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Abstract— In this paper, we present a formal approach to
reciprocal n-body collision avoidance, where multiple mobile
robots need to avoid collisions with each other while moving
in a common workspace. In our formulation, each robot acts
fully independently, and does not communicate with other
robots. Based on the definition of velocity obstacles [5], we
derive sufficient conditions for collision-free motion by reducing
the problem to solving a low-dimensional linear program. We
test our approach on several dense and complex simulation
scenarios involving thousands of robots and compute collision-
free actions for all of them in only a few milliseconds. To thebest
of our knowledge, this method is the first that can guarantee
local collision-free motion for a large number of robots in a
cluttered workspace.

I. I NTRODUCTION

Collision avoidance is a fundamental problem in robotics.
The problem can generally be defined in the context of
an autonomous mobile robot navigating in an environment
with obstacles and/or other moving entities, where the robot
employs a continuous cycle of sensing and acting. In each
cycle, an action for the robot must be computed based on
local observations of the environment, such that the robot
stays free of collisions with the obstacles and the other
moving entities, while making progress towards a goal.1

The problem of collision avoidance has been well studied
for one robot avoiding static or moving obstacles. In this
paper, we address the more involved and less studied problem
of reciprocal n-body collision avoidance, where collisions
need to be avoided among multiple robots (or any decision-
making entities). This problem has important applications
in many areas in robotics, such as multi-robot navigation
and coordination among swarms of robots [20]. It is also an
key component in crowd simulation for computer graphics
and VR [11], [21], modeling of non-player characters in
AI, studying flocks of birds and fish in biology [23], and
real-time (air) traffic control [16]. In this paper, we propose
a fast and novel method that simultaneously determines
actions for many (possibly thousands of) robots that each
may have different objectives. The actions are computed for
each robot independently, without communication among the
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1Note that the problem of (local) collision-avoidance differs from motion
planning, where the global environment of the robot is considered to be
known and a complete path towards a goal configuration is planned at once
[18], and collision detection, which simply determines if two geometric
objects intersect or not (see e.g. [17]).

robots or central coordination. Yet, we prove that our method
guarantees collision-free motion for each of the robots.

We use a simplified robot model, where each robot is
assumed to have a simple shape (circular or convex polygon)
moving in a two-dimensional workspace. Furthermore, we
assume that the robot isholonomic, i.e. it can move in any
direction, such that the control input of each robot is simply
given by a two-dimensional velocity vector. Also, we assume
that each robot hasperfectsensing, and is able to infer the
exact shape, position and velocity of obstacles and other
robots in the environment.

Main results: We present a rigorous approach for recip-
rocal n-body collision avoidance that provides asufficient
condition for each robot to be collision-free for at least a
fixed amount of time into the future, only assuming that
the other robots use the same collision-avoidance protocol.
Our approach isvelocity-based. That implies that each robot
takes into account the observed velocity of other robots
in order to avoid collisions with them, and also that the
robot selects its own velocity from itsvelocity spacein
which certain regions are marked as ‘forbidden’ because
of the presence of other robots. Our formulation, “optimal
reciprocal collision avoidance”, infers for each other robot a
half-plane (in velocity-space) of velocities that are allowed
to be selected in order to guarantee collision avoidance. The
robot then selects its optimal velocity from the intersection
of all permitted half-planes, which can be done efficiently
using linear programming. Under certain conditions with
densely packed robots, the resulting linear program may
be infeasible, in which case we select the ‘safest possible’
velocity using a three-dimensional linear program.

We experimented with our approach on several complex
simulation scenarios containing thousands of robots. As
each robot is independent, we can fullyparallellize the
computation of the actions for each robot and report very
fast real-time running times. Furthermore, our experiments
show that our approach achieves convincing motions that are
smooth and collision-free.

