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Abstract—In this paper, we present a formal approach to robots or central coordination. Yet, we prove that our métho
reciprocal n-body collision avoidance, where multiple mobile  guarantees collision-free motion for each of the robots.
robots need to avoid collisions with each other while moving ) - )
in a common workspace. In our formulation, each robot acts We use a simplified robot model, where each robot is

fully independently, and does not communicate with other assumed to have a simple shape (circular or convex polygon)
robots. Based on the definition of velocity obstacles [5], we moving in a two-dimensional workspace. Furthermore, we

derive sufficient conditions for collision-free motion by reducing that th bot Hol icie it .
the problem to solving a low-dimensional linear program. We assume that the robo OnomIG I.€. 1t can move In any

test our approach on several dense and complex simulation direction, such that the control input of each robot is simpl
scenarios involving thousands of robots and compute coliisn-  given by a two-dimensional velocity vector. Also, we assume

free actions for all of them in only a few milliseconds. To thebest  that each robot hagerfectsensing, and is able to infer the

of our knowledge, this method is the first that can guarantee  gyact shape, position and velocity of obstacles and other
local collision-free motion for a large number of robots in a . .
robots in the environment.

cluttered workspace.

Main results: We present a rigorous approach for recip-
|. INTRODUCTION rocal n-body collision avoidance that providessalfficient

. . . . . condition for each robot to be collision-free for at least a
Collision avoidance is a fundamental problem in rObOtICSerd amount of time into the future, only assuming that

The problem can generally be defined in the context g e other robots use the same collision-avoidance pratocol
an autonomous mobile robot navigating in an environme . : S P
. ! I ur approach iselocity-basedThat implies that each robot
with obstacles and/or other moving entities, where the trob? : ;
kes into account the observed velocity of other robots

employs a continuous cycle of sensing and acting. In eaclel . . .
pioy . y 9 9 in order to avoid collisions with them, and also that the
cycle, an action for the robot must be computed based on . . . . .
. . robot selects its own velocity from itgelocity spacein

local observations of the environment, such that the robo

stays free of collisions with the obstacles and the othé’yh'Ch certain regions are marked as forb|d<_jen “bec_ause
. L . . of the presence of other robots. Our formulation, “optimal
moving entities, while making progress towards a doal.

. ; ._reciprocal collision avoidance”, infers for each otherabh
The problem of collision avoidance has been well studie . : .
S : . -nalf-plane (in velocity-space) of velocities that are a#al
for one robot avoiding static or moving obstacles. In thl%

. . 0 be selected in order to guarantee collision avoidance. Th
paper, we address the more involved and less studied problem g

! - ) S robot then selects its optimal velocity from the intersamti
of reciprocal n-body collision avoidangewhere collisions

need to be avoided among multiple robots (or any decisior?—]c all-permitted half-planes, which can be done efficiently

: o : : .~~~ using linear programming Under certain conditions with
making entities). This problem has important application : .
. ; : : . densely packed robots, the resulting linear program may
in many areas in robotics, such as multi-robot navigatio

S . Be infeasible, in which case we select the ‘safest possible’
and coordination among swarms of robots [20]. It is also an_, . ! . . .
. . . ._velocity using a three-dimensional linear program.
key component in crowd simulation for computer graphics
and VR [11], [21], modeling of non-player characters in We experimented with our approach on several complex
Al, studying flocks of birds and fish in biology [23], and simulation scenarios containing thousands of robots. As
real-time (air) traffic control [16]. In this paper, we prg@ each robot is independent, we can fulparallellize the
a fast and novel method that simultaneously determine®mputation of the actions for each robot and report very
actions for many (possibly thousands of) robots that eadhst real-time running times. Furthermore, our experiment
may have different objectives. The actions are computed fehow that our approach achieves convincing motions that are

each robot independently, without communication among ttemooth and collision-free.
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II. PREVIOUS WORK IIl. PROBLEM DEFINITION

The problem of collision avoidance has been extensively The problem we discuss in this paper is formally defined
studied. Many approaches assume the observed obstadsdollows. Let there be a set afrobots sharing an environ-
to be static (i.e. non-moving) [2], [4], [6], [7], [13], [14] ment. For simplicity we assume the robots are disc-shaped
[24], and compute an immediate action for the robot thaand move in the plan®&? (the definitions and algorithms we
would avert collisions with the obstacle, in many casepresent in this paper can easily be extended to translating
taking into account the robot's kinematics and dynamicsolygons, and also to higher dimensions). Each rebbas a
If the obstacles are also moving, such approaches typicalyirrent positiorp 4 (the center of its disc), a current velocity
repeatedly “replan” based on new readings of the positionss and a radius 4. These parameters are part of the robot’s
of the obstacles. This may work well if the obstacles movexternal state, i.e. we assume that they can be observed by
slower than the robot, but among fast obstacles (such ather robots. Furthermore, each robot has a maximum speed
crossing a highway), the velocity of the obstacles need tg}®* and a preferred velocity”*", which is the velocity the
be specifically taken into account. This problem is gengrallrobot would assume had no other robots been in its way (for
referred to as “asteroid avoidance”, and approaches tjpicainstance a velocity directed towards the robot's goal with a
extrapolate the observed velocities in order to estimate thimagnitude equal to the robot’s preferred speed). We conside
future positions of obstacles [8], [9], [12], [19], [22],§R  these parameters part of the internal state of the robot, and

The problem of collision avoidance becomes harder whetan therefore not be observed by other robots.
the obstacles are not simply moving without consideringthe The task is for each robo# to independently(and
environment, but are also intelligent decision-makingtimt  simultaneously) select a new velocity*" for itself such
that try to avoid collisions as well. Simply consideringithe thatall robots areguaranteedo be collision-free for at least
as moving obstacles may lead ¢scillations if the other a preset amount of time when they would continue to
entity considers all other robots as moving obstacles ak wahove at their new velocity. As a secondary objective, the
[15], [26]. Therefore, the reactive nature of the othertegi robots should select their new velocity as close as possible
must be specifically taken into account in order to guarantde their preferred velocity. The robots are not allowed to
that collisions are avoided. Yet, the robot may not be ableommunicate with each other, and can only use observations
to communicate with other entities and may not know theiof the other robot'surrent position and velocity. However,
intents. We call this problemeciprocal collision avoidance each of the robots may assume that the other robots use the
and is the focus of this paper. same strategy as itself to select a new velocity.

Velocity obstacles (VO) [5] have been a successful We name this problem “reciprocatbody collision avoid-
velocity-based approach to avoid collisions with movingance”. Note that this problem cannot be solved using central
obstacles; they provide sufficientand necessangcondition coordination, as the preferred velocity of each robot isonl
for a robot to select velocity that avoids collisions withknown to the robot itself. In Section IV, we present a
an obstacle moving at a known velocity. This approachufficientcondition for each robot to select a velocity that
was extended for robot-robot collision avoidance with thés collision-free for (at least) time. In Section V we show
definition of Reciprocal Velocity Obstacles (RVO) [10], [26 how we use this principle in a continuous cycle for multi-
where both robots were assumed to select a velocity outsitgbot navigation.
the RVO induced by the other robot. However, this for-
mulation only guarantees collision-avoidance under $jgeci
conditions, and does not provide a sufficient condition foA. Preliminaries

collision-avoidance in generalln this paper, we presentthe o two robotsA and B, the velocity obstaclel’ 07
principle of optimal reciprocal collision avoidancORCA)  (read: the velocity obstacle fad induced by B for time
that overcomes this limitation; ORCA provides a sufficienfyindow 7) is the set of allrelative velocities of A with
condition for multiple robots to avoid collisions among ongegpect taB that will result in a collision betweed and B
another, and thus can guarantee collision-free navigation 4t some moment before time[5]. It is formally defined as

We note that it is possible to provide a sufficient and necegg|lows. Let D(p, ) denote an open disc of radiusentered
sary condition for multiple (say) robots to select collision- 5t p;

§v0|d|ng ve!ocme§, by defining a)mpos!t_e/elocny obstacle D(p,r) ={q|lla-p| <}, (1)
in the 2n-dimensional space of velocities of all robots
[1]. However, this is not only computationally impractical then:
it also requires central coordination among robots. This_,
is incompatible with the type of distributed multi-robot VOyp={v[3t€0,7]::tv € D(pp —pa,ra+ TB)}Z
navigation we focus on in this paper, in which each robo_]_he cometric interpretati f velocity obstacles i (srt)n
independently and simultaneously selects its velocitynfro in F'g (b I\Il tl thrpl‘rfozirlon Od\(foofl y obstacles LS SMOW
its own 2-D velocity space. N F1g. .( ). Note tha Al an B|A Gresymmetrian
the origin.

2|n fact, both robots selecting a velocitgside each other's RVO is a Let szl andVB be cgrrejnt the velocities-of rObOEaan’

sufficient condition to end up in a collision. respectively. The definition of the velocity obstacle inagli
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W and Vg C CATBlA(VA). If Vy = C’Ang(VB) and Vg =
CATB|A(VA), we call V4 and Vg reciprocally maximal

B. Optimal Reciprocal Collision Avoidance

Given the definitions above, we would like to choose sets
of permittedvelocities V4 for A and Vg for B such that
e )T CA7 5(Ve) = Va and CAG, ,(Va) = Vp, ie. they are

reciprocally collision-avoiding and maximal and guarante
that A and B are collision-free for at least time. Also,
becaused and B are individual robots, they should be able to
infer their set of permitted velocities without communioat
Y with the other robot. There are infinitely many pairs of sets
V4 and Vp that obey these requirements, but among those
we select the pair that maximizes the amOldnt of permitted
obstacleVO7, ,; (gray) can geometrically be interpreted as a truncatealgl)?c't'es “%Iose” tooptimization VelOCItIESTpr for A and
cone with its apex at the origin (in velocity space) and igsl¢éangentto Vp for B.° We denote these Se@RCAA\B for A and
the disc of radius 4 +rp centered abp —pa. The amount of truncation  ORCAT, 4 for B, and formally define them as follows. Let

depends on the value of the cone is truncated by an arc of a disc of radius ; .
(ra+rp)/T centered afpp —pa)/7. The velocity obstacle shown here |V| denote the measure (i.e. areaIRﬁ) of setV;

Is for 7 = 2. Definition 1 (Optimal Reciprocal Collision Avoidance)
ORCA,p and ORCAL, are defined such

B

@ (b)
Fig. 1. (a) A configuration of two robotsA and B. (b) The velocity

v that they are reciprocally collision-avoiding and
maximal, i.e. CA} ;(ORCAL,) = ORCAYp and

CA;IA(ORCAQ|B) = OROAT_B‘A, and such that for

ol : all other pairs of sets of reciprocally collision-avoiding
VC}\A@\VB : velocities V4 and Vg (i.e. Vi C CAQ‘B(VB) and

Vg C CATB|A(VA)), and forall radii r > 0,
|ORCAT 5 N D(V¥',r)| = |ORCAg , N D(VY*,7)| >
min(|V4 N D(Vzpt,rﬂ, [V N D(v%pt, ).

CAin(V3) = “ This means thatORCA’yp and ORCAE, contain
T 7 I more velocities close tor%" and v}*, respectively, than

L S any other pair of sets of reciprocally collision-avoiding
velocities. Also, the distribution of permitted velocgigs
Fig. 2. The set of collision-avoiding velocitieS A7, ,(Vz) for robot A “fair”, as the amount of velocities close to the optimizatio

given that robotB selects its velocity from some sei; (dark gray) is the ~ Velocity is equal forA and B.
complement of the Minkowski sum (light gray) MO;‘B andVp.

We can geometrically constructORCA)z and
that if va — vp € VO, g OF equivalently ifvy — vy € ORCAE, as follows. Let us assume thal and B
VO3, 4, thenA and B will collide at some moment before adopt velocitiesvy™* and vi¥*, respectively, and let us
time 7 if they continue moving at their current velocity. assume that that causeésand B to be on collision course,

Conversely, ifvy — vg ¢ VOy g robot A and B are ie. v — vP' ¢ VO g Letu be the vector from

guaranteed to be collision-free for at leastime. voPt — viP' to the closest point on the boundary of the
More generally, letX @ Y denote the Minkowski sum of velocity obstacle (see Fig. 3):

setsX andY;

u=(argmin [|v— (v —vF)[) - (v¥' = vy, (5)
XY ={x+y|xeX,yeY}, (3) VEOVOL 5

then for any seVz, if vi € Vi andv 4 ¢ VO},‘B@VB. then and Igtn bf ;che O;Jttward normal of .the boundaryIéDg‘B
A and B are guaranteed to be collision-free at their currerit POINt (VY™ — vi") + u. Then,u is the smallest change
velocities for at least time. This leads to the definition of réquired to the relative velocity of and B to avert collision
the set ofcollision-avoidingvelocities CA (Vi) for A Within 7 time. To “share the responsibility” of avoiding
given thatB selects its velocity fron¥; (see Fig. 2): collisions among the robots in a fair way, robdt adapts

CA™. Ve)={v|veVvVOo, .aV, 4 We introduce these optimization velocities to generalize definition
A|B( B) { | € AlB B} ( ) of ORCA. Nominally, the optimization velocities are equalthe current
. . velocities, such that the robots have to deviate as littlgp@ssible from
We call a pair of sets/y and V of velocities for A their current trajectories to avoid collisions. Other desi are discussed in

and B reciprocally collision-avoidingf Vi € CA} 5(Vs)  detail in Section V-B.



v Sense positions Compute ORCA.s
and velocities of [~ with respect to
other robots each other robot B
Apply velocity to Select new velocity
o robot's actuators / < using Linear
OQS" Update position Programming
Vi ?&\*
y © Fig. 4. A schematic overview of the continuous cycle of semsind acting
Q%' that is independently executed by each robot.
0 — Vx N N oy
v;;m \ ) /b‘ ) /y%
_Tap <
E ™~ 8
Fig. 3. The setORCA7,, 5 of permitted velocities forA for optimal < ) Q
reciprocal collision avoidance wit is a half-plane delimited by the line F »L/ e
perpendicular tou through the pointv‘jqpt + %u, whereu is the vector ( \/
from voP* — v%* to the closest point on the boundary WO, ;. Ve G\:>\ &
( ‘
\ o*
. . D
its velocity by (at Ieast)%u and assumes thd® takes care 72&
of the other half. Hence, the s€RCA}, z of permitted
velocities for A is thehalf-planepointing in the direction of Ve
. . t 1 . {
n starting at the point’%" + 5u. More formally: L/ )
ORCAT s — opt | 1 >0l (6 . 9
Wp = {vI(v = (vF' 4 Sw)-n =0} (©) (A S
A ;
- . . . .
The setORCAE 4 for B is defined symmetrically (see Fig. @ (b)

3). The above equations also applydfand B arenotona . _ o . .

.. . . L - Fig. 5. (a) A configuration with eight robots. Their current velocitiage
_CO|||S|Otn Courtse when adoptln_g their optimization velist _ shown using arrowgb) The half-planes of permitted velocities for rohat
Ie. vzp —v%p o4 V02|B. In this case, both robots each will induced by each of the other robots with= 2 and withvSP" = v, for all

take half of the responsibility to remain on a collisiondre robots (i.e. the optim‘iza‘tion velocity equals t‘he curregipeity). The hglf-
trajectory. planes of E and C coincide. The dashed region 3RCA7,, and contains

the velocities forA that are permitted with respect to all other robots. The
It can be seen thaORCAQ‘B and ORCAE;‘A as con- arrow indicates the current velocity of.

structed above are in fact optimal according to the criterio
of Definition 1. AgentsA and B can infer ORCAQ‘B and other robot, and we denote this s8RCA’, (see Fig. 5):
ORCATY, 4, respectively, without communicating with each
other, §|sAlong r'?he robgts cabserveeach other’g position, ORCAY = D(0,03™) N ﬂ ORCA;&IB' @)
radius, and optimization velocity. In Section V-B, we dissu B#A
reasonable choices for the optimization velocity of theotsb Note that this definition also includes the maximum speed
constraint on robot.
V. n-Boby COLLISION AVOIDANCE Next, the robot selects a new veflocityfw for itself that
re:

In this section we show how to apply the ORCA principle's closest to its preferred velocity, © amongst all velocities

as defined above to perform-body collision avoidance inside the region of permitted velocities:
among multiple moving robots, and discuss how we can ViV = argmin ||V_VZYCf||, (8)
incorporate static obstacles in this framework. veORCAY,
] We will show below how to compute this velocity efficiently.

A. Basic Approach Finally, the robot reaches its new position;

The overall approach is as follows. Each rodoperforms
a continuous cycle of sensing and acting with time stgp
In each iteration, the robot acquires the radius, the ctirreand the sensing-acting cycle repeats (see Fig. 4).
position and the current optimization velocity of the other The key step in the above procedure is to compute the new
robots (and of itself). Based on this information, the robotelocity v as defined by Equations (7) and (8). This can
infers the permitted half-plane of velociti€zRCA’y z with  efficiently be done usinginear programming as ORCA’
respect to each other rob#t The set of velocities that are is a convexregion bounded by linear constraints induced by
permitted forA with respect taall robots is the intersection the half-planes of permitted velocities with respect toheac

of the half-planes of permitted velocities induced by eacbf the other robots (see Fig. 5). The optimization functien i

PA" =pa+ViTAL 9)



the distance to the preferred velocit)'. Even though this
is a quadratic optimization function, it does not invalelttie
linear programming characteristics, as it has only onelloca
minimum.

We use the efficient algorithm of [3], which adds the
constraints one by one in random order while keeping track
of the current optimal new velocity. The algorithm has an
expected running time ad(n), wheren is the total number
of constraints in the linear program (which equals the numbe
of robots in our case). The fact that we include a circular
constraint for the maximum speed does not significantly alte
the algorithm, and does not affect the running time. The
algorithm returns the velocity ifDRCA’; that is closest to
virand reports failure if the linear program is infeasible,
i.e. whenORCA’, = 0. If the optimization velocities for the
robots are chosen carefully (as we will discuss in Section
V-B), ORCA, will never be empty, and hence there will
always be a solution that guarantees that the robots are
collision-free for at least time.

We can increase the efficiency of selecting velocities by
not including the constraints of all other robots, but onfy o
those that are “close” by. In fact, robof$ that are farther
away from robotA than (v}{** 4 v*)7 will never collide
with robot A within 7 time, so they can safely be left out
of the linear program when computing the new velocity for
robot A. A minor issue is that robol does not know the
maximum speed of other robots, but this can be worked

vt = virf (i.e. the preferred velocity) for all robots

A. The preferred velocity is part of the internal state of
the robots, so it cannot be observed by the other robots.
Let us, for the sake of the discussion, assume that it is
somehow possible to infer the preferred velocity of the
other robots, and that the optimization velocity is set to
the preferred velocity for all robots. This would work
well in low-density conditions, but, as thmagnitude

of the optimization velocity increases, it is increasingly
more likely that the linear program is infeasible. As in
most cases the preferred velocity has a constant (large)
magnitude, regardless of the density conditions, this
would lead to unsafe navigation in even medium density
conditions.

v = v, (i.e. the current velocity) for all robotd.
Setting the optimization to the current velocity is the
ideal trade-off between the above two choices, as the
current velocity automatically adapts to the situation:
it is (very) indicative of the preferred velocity in low-
density cases, and is close to zero in dense scenarios.
Also, the current velocity can be observed by the
other robots. Nevertheless, the linear program may be
infeasible in high-density conditions (see Fig. 6(b)).
In this case, choosing a collision-free velocity cannot
be guaranteed. Instead, we select the ‘safest possible
velocity for the robot using a 3-D linear program (which
we discuss in Section V-C).

around by “guessing” the maximum speed of other robots @ pensely Packed Conditions

be equald’s own. We can efficiently find the set of close-by
robots whose constraints should be included usikBdree

opt

If we choosev™ = v, for all robots A, there might

not be a single velocity that satisfies all the constraints of
the linear program in situations where the density of the
robots is very high. In other words, the 8RCA’, is empty
One issue that we have left open is how to choo%@ (see Fig. 6(b)), and the algorithm of Section V-A returns
for each robotA. In order for the robots to infer the half- that the linear program is infeasible. In this case, chapsin
planes without communicatiow”* must be observable to a collision-free velocity cannot be guaranteed. Insteagl, w
other robots. Here, we discuss some reasonable possiiilitiselect the ‘safest possible’ velocity for the robot, i.ee th
. vji{’t — 0 for all robots A. If we set the optimization velocity that minimally ‘penetrates’ the constraints icdd
velocity to zero for all robots, it igguaranteedthat PY the other robots. More formally, lets 5(v) denote the
ORCA", is non-empty for all robotst (see Fig. 6(c)). signed(Euclidean) distance of velocity to the edge of the

Hence, the linear programming algorithm as described@!-Plane ORCA} p. If v € ORCA} p, thendy p(v) is

above will find a velocity for all robots that guaranteed€92tive. We now choose the velocity that minimizes the
them to be collision-free for at least time. This can Mmaximum distance to any of the half-planes induced by the

be seen as follows. For any other rohBt the point ©Other robots:
0 always lies outside the velocity obstacIéOZ‘ B
(for finite 7). Hence the half-plan®RCA’, 5 always
includes at least velocit@. In fact, the line delimiting Geometrically, this can be interpreted as moving the edges
ORCA} g is perpendicular to the line connecting theof the half-planesORCA’, 5 perpendicularly outward with
current positions ofA and B. equal speed, until exactly one velocity becomes valid.

A drawback of setting the optimization velocity to zero We can find this velocity using three-dimensionadinear

is that the behavior of the robots is unconvincing, aprogram. For each other robds, the distance function
they only take into account the current positions ofi4 z(v) is a plane in the three-dimension@at,d) space.

the other robots, and not their current velocities. InWe now look for a pointv*, d*) that liesaboveall planes
densely packed conditions, this may also lead to mduced by the distance functions, and has a miniinalue.
global deadlock, as the chosen velocities for the robotSur new velocityv’*™ is then set tov*.

converge to zero when the robots are very close to oneWe can use the same randomized algorithm as above to
another. solve this 3-D linear program. It still runs iR (n) expected

B. Choosing the Optimization Velocity

VIAGW

(10)

argmin max da|p(v).
veD(0,umax) B#A



Fig. 6. (a) A dense configuration with three robots moving towards rakiofThe current velocities of the robots are shown using arrealsot A has
zero velocity.(b) The half-planes of permitted velocities for rohdtinduced by each of the other robots with= 2 and voP* = v, for all robots. The
region ORCAT, is empty, so avoiding collisions withim time cannot be guarantee(t) The half-planes of permitted velocities for rohdtinduced by
each of the other robots with = 2 and v‘jpt = 0 for all robots. The dashed region 8RCA’,.

time, wheren is the number of other robots. In fact, we
can project the problem down on theplane, such that
all geometric operations can be performed in 2-D. The 3-
D linear program is always feasible, so it always returns a
solution.

Note that in these dense cases, the new velocity selected
for the robot does not depend on the robot's preferred
velocity. This means that the robot ‘goes with the flow’, and
its behavior is fully determined by the robots surrounding
the robot.

D. Static Obstacles

So far we have only discussed how robots avoid collisions (@) (b)
with e_aCh Ot_her' but typical mUIt"rOb(_)t gnwronmentg aISQig. 8. Trace of robots in two small behavioral simulatioRabots are
contain (static) obstacles. We can easily incorporateetios shown as colored disks which are light at their initial piosis and darken
the above framework. We basically follow the same approaci time progressega) Trace of two simulated robots passing each other.

. ] ] Trace of five simulated robots crossing each other to angippdints

as above, with a key difference being that obstacles qg’, .ice.
not move, so the robots should take full responsibility of
avoiding collisions with them.

We can generally assume that obstacles are modeled
a collection of line segments. L&? be one of such line
segments, and letl be a robot with radius 4 positioned

7 time. We can typically use a smaller value ofwith
r§§pect to obstacles than with respect to other robots, as
robots should typically not be ‘shy’ to move towards an
) : obstacle if this is necessary to avoid other robots. On the
atpa. The_n, the_ velocity ObStQCIyO;‘IO induced by the g hand, the constraints on the permitted velocitieshfer
obstacleO is defined as (see Fig. 7(a) and (b)): robot with respect to obstacles shouldhmsad, as collisions
VO;&IO ={v|3te[0,7]:tveO®—-D(pa,ra)}. (11) with obstacles should be avoided at all cost. Thereforepwhe
the linear program of Section V-A is infeasible due to a high
density of robots, the constraints of the obstacles are not
relaxed.
We note that the half-planes of permitted velocities with
?espect to obstacles as defined above only make sure that

Agent A will collide with obstacleO within 7 time if its
velocity v 4 is insideV O ,, and it will be collision-free for
at leastr time if its velocity is outside the velocity obstacle.
Hence, we could define the region of permitted velocitie
for A with respect toO as the complement ot/ O7, .

set of permitted velocities forl with respect toO as the
half-plane ORCA,, whose delimiting line is th¢angent
line to VO7,,, at the closest point te’* on the boundary
of VO;HO (see Fig. 7(c)).

In case of obstacles, we choos&* = 0 for all robots To test our technique we ran several simulations. We
A. This guarantees that there always exists a valid velocifyerformed both small-scale simulations to test local bitav

for the robot that avoids collisions with the obstacles with and large-scale simulations to analyze performance gralin

using (efficient) global path planning techniques.

