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Abstract— This paper addresses the issue of motion safety in
dynamic environments using Velocity Obstacles. Specifically, we
propose the minimum time horizon for the velocity obstacle to
ensure that the boundary of the velocity obstacle approximates
conservatively that boundary of the set of inevitable collision
states. Thus, using the velocity obstacle to select potential
avoidance maneuvers would ensure that only safe maneuvers
are being selected. The computation of the minimum time
horizon is formulated as a minimum time problem, which
is solved numerically for each static or moving obstacle.
The “safe” velocity obstacles are used in an on-line planner
that generates near-time optimal trajectories to the goal. The
planner is demonstrated for on-line motion planning in very
crowded static and dynamic environments.

I. I NTRODUCTION

The main challenge in motion planning in dynamic envi-
ronments is reaching the goal while selecting on-line among
only safe avoidance maneuvers. While reaching the goal
cannot be guaranteed with an on-line planner, one can reduce
the state space search to only safe states, i.e. states from
which at least one other safe state is reachable. Some local
(reactive) planners exist [9], [21], [15], [16], but most donot
guarantee safety as they are too slow and hence their ability
to look-ahead and avoid states of inevitable collision [12]is
very limited. Recently, iterative planners [10], [4], [1],[14],
[6], [20] were developed that compute several steps at a time,
subject to the available computation time, but those too do
not address the issue of safety. A promising approach to safe
motion planning in dynamic environment is the consideration
of ”regions of inevitable collision,” first introduced in [18]
and later extended in [11], [17], [12], [3].

We address the issue of safety for an on-line local planner
in dynamic environments using velocity obstacles. Safety is
guaranteed by ensuring that the robot’s velocity does not
penetrate the velocity obstacle, which is generated for a
carefully selected time horizon. This time horizon, if properly
selected, ensures that the boundary of the velocity obstacle
conservatively approximates the boundary of the set of
inevitable collision states. Repelling the robot’s velocity from
entering the inevitable collision states ensures (if a solution
exists) that the robot does not crash into any static or moving
obstacle. The computation of the safe time horizon, which is
obstacle specific, is formulated as a minimum time problem
that minimizes the time for the robot velocity to exit the
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velocity obstacle, subject to the robot dynamic constraints.
The solution is shown to be along an extremal, generated on
the boundary of the control constraints.

Determining the safe time horizon is computationally
efficient and it does not require a prior mapping of inevitable
collision states. Since the time horizon is obstacle specific,
motion safety is guaranteed if obstacles can be avoided
individually or if the state-space between the current position
and the goal state stays connected. The velocity obstacles,
truncated at the minimum time horizon, are used for an on-
line planner that generates near-time optimal trajectories by
minimizing at each time step the time-to-go to the goal. The
planner is demonstrated for on-line motion planning in very
crowded static and dynamic environments.

II. T HE VELOCITY OBSTACLE

The velocity obstacle represents the set of all colliding
velocities of the robot with each of the neighboring obstacles
[7], [19], [13]. It maps static and moving obstacles into
the robot’s velocity space. The velocity obstacle of a planar
obstacle,B, that is moving along a general known trajectory,
c(t), is a warped cone in the velocity space of the point robot
A. It is called a nonlinear velocity obstacle (NLVO) since it
accounts for a general (nonlinear) trajectory of the obstacle.
Selecting asingle velocity at timet = t0 outside theNLVO
guarantees no collision at all times, as long as the obstacle
stays on its current trajectory.

The non-linear v-obstacle is constructed as a union of its
temporal elements,NLVO(t), which is the set of all absolute
velocities ofA, va, that would result in collision at a specific
time t. Referring to Figure 1,va that would result in collision
with point p ∈ B(t) at time t > t0, expressed in a frame
centered atA(t0), is simply

va =
c(t)+ r
t − t0

, (1)

wherer is the vector to pointp in the obstacle’s fixed frame.
It is a homothety transformation [5], centered atA(t0) and
scaled byk = 1

t−t0
:

va = HA,k(c(t)+ r);k =
1

t − t0
. (2)

The set,NLVO(t) of all absolute velocities ofA that would
result in collision with any point inB(t) at timet > t0 is thus:

NLVO(t) = HA,k(B(t));k =
1

t − t0
. (3)

Integrating (3) overt = [t0,∞) yields the non-linear v-
obstacle,NLVO∞

t0, representing the set of all linear velocities



of A that would collide withB(t) at time t = (t0,∞):

NLVO∞
t0 =

⋃

t

HA,k(B(t));k =
1

t − t0
; t = (t0,∞). (4)

The non-linear v-obstacle is a warped cone, as shown
schematically in Figure 2. Ifc(t) is bounded overt = (t0,∞),
then the apex of this cone is atA(t0). The boundaries of the
NLVO represent velocities that would result inA grazing
B. The smallest safe time horizon is the one that allows
sufficient time to avoid or escape collision as discussed next.
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Fig. 1. A temporal element of the non-linear v-obstacle.
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Fig. 2. A non-linear velocity obstacle

III. T IME HORIZON

The nonlinear velocity obstacle consists of the union of
temporal velocity obstacles from timet0 to infinity. It thus
accounts for colliding velocities that would result in colli-
sions at all times. To account for collisions that occur only
within a specified time horizon,th, the NLVO is truncated
by setting a time limit in (4):

NLVOth
t0 =

⋃

t

HA,k(B(t));k =
1

t − t0
; t = (t0, th). (5)

TruncatingNLVO to reflect specific time limits allows to
focus the motion planning problem on potential collisions
occurring within a specified time interval, such as imminent
collisions occurring within some given time horizon. This
permits avoidance maneuvers that are potentially risky, but

at times that are practically insignificant at the decision time
t0. Setting the time horizon too high would be too prohibitive,
as it would mark as dangerous maneuvers that might result
in collision at a distant time; selecting it too small would
permit dangerous maneuvers that are too close and at too
high speeds to avoid the obstacle. We wish to select the
smallest time horizon that would mark as dangerous only
those velocities at which the obstacle is unavoidable given
robot dynamics and its dynamic and kinematic constraints.
In other words, the velocity obstacle that is truncated by the
smallest time horizon should consist only of velocities that
belong to the inevitable collisions states (ICS). Conversely,
any velocity that does not penetrate this velocity obstacle
should allow sufficient time under the given control authority
to avoid collision. The smallest safe time horizon thus
allows sufficient time for the robot to avoid the obstacle,
or equivalently, bring its velocity vector outside the velocity
obstacle.

We define the smallest safe time horizon as the minimum
time to exit the velocity obstacle from a given state, subject
to robot dynamics and actuator constraints. It is the solution
of the minimization problem:

min
∫ th

t0
1dt, (6)

with the initial condition

x(t0), ẋ(t0) (7)

the final condition

ẋ(th) /∈ NLVO∞
th (8)

satisfying system dynamics

ẍ = f (x, ẋ,u) (9)

and control constraints

u ∈U, (10)

whereNLVO∞
th denotes a nonlinear velocity obstacle gener-

ated at timeth for an infinite time horizon.
It is easy to show that the solution,th, to problem (6)

is bang-bang, or obtained by an extremal trajectory that is
generated on the boundary of the control constraints [2].
For a point mass model, there are four such trajectories,
generated by the four corners of the set of admissible control
U . Figure 3 shows a point robotA, a static obstacleB, and
the initial velocityva that is pointing towardsB. Obviously,
va is inside the velocity obstacle ofB, or va ∈VOB. Applying
the controls associated with the four corners of the set
of admissible controlU results in four extremal trajectory
denotedx1− x4. We wish to compute the minimum time at
which the velocity along at least one of the extremals points
outside of the velocity obstacle, or equivalently, the velocity
va is tangent toB.

For the case shown, three of the four extremals penetrate
the obstacle and one does not. The minimum timeth that
is the solution to problem (6) is the time where the tangent
line at x1(th) is tangent toB, as shown in Figure 3. The case



shown in Figure 3 is for a static obstacle. The analysis for a
moving obstacle is similar except thatva is replaced with the
relative velocityva/b andvb is subtracted from the extremals.

The smallest time horizonth is obstacle specific, and it
depends on the size of the obstacle, its velocity, the robot’s
velocity and its dynamic constraints. Using the smallest
time horizon allows to detect if the robot approaches an
inevitable collision state (by determining how far isva from
the velocity obstacle) and to plan a safe avoidance maneuver.
It is important to note that by integrating the extremals to
computeth, one determines if the current state is safe or
not without resorting to the velocity obstacles. However,
knowing that a specific state may lead to a collision does
not help in selecting a safe maneuver. This is where the
velocity obstacles, generated for the smallest time horizon,
become most useful.