The rest of this paper is organized as follows. We start
by discussing previous work in Section II. In Section III,
we formally define the problem we address in this paper.
We derive the half-plane of permitted velocities for optimal
reciprocal collision avoidance of a robot with respect to
another robot in Section IV, and show how this approach
is used to navigate among multiple robots in Section V. We
report experimental results in Section VI and conclude in
Section VII.



II. PREVIOUS WORK

The problem of collision avoidance has been extensively
studied. Many approaches assume the observed obstacles
to be static (i.e. non-moving) [2], [4], [6], [7], [13], [14],
[24], and compute an immediate action for the robot that
would avert collisions with the obstacle, in many cases
taking into account the robot’s kinematics and dynamics.
If the obstacles are also moving, such approaches typically
repeatedly “replan” based on new readings of the positions
of the obstacles. This may work well if the obstacles move
slower than the robot, but among fast obstacles (such as
crossing a highway), the velocity of the obstacles need to
be specifically taken into account. This problem is generally
referred to as “asteroid avoidance”, and approaches typically
extrapolate the observed velocities in order to estimate the
future positions of obstacles [8], [9], [12], [19], [22], [28].

The problem of collision avoidance becomes harder when
the obstacles are not simply moving without considering their
environment, but are also intelligent decision-making entities
that try to avoid collisions as well. Simply considering them
as moving obstacles may lead tooscillations if the other
entity considers all other robots as moving obstacles as well
[15], [26]. Therefore, the reactive nature of the other entities
must be specifically taken into account in order to guarantee
that collisions are avoided. Yet, the robot may not be able
to communicate with other entities and may not know their
intents. We call this problemreciprocal collision avoidance,
and is the focus of this paper.

Velocity obstacles (VO) [5] have been a successful
velocity-based approach to avoid collisions with moving
obstacles; they provide asufficientand necessarycondition
for a robot to select velocity that avoids collisions with
an obstacle moving at a known velocity. This approach
was extended for robot-robot collision avoidance with the
definition of Reciprocal Velocity Obstacles (RVO) [10], [26],
where both robots were assumed to select a velocity outside
the RVO induced by the other robot. However, this for-
mulation only guarantees collision-avoidance under specific
conditions, and does not provide a sufficient condition for
collision-avoidance in general.2 In this paper, we present the
principle of optimal reciprocal collision avoidance(ORCA)
that overcomes this limitation; ORCA provides a sufficient
condition for multiple robots to avoid collisions among one
another, and thus can guarantee collision-free navigation.

We note that it is possible to provide a sufficient and neces-
sary condition for multiple (sayn) robots to select collision-
avoiding velocities, by defining acompositevelocity obstacle
in the 2n-dimensional space of velocities of alln robots
[1]. However, this is not only computationally impractical,
it also requires central coordination among robots. This
is incompatible with the type of distributed multi-robot
navigation we focus on in this paper, in which each robot
independently and simultaneously selects its velocity from
its own 2-D velocity space.

2In fact, both robots selecting a velocityinside each other’s RVO is a
sufficient condition to end up in a collision.

III. PROBLEM DEFINITION

The problem we discuss in this paper is formally defined
as follows. Let there be a set ofn robots sharing an environ-
ment. For simplicity we assume the robots are disc-shaped
and move in the planeR2 (the definitions and algorithms we
present in this paper can easily be extended to translating
polygons, and also to higher dimensions). Each robotA has a
current positionpA (the center of its disc), a current velocity
vA and a radiusrA. These parameters are part of the robot’s
external state, i.e. we assume that they can be observed by
other robots. Furthermore, each robot has a maximum speed
vmax
A and a preferred velocityvpref

A , which is the velocity the
robot would assume had no other robots been in its way (for
instance a velocity directed towards the robot’s goal with a
magnitude equal to the robot’s preferred speed). We consider
these parameters part of the internal state of the robot, and
can therefore not be observed by other robots.