VI. EXPERIMENTAL RESULTS
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Fig. 7. (a) A configuration of a robotd and a line-segment obstaal2. (b) Geometric construction of the velocity obsta@l’@;\‘o for 7 = 2. (c) The

delimiting line of the half—planeORCA;‘O is tangent toVOjMO at the closest point on its boundary *&@’f“, which equals0 in the case of obstacles.

Behavioral Results: We first show two scenarios which Performance Scaling - Office Demo
highlight how robots smoothly avoid collisions with each
other on the local level. In the first, shown in Fig. 8(a), s
two robots exchange position. When the robots notice that a a ﬂ . Agents
collision is imminent (i.e. it will happen within time), they / o
change velocities to smoothly avoid it. The second scenario
shows five robots whose goal is to move across a circle to the /
antipodal position. As Fig. 8(b) shows, the robots smoothly
spiral around each other to avoid collisions.

Performance Results:In order to test the performance Num Cores
of our method we ran two large-scale simulations (see Fig. RunningTime vs. Num. Agents
9). The first test was a simulation of 1,000 agents in a large (8 Cores)
circle moving to antipodal positions. For the second test, "
we incorporated our optimal reciprocal collision avoidanc
formulation into the existing crowd simulation framework o
[10]. In this simulation, virtual agents attempt to evaeuarn
office environment. The preferred velocity for each agent is
set to follow a globally-planned path out of the office. P

Because each agent makes independent decisions, we are L
able to efficiently parallelize the simulation by distrilmg ’ e f:”“mbm:“”l“ o
the computations for agents across multiple processors. We
used OpenMP multi-threading to parallelize key computarig. 10. Performance Graphéa) Performance scaling on the evacuation
tions across eight Intel Xeon 2.66GHz (Clovertown) coresimulation for 1 to 8 coregb) Runtime for various number of agents on 8
Fig. 10(a) shows how our method scales across Variogq%res (lower is better). Both simulations scale approxéyalinearly with

. . . . . the number of agents.
numbers of cores in the Office scenario. There is a fairly

good scaling in all scenarios — with best observed results dbts independently without communication with others. Our

nearly linear scaling for a large number of aggntg Whergt ep roach to reciprocal-body collision avoidance exhibits
constant system overhead becomes far less significant in t running times and smooth, convincing behavior in our

ovleraII comp?tagonltme. f e 1ot <h hexperiments.
n terms of absolute performance, Fig. 10(b) shows the We have used a simple robot model, in which kinematics

Irutr_mmg I'ilmeSf(())(r)a/arlou? numb_err?t of agen{st fEr b%th S|m1u- d dynamics are ignored. An important extension for future
ations. or o, agents on eight cores, it takes 8 ms ( ork is to take such constraints into account. We can either

frames p]?r second) to tS(.)IVteh thle coll|§|o|r1-ay0|d?r19e line o this as a post-processing step, in which the computed new
program for every agent in the large circle simuiation, an elocity is ‘clamped’ to what the kinematic and dynamic

15.6 ms (64 frames per second) to update every agentin t Snstraints allow. This would not strictly guarantee aumid

office evacuation simulation. collisions anymore, but it may work well in practice [25].
A more thorough solution would be to take these factors
intrinsically into account in the derivation of the perrait

In this paper, we have presented an efficient method theglocities for the robots. [27] and [19] provide some inter-
provides a sufficient condition for multiple robots to s¢las  esting ideas in this direction.
action that avoids collisions with other robots, thoughheac In this paper, we have demonstrated results for only 2-D

speedup
N oW

13 /
/ Demo

12
—e—Office
10

/ —B—circle
8 /
6 / /./
4
2
0

Milliseconds per Frame

VII. CONCLUSION AND FUTURE WORK



Fig. 9. (top) Simulation of 1,000 agents trying to move tlylothe center of a circle to antipodal positions. Robots ghipanove through the congestion
that forms in the center. (bottom) Snapshots from simulatib1,000 virtual agents evacuating an office as part of a drsimulation.

environments. However, all definitions and the algorithm ca [12]
be extended to 3-D. This may be interesting for applications
such as autonomous aerial vehicles, or flocking simulatiop 3,

of birds or fish. Another important direction for future work

is to implement the presented framework on real robots

. . . . e
and incorporate sensing uncertainty. This has been done for
reciprocal velocity obstacles in [25]. We believe that we ca [15]

relatively easily replace the RVO formulation by our ORCA N

formulation in that implementation.
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