The smallest time horizon can be easily computed by
expressing all four extremal trajectories analytically and
searching for the nearest (in time) tangency point of the
common tangent betweenB and every extremal.
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Fig. 3. The robot and obstacle on a collision course

Figure 4 shows a static obstacle and the trajectory gener-
ated by the on-line planner discussed later. The robot starts
from rest at point(0,−4) at the bottom, and moves in near-
minimum time to the goal at(0,2). The minimum time
horizon along this path is shown in Figure 5. It grows from
zero since the robot starts from rest, then it decreases as the
robot moves tangentially to the obstacle. The time horizon
is zero at the tangency point since the robot velocity is
not pointing towards the obstacle. For the same reason, the
time horizon is zero when the robot moves away from the
obstacle.

Fig. 4. Dynamic avoidance of a static obstacle
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Fig. 5. The minimum time horizons along the path

In addition to focusing the avoidance on imminent colli-
sions, the time horizon allows the consideration of large static
obstacles, such as surrounding walls and highway barriers,
whose v-obstacles, without a time horizon, would cover the
entire velocity space. Consider a point robotA at the center
of a closed room, as shown on the left in Figure 6. The
velocity obstacle of the room’s walls with an infinite time
horizon covers the entire space, except the originA, since any
velocity other than zero would eventually result in collision
with the walls. The boundary of the velocity obstacle of each
wall is determined by computing the velocityvh that would
traverse the distanced to the wall in some set time horizon
th:

vh =
d
th

. (11)

Any velocity larger thanvh would penetrate the velocity
obstacle since it would result in collision at a shorter time
than the time horizonth, whereas any velocity smaller than
vh is safe for the durationt ≤ th. The inner boundary of the
velocity obstacle of the closed room is a scaled shape of the
room’s walls, as shown on the right in Figure 6; the shorter
the time horizon, the larger the “free” space.

In the case of a closed space, the smallest safe time horizon
is the minimum time to reach zero speed, since zero speed is
the only velocity outside the infinite time velocity obstacle
of the closed room. It can be approximated by computing the
minimum stopping timets in the direction of motion, which
is simply (for a point mass robot):

ts =
v

umin
, (12)

wherev is the robots current speed, andumin is its maximum
deceleration.

AA dvh

Fig. 6. The velocity obstacle of static walls and boundaries



IV. T HE PLANNER

The efficient representation of static and moving obstacles
by velocity obstacles allows us to efficiently plan safe
trajectories in dynamic environments. We assume knowledge
of the positions and velocities of the neighboring obstacles.

We distinguish between local and global planners. The
local planner generates one, or a few steps at every time
step, whereas the global planner uses a global search to
the goal over a time spanned tree. The local planner cannot
ensure convergence to the goal and in some cases may lead
to inevitable collision states [17]. The global planner, onthe
other hand, is complete, i.e. capable of finding a solution if
one exists. Our planner is local as it generates one move at
every time step.

The proper choice of the time horizon ensures survival of
the robot, i.e. not entering inevitable collision states (ICS).
For one obstacle, this guarantees convergence to the goal. For
many obstacles, a solution cannot be guaranteed due to the
changing nature of the environment: it is possible that during
the local search, the state space around the robot becomes
disconnected from the goal even though the global search
might escape such a trap. The off-line planner computes a
solution by exploring a tree of attainable states from the start
node until the goal node is reached. The tree can be expanded
using any efficient heuristics, such as a depth-first search or
A*. This search can be drastically reduced by considering
only ”safe” attainable states that satisfy system dynamics
and are out of theICS. This planner is new in its on-line
minimization of the time-to-go, combined with the use of
velocity obstacles and the minimum time horizon to guide
the tree search.

A. System Dynamics

The planner was implemented for a simple planar point
mass model. This is necessary for computational reasons,
and is in no way a limitation of this approach.

We consider the following point mass model:

ẍ = u1; |u1| ≤ 1 (13)

ÿ = u2; |u2| ≤ 1 (14)

where (x,y)T ∈ R2 represents the robot’s position in a
Cartesian coordinate frame and(u1,u2)

T ∈ R2 represents the
robot’s controls.