The task is for each robotA to independently(and
simultaneously) select a new velocityvnew

A for itself such
thatall robots areguaranteedto be collision-free for at least
a preset amount of timeτ when they would continue to
move at their new velocity. As a secondary objective, the
robots should select their new velocity as close as possible
to their preferred velocity. The robots are not allowed to
communicate with each other, and can only use observations
of the other robot’scurrent position and velocity. However,
each of the robots may assume that the other robots use the
same strategy as itself to select a new velocity.

We name this problem “reciprocaln-body collision avoid-
ance”. Note that this problem cannot be solved using central
coordination, as the preferred velocity of each robot is only
known to the robot itself. In Section IV, we present a
sufficientcondition for each robot to select a velocity that
is collision-free for (at least)τ time. In Section V we show
how we use this principle in a continuous cycle for multi-
robot navigation.

IV. RECIPROCAL COLLISION AVOIDANCE

A. Preliminaries

For two robotsA and B, the velocity obstacleV Oτ
A|B

(read: the velocity obstacle forA induced byB for time
window τ ) is the set of allrelative velocities of A with
respect toB that will result in a collision betweenA andB
at some moment before timeτ [5]. It is formally defined as
follows. LetD(p, r) denote an open disc of radiusr centered
at p;

D(p, r) = {q | ‖q− p‖ < r}, (1)

then:

V Oτ
A|B = {v | ∃t ∈ [0, τ ] :: tv ∈ D(pB − pA, rA + rB)}

(2)
The geometric interpretation of velocity obstacles is shown
in Fig. 1(b). Note thatV Oτ

A|B andV Oτ
B|A aresymmetricin

the origin.
LetvA andvB be current the velocities of robotsA andB,

respectively. The definition of the velocity obstacle implies
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Fig. 1. (a) A configuration of two robotsA and B. (b) The velocity
obstacleV Oτ

A|B
(gray) can geometrically be interpreted as a truncated

cone with its apex at the origin (in velocity space) and its legs tangent to
the disc of radiusrA+rB centered atpB −pA. The amount of truncation
depends on the value ofτ ; the cone is truncated by an arc of a disc of radius
(rA+ rB)/τ centered at(pB −pA)/τ . The velocity obstacle shown here
is for τ = 2.

Fig. 2. The set of collision-avoiding velocitiesCAτ

A|B
(VB) for robotA

given that robotB selects its velocity from some setVB (dark gray) is the
complement of the Minkowski sum (light gray) ofV Oτ

A|B
andVB .

that if vA − vB ∈ V Oτ
A|B, or equivalently ifvB − vA ∈

V Oτ
B|A, thenA andB will collide at some moment before

time τ if they continue moving at their current velocity.
Conversely, ifvA − vB 6∈ V Oτ

A|B, robot A and B are
guaranteed to be collision-free for at leastτ time.

More generally, letX ⊕ Y denote the Minkowski sum of
setsX andY ;

X ⊕ Y = {x+ y |x ∈ X, y ∈ Y }, (3)

then for any setVB, if vB ∈ VB andvA 6∈ V Oτ
A|B⊕VB, then

A andB are guaranteed to be collision-free at their current
velocities for at leastτ time. This leads to the definition of
the set ofcollision-avoidingvelocitiesCAτ

A|B(VB) for A

given thatB selects its velocity fromVB (see Fig. 2):

CAτ
A|B(VB) = {v |v 6∈ V Oτ

A|B ⊕ VB} (4)

We call a pair of setsVA and VB of velocities for A
andB reciprocally collision-avoidingif VA ⊆ CAτ

A|B(VB)

and VB ⊆ CAτ
B|A(VA). If VA = CAτ

A|B(VB) and VB =
CAτ

B|A(VA), we callVA andVB reciprocally maximal.

