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Abstract— This paper addresses the issue of motion safety in velocity obstacle, subject to the robot dynamic constsaint

dