmed by the experimental results in [20].

VI. DETECTING CONTINUOUSLY COLLISION-FREE
TRAJECTORIES

In [21], we have further shown that if a CT point (q, t)
is discovered collision-free, a neighborhood (CT-region) of
(q, t) is also guaranteed collision-free. Based on that, given
a continuous robot trajectory, we have presented a method
to compute a set of discrete CT-points such that, if these
points are discovered to be guaranteed collision-free, their
associated collision-free neighborhood CT-regions contains
the continuous trajectory, i.e., the trajectory is guaran-
teed continuously collision-free. Note that prior approaches
in the literature for detecting continuously collision-free
paths/trajectories require either knowing future motion of the
obstacles or that the swept volume traversed by a robot along
a path/trajectory can be computed; such approaches cannot
be used here in real-time.

Given a CT point χ = (q, t) and the sensing instant τi,
the dynamic envelope E(χ, τi) represents the expansion of
the region Rq in the physical space in all directions by
the distance vmax(t − τi). Thus, there exists a continuous
neighborhood Cq of confiugrations that the robot can move to
without being outside of E(χ, τi) in the physical space, and
there are corresponding smaller dynamic envelopes inside
E(χ, τi), see Figure 5, each corresponds to a CT point
χ′ = (q′, t′), such that q′ ∈ Cq , and τi ≤ t′ < t. Hence,
there is a continuous CT region F (χ, τi) corresponding to
χ = (q, t) formed by those χ′s.

Fig. 5. A dynamic envelope E(χ′, τi) inside the dynamic envelope
E(χ, τi) for a planar rod robot

If E(χ, τi) is free of atomic obstacles so that the CT point
χ = (q, t) is guaranteed collision-free, then all CT points in
the CT region F (χ, τi) are also guaranteed collision-free.

Given a trajectory Γ in the CT space, we then find a set
Q(Γ) of discrete CT-points such that when those CT points
are detected as guaranteed collision-free, the union of their
corresponding CT-regions, which is also detected collision-
free, covers the trajectory Γ. In other words, through de-
tecting if the CT points in set Q(Γ) are collision-free, we

can detect if the trajectory Γ is continuously collision-free.
An implemented example in [21] demonstrated the real-time
usage of this method.

VII. CONCLUSIONS

We have introduced a general approach to detect in real-
time, based on sensing, if a future robot trajectory, which
is a curve in the unknown configuration-time space, will
be guaranteed continuously collision-free or not, no matter
how obstacles move. Our approach can be used by any real-
time planner for detecting safe robot trajectories. As future
research, we will investigate how to incorporate moving
sensors in this approach and systematically take into account
sensing uncertainty. We will also investigate how to relate
sensing frequency with computational cost to maximize
efficiency for collision checking.

While the concepts of atomic obstacles and dynamic
envelope are introduced together, they do not have to be
used together. If the geometry of an obstacle is known
and sensing can provide the information of an obstacle’s
pose, intersection checking can be done directly between a
dynamic envelope and such an obstacle to detect guaranteed
collision-free robot trajectories. Prediction of obstacle motion
is avoided.
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