B. Optimal Reciprocal Collision Avoidance

Given the definitions above, we would like to choose sets
of permittedvelocitiesVA for A and VB for B such that
CAτ

A|B(VB) = VA and CAτ
B|A(VA) = VB, i.e. they are

reciprocally collision-avoiding and maximal and guarantee
that A and B are collision-free for at leastτ time. Also,
becauseA andB are individual robots, they should be able to
infer their set of permitted velocities without communication
with the other robot. There are infinitely many pairs of sets
VA andVB that obey these requirements, but among those
we select the pair that maximizes the amount of permitted
velocities “close” tooptimization velocitiesvopt

A for A and
v
opt
B for B.3 We denote these setsORCA

τ
A|B for A and

ORCA
τ
B|A for B, and formally define them as follows. Let

|V | denote the measure (i.e. area inR2) of setV ;

Definition 1 (Optimal Reciprocal Collision Avoidance)
ORCA

τ
A|B and ORCA

τ
B|A are defined such

that they are reciprocally collision-avoiding and
maximal, i.e. CAτ

A|B(ORCA
τ
B|A) = ORCA

τ
A|B and

CAτ
B|A(ORCA

τ
A|B) = ORCA

τ
B|A, and such that for

all other pairs of sets of reciprocally collision-avoiding
velocities VA and VB (i.e. VA ⊆ CAτ

A|B(VB) and
VB ⊆ CAτ

B|A(VA)), and forall radii r > 0,

|ORCA
τ
A|B ∩D(vopt

A , r)| = |ORCA
τ
B|A ∩D(vopt

B , r)| ≥

min(|VA ∩D(vopt
A , r)|, |VB ∩D(vopt

B , r)|).

This means thatORCA
τ
A|B and ORCA

τ
B|A contain

more velocities close tovopt
A and v

opt
B , respectively, than

any other pair of sets of reciprocally collision-avoiding
velocities. Also, the distribution of permitted velocities is
“fair”, as the amount of velocities close to the optimization
velocity is equal forA andB.

We can geometrically constructORCA
τ
A|B and

ORCA
τ
B|A as follows. Let us assume thatA and B

adopt velocitiesvopt
A and v

opt
B , respectively, and let us

assume that that causesA andB to be on collision course,
i.e. v

opt
A − v

opt
B ∈ V Oτ

A|B. Let u be the vector from

v
opt
A − v

opt
B to the closest point on the boundary of the

velocity obstacle (see Fig. 3):

u = ( argmin
v∈∂V Oτ

A|B

‖v− (vopt
A − v

opt
B )‖)− (vopt

A − v
opt
B ), (5)

and letn be the outward normal of the boundary ofV Oτ
A|B

at point (vopt
A − v

opt
B ) + u. Then,u is the smallest change

required to the relative velocity ofA andB to avert collision
within τ time. To “share the responsibility” of avoiding
collisions among the robots in a fair way, robotA adapts

3We introduce these optimization velocities to generalize the definition
of ORCA. Nominally, the optimization velocities are equal to the current
velocities, such that the robots have to deviate as little aspossible from
their current trajectories to avoid collisions. Other choices are discussed in
detail in Section V-B.



Fig. 3. The setORCA
τ

A|B
of permitted velocities forA for optimal

reciprocal collision avoidance withB is a half-plane delimited by the line
perpendicular tou through the pointvopt

A
+ 1

2
u, whereu is the vector

from v
opt

A
− v

opt

B
to the closest point on the boundary ofV Oτ

A|B
.

its velocity by (at least)12u and assumes thatB takes care
of the other half. Hence, the setORCA

τ
A|B of permitted

velocities forA is thehalf-planepointing in the direction of
n starting at the pointvopt

A + 1
2u. More formally:

ORCA
τ
A|B = {v | (v − (vopt

A +
1

2
u)) · n ≥ 0}. (6)

The setORCA
τ
B|A for B is defined symmetrically (see Fig.

3). The above equations also apply ifA andB arenot on a
collision course when adopting their optimization velocities,
i.e.vopt

A −v
opt
B 6∈ V Oτ

A|B. In this case, both robots each will
take half of the responsibility to remain on a collision-free
trajectory.