Since the planning is done in the velocity space, we wish
to compute the set of attainable Cartesian velocities (ACV ) of
the maneuvering robot that can be reached over a given time
interval, ∆t [8]. This set contains the avoidance maneuvers
that are dynamically feasible from a given state. Denoting
v(t) = (ẋ(t), ẏ(t))T , the set of attainableCartesian velocities,
ACV (t) is obtained by integrating the admissible controls
u = (u1,u2) ∈U from the current state(x,y, ẋ, ẏ):

ACV (t) = {av|av = v(t)+u∆t,u ∈U}. (15)

Each element inACV (t) represents an attainable velocity
measured from the originA. The geometric shape ofACV (t)
depends on the specific system dynamics. For a point mass

model, with constant control constraints, it spans a rectangle
aroundv(t) that is proportional to the shape of the set of
admissible controlsU , as shown in Figure 7. The size of
this rectangle depends on the time step∆t.

It is assumed that all velocities inACV (t) are reached
at time t, when in fact they are reached at timet + ∆t.
This discrepancy introduces a small error that can be easily
quantified.

Figure 8 shows the actual path followed by the robot from
some initial velocityva(t) under controlu = (1,−1) over the
time interval∆t. The actual path is compared to the assumed
straight line path, also shown in Figure 8. It is easy to show
that the deviation between the two paths is bounded by the
distancee between the end points:

e =
∆t2

2

√

u2
x +u2

y . (16)

This error can be made negligible by selecting∆t arbitrarily
small. It is possible to account for this error by enlarging
the obstacles bye. This error does not accumulate since the
actual positions of robot and obstacles are used at each time
step to generate the current velocity obstacles.

A

NLVO

va

ACV

Fig. 7. Attainable Cartesian Velocities
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A

Fig. 8. Actual and assumed path over∆t.

B. Tree Search

The planner uses a depth first A* search over a tree that
expands over time to the goal. Each node contains the current
position and velocity of the robot at the current time step.
At each state, the planner computes the set of admissible
velocitiesACV , which is then tessellated by a uniform grid,
as shown in Figure 7. To test the safety of the nodes on
the grid, a set of temporal velocity obstaclesNLVO(t), t ∈
(0, th) are computed at specified time intervals (the temporal
velocity obstacles are computed in reverse order, starting



from t = th). In Figure 7, onlyNLVO(th) is shown, where
nodes insideNLVO(th), marked red, are inadmissible. Nodes
out of NLVO(th) are further evaluated by computing from
each the unconstrained (no obstacles) minimum time-to-go
[13]. The node with the lowest time is then explored to the
next time step. This is repeated until reaching the goal. For
one obstacle, this planner is guaranteed to reach the goal in
the near minimum time. For many moving obstacles, it may
not, and a global search may be required.

V. EXAMPLES

The on-line planner was implemented and tested for
crowded static and dynamic environments. Figure 9, shows
four snapshots of the robot avoiding 70 moving obstacles. It
starts from the bottom center and moves to the target at the
top right. Despite the very challenging environment, the robot
succeeds in reaching the goal while planning only one step
at a time. This is largely due to the use of the minimum time
horizon to truncate the velocity obstacles. This in turn dras-
tically reduced the number of open nodes compared to the
global search. Typical reductions have been between 0.1 to
0.2 of the number of nodes for the global search, a significant
reduction that does not compromise safety. A video clip of
the full run is available in www.ariel.ac.il/me/pf/shiller/oren.
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Fig. 9. Avoiding 70 moving obstacles

VI. CONCLUSIONS

A new time horizon for on-line planning in dynamic
environments using velocity obstacles was presented. This
time horizon is selected for each obstacle, static or moving,
as the minimum time to bring the robot velocity outside the
velocity obstacle from the current state. Keeping the robot’s
velocity vector out of the velocity obstacle ensures that the
robot does not enter unsafe states from which avoidance
cannot be guaranteed. Recognizing unsafe states using the

velocity obstacles is not only safe but also very efficient as
it drastically reduces the search tree. The planner generates
near time-optimal trajectories, using the minimum time-to-
go to guide the tree search. The planner was demonstrated
for a point mass dynamic model. Other robot models can be
used with minor modifications. The planner was successfully
tested for crowded static and dynamic environments. It is
suitable for real time generation of high speed trajectories in
crowded static and dynamic environments.
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