It can be seen thatORCA
τ
A|B and ORCA

τ
B|A as con-

structed above are in fact optimal according to the criterion
of Definition 1. AgentsA andB can inferORCA

τ
A|B and

ORCA
τ
B|A, respectively, without communicating with each

other, as long the robots canobserveeach other’s position,
radius, and optimization velocity. In Section V-B, we discuss
reasonable choices for the optimization velocity of the robots.

V. n-BODY COLLISION AVOIDANCE

In this section we show how to apply the ORCA principle
as defined above to performn-body collision avoidance
among multiple moving robots, and discuss how we can
incorporate static obstacles in this framework.

A. Basic Approach

The overall approach is as follows. Each robotA performs
a continuous cycle of sensing and acting with time step∆t.
In each iteration, the robot acquires the radius, the current
position and the current optimization velocity of the other
robots (and of itself). Based on this information, the robot
infers the permitted half-plane of velocitiesORCA

τ
A|B with

respect to each other robotB. The set of velocities that are
permitted forA with respect toall robots is the intersection
of the half-planes of permitted velocities induced by each

Fig. 4. A schematic overview of the continuous cycle of sensing and acting
that is independently executed by each robot.

(a) (b)

Fig. 5. (a) A configuration with eight robots. Their current velocitiesare
shown using arrows.(b) The half-planes of permitted velocities for robotA
induced by each of the other robots withτ = 2 and withvopt

∗ = v∗ for all
robots (i.e. the optimization velocity equals the current velocity). The half-
planes ofE andC coincide. The dashed region isORCA

τ

A
, and contains

the velocities forA that are permitted with respect to all other robots. The
arrow indicates the current velocity ofA.

other robot, and we denote this setORCA
τ
A (see Fig. 5):

ORCA
τ
A = D(0, vmax

A ) ∩
⋂

B 6=A

ORCA
τ
A|B. (7)

Note that this definition also includes the maximum speed
constraint on robotA.

Next, the robot selects a new velocityvnew
A for itself that

is closest to its preferred velocityvpref
A amongst all velocities

inside the region of permitted velocities:

vnew
A = argmin

v∈ORCAτ

A

‖v − v
pref
A ‖. (8)

We will show below how to compute this velocity efficiently.
Finally, the robot reaches its new position;

pnew
A = pA + vnew

A ∆t, (9)

and the sensing-acting cycle repeats (see Fig. 4).
The key step in the above procedure is to compute the new

velocity vnew
A as defined by Equations (7) and (8). This can

efficiently be done usinglinear programming, asORCA
τ
A

is a convexregion bounded by linear constraints induced by
the half-planes of permitted velocities with respect to each
of the other robots (see Fig. 5). The optimization function is



the distance to the preferred velocityvpref
A . Even though this

is a quadratic optimization function, it does not invalidate the
linear programming characteristics, as it has only one local
minimum.

We use the efficient algorithm of [3], which adds the
constraints one by one in random order while keeping track
of the current optimal new velocity. The algorithm has an
expected running time ofO(n), wheren is the total number
of constraints in the linear program (which equals the number
of robots in our case). The fact that we include a circular
constraint for the maximum speed does not significantly alter
the algorithm, and does not affect the running time. The
algorithm returns the velocity inORCA

τ
A that is closest to

v
pref
A , and reports failure if the linear program is infeasible,

i.e. whenORCA
τ
A = ∅. If the optimization velocities for the

robots are chosen carefully (as we will discuss in Section
V-B), ORCA

τ
A will never be empty, and hence there will

always be a solution that guarantees that the robots are
collision-free for at leastτ time.

We can increase the efficiency of selecting velocities by
not including the constraints of all other robots, but only of
those that are “close” by. In fact, robotsB that are farther
away from robotA than (vmax

A + vmax
B )τ will never collide

with robot A within τ time, so they can safely be left out
of the linear program when computing the new velocity for
robot A. A minor issue is that robotA does not know the
maximum speed of other robots, but this can be worked
around by “guessing” the maximum speed of other robots to
be equalA’s own. We can efficiently find the set of close-by
robots whose constraints should be included using akD-tree.

B. Choosing the Optimization Velocity

One issue that we have left open is how to choosev
opt
A

for each robotA. In order for the robots to infer the half-
planes without communication,vopt

A must be observable to
other robots. Here, we discuss some reasonable possibilities:

• v
opt
A = 0 for all robotsA. If we set the optimization

velocity to zero for all robots, it isguaranteedthat
ORCA

τ
A is non-empty for all robotsA (see Fig. 6(c)).

Hence, the linear programming algorithm as described
above will find a velocity for all robots that guarantees
them to be collision-free for at leastτ time. This can
be seen as follows. For any other robotB, the point
0 always lies outside the velocity obstacleV Oτ

A|B

(for finite τ ). Hence the half-planeORCA
τ
A|B always

includes at least velocity0. In fact, the line delimiting
ORCA

τ
A|B is perpendicular to the line connecting the

current positions ofA andB.
A drawback of setting the optimization velocity to zero
is that the behavior of the robots is unconvincing, as
they only take into account the current positions of
the other robots, and not their current velocities. In
densely packed conditions, this may also lead to a
global deadlock, as the chosen velocities for the robots
converge to zero when the robots are very close to one
another.

• v
opt
A = v

pref
A (i.e. the preferred velocity) for all robots

A. The preferred velocity is part of the internal state of
the robots, so it cannot be observed by the other robots.
Let us, for the sake of the discussion, assume that it is
somehow possible to infer the preferred velocity of the
other robots, and that the optimization velocity is set to
the preferred velocity for all robots. This would work
well in low-density conditions, but, as themagnitude
of the optimization velocity increases, it is increasingly
more likely that the linear program is infeasible. As in
most cases the preferred velocity has a constant (large)
magnitude, regardless of the density conditions, this
would lead to unsafe navigation in even medium density
conditions.

• v
opt
A = vA (i.e. the current velocity) for all robotsA.

Setting the optimization to the current velocity is the
ideal trade-off between the above two choices, as the
current velocity automatically adapts to the situation:
it is (very) indicative of the preferred velocity in low-
density cases, and is close to zero in dense scenarios.
Also, the current velocity can be observed by the
other robots. Nevertheless, the linear program may be
infeasible in high-density conditions (see Fig. 6(b)).
In this case, choosing a collision-free velocity cannot
be guaranteed. Instead, we select the ‘safest possible’
velocity for the robot using a 3-D linear program (which
we discuss in Section V-C).

C. Densely Packed Conditions

If we choosevopt
A = vA for all robotsA, there might

not be a single velocity that satisfies all the constraints of
the linear program in situations where the density of the
robots is very high. In other words, the setORCA

τ
A is empty

(see Fig. 6(b)), and the algorithm of Section V-A returns
that the linear program is infeasible. In this case, choosing
a collision-free velocity cannot be guaranteed. Instead, we
select the ‘safest possible’ velocity for the robot, i.e. the
velocity that minimally ‘penetrates’ the constraints induced
by the other robots. More formally, letdA|B(v) denote the
signed(Euclidean) distance of velocityv to the edge of the
half-planeORCA

τ
A|B. If v ∈ ORCA

τ
A|B, then dA|B(v) is

negative. We now choose the velocity that minimizes the
maximum distance to any of the half-planes induced by the
other robots:

vnew
A = argmin

v∈D(0,vmax

A
)

max
B 6=A

dA|B(v). (10)

Geometrically, this can be interpreted as moving the edges
of the half-planesORCA

τ
A|B perpendicularly outward with

equal speed, until exactly one velocity becomes valid.
We can find this velocity using athree-dimensionallinear

program. For each other robotB, the distance function
dA|B(v) is a plane in the three-dimensional(v, d) space.
We now look for a point(v∗, d∗) that liesaboveall planes
induced by the distance functions, and has a minimald-value.
Our new velocityvnew

A is then set tov∗.
We can use the same randomized algorithm as above to

solve this 3-D linear program. It still runs inO(n) expected
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Fig. 6. (a) A dense configuration with three robots moving towards robotA. The current velocities of the robots are shown using arrows; robot A has
zero velocity.(b) The half-planes of permitted velocities for robotA induced by each of the other robots withτ = 2 andvopt

∗ = v∗ for all robots. The
regionORCA

τ

A
is empty, so avoiding collisions withinτ time cannot be guaranteed.(c) The half-planes of permitted velocities for robotA induced by

each of the other robots withτ = 2 andvopt
∗ = 0 for all robots. The dashed region isORCA

τ

A
.

time, wheren is the number of other robots. In fact, we
can project the problem down on thev-plane, such that
all geometric operations can be performed in 2-D. The 3-
D linear program is always feasible, so it always returns a
solution.

Note that in these dense cases, the new velocity selected
for the robot does not depend on the robot’s preferred
velocity. This means that the robot ‘goes with the flow’, and
its behavior is fully determined by the robots surrounding
the robot.

D. Static Obstacles

So far we have only discussed how robots avoid collisions
with each other, but typical multi-robot environments also
contain (static) obstacles. We can easily incorporate those in
the above framework. We basically follow the same approach
as above, with a key difference being that obstacles do
not move, so the robots should take full responsibility of
avoiding collisions with them.

We can generally assume that obstacles are modeled as
a collection of line segments. LetO be one of such line
segments, and letA be a robot with radiusrA positioned
at pA. Then, the velocity obstacleV Oτ

A|O induced by the
obstacleO is defined as (see Fig. 7(a) and (b)):

V Oτ
A|O = {v | ∃t ∈ [0, τ ] :: tv ∈ O ⊕−D(pA, rA)}. (11)

Agent A will collide with obstacleO within τ time if its
velocityvA is insideV Oτ

A|O, and it will be collision-free for
at leastτ time if its velocity is outside the velocity obstacle.
Hence, we could define the region of permitted velocities
for A with respect toO as the complement ofV Oτ

A|O.
However, this would disallow us to use the efficient linear
programming algorithm of Section V-A, as the complement
of V Oτ

A|O is a non-convexregion. Therefore, we define the
set of permitted velocities forA with respect toO as the
half-planeORCA

τ
A|O whose delimiting line is thetangent

line to V Oτ
A|O at the closest point tovopt

A on the boundary
of V Oτ

A|O (see Fig. 7(c)).
In case of obstacles, we choosevopt

A = 0 for all robots
A. This guarantees that there always exists a valid velocity
for the robot that avoids collisions with the obstacles within

(a) (b)

Fig. 8. Trace of robots in two small behavioral simulations.Robots are
shown as colored disks which are light at their initial positions and darken
as time progresses.(a) Trace of two simulated robots passing each other.
(b) Trace of five simulated robots crossing each other to antipodal points
in a circle.

τ time. We can typically use a smaller value ofτ with
respect to obstacles than with respect to other robots, as
robots should typically not be ‘shy’ to move towards an
obstacle if this is necessary to avoid other robots. On the
other hand, the constraints on the permitted velocities forthe
robot with respect to obstacles should behard, as collisions
with obstacles should be avoided at all cost. Therefore, when
the linear program of Section V-A is infeasible due to a high
density of robots, the constraints of the obstacles are not
relaxed.

We note that the half-planes of permitted velocities with
respect to obstacles as defined above only make sure that
the robot avoids collisions with the obstacle; they do not
make the robot move around them. The direction of motion
around obstacles towards the robot’s goal should be reflected
in the robot’spreferred velocity, which could be obtained
using (efficient) global path planning techniques.

VI. EXPERIMENTAL RESULTS

To test our technique we ran several simulations. We
performed both small-scale simulations to test local behavior
and large-scale simulations to analyze performance scaling.



(a) (b) (c)

Fig. 7. (a) A configuration of a robotA and a line-segment obstacleO. (b) Geometric construction of the velocity obstacleV Oτ

A|O
for τ = 2. (c) The

delimiting line of the half-planeORCA
τ

A|O is tangent toV Oτ

A|O
at the closest point on its boundary tovopt

A
, which equals0 in the case of obstacles.

Behavioral Results: We first show two scenarios which
highlight how robots smoothly avoid collisions with each
other on the local level. In the first, shown in Fig. 8(a),
two robots exchange position. When the robots notice that a
collision is imminent (i.e. it will happen withinτ time), they
change velocities to smoothly avoid it. The second scenario
shows five robots whose goal is to move across a circle to the
antipodal position. As Fig. 8(b) shows, the robots smoothly
spiral around each other to avoid collisions.

Performance Results: In order to test the performance
of our method we ran two large-scale simulations (see Fig.
9). The first test was a simulation of 1,000 agents in a large
circle moving to antipodal positions. For the second test,
we incorporated our optimal reciprocal collision avoidance
formulation into the existing crowd simulation framework of
[10]. In this simulation, virtual agents attempt to evacuate an
office environment. The preferred velocity for each agent is
set to follow a globally-planned path out of the office.

Because each agent makes independent decisions, we are
able to efficiently parallelize the simulation by distributing
the computations for agents across multiple processors. We
used OpenMP multi-threading to parallelize key computa-
tions across eight Intel Xeon 2.66GHz (Clovertown) cores.
Fig. 10(a) shows how our method scales across various
numbers of cores in the Office scenario. There is a fairly
good scaling in all scenarios – with best observed results in
nearly linear scaling for a large number of agents where the
constant system overhead becomes far less significant in the
overall computation time.

In terms of absolute performance, Fig. 10(b) shows the
running time for various numbers of agents for both simu-
lations. For 5,000 agents on eight cores, it takes 8 ms (125
frames per second) to solve the collision-avoidance linear
program for every agent in the large circle simulation, and
15.6 ms (64 frames per second) to update every agent in the
office evacuation simulation.

VII. C ONCLUSION AND FUTURE WORK

In this paper, we have presented an efficient method that
provides a sufficient condition for multiple robots to select an
action that avoids collisions with other robots, though each

Fig. 10. Performance Graphs:(a) Performance scaling on the evacuation
simulation for 1 to 8 cores.(b) Runtime for various number of agents on 8
cores (lower is better). Both simulations scale approximately linearly with
the number of agents.

acts independently without communication with others. Our
approach to reciprocaln-body collision avoidance exhibits
fast running times and smooth, convincing behavior in our
experiments.

We have used a simple robot model, in which kinematics
and dynamics are ignored. An important extension for future
work is to take such constraints into account. We can either
do this as a post-processing step, in which the computed new
velocity is ‘clamped’ to what the kinematic and dynamic
constraints allow. This would not strictly guarantee avoiding
collisions anymore, but it may work well in practice [25].
A more thorough solution would be to take these factors
intrinsically into account in the derivation of the permitted
velocities for the robots. [27] and [19] provide some inter-
esting ideas in this direction.

In this paper, we have demonstrated results for only 2-D



Fig. 9. (top) Simulation of 1,000 agents trying to move through the center of a circle to antipodal positions. Robots smoothly move through the congestion
that forms in the center. (bottom) Snapshots from simulation of 1,000 virtual agents evacuating an office as part of a crowd simulation.

environments. However, all definitions and the algorithm can
be extended to 3-D. This may be interesting for applications
such as autonomous aerial vehicles, or flocking simulation
of birds or fish. Another important direction for future work
is to implement the presented framework on real robots
and incorporate sensing uncertainty. This has been done for
reciprocal velocity obstacles in [25]. We believe that we can
relatively easily replace the RVO formulation by our ORCA
formulation in that implementation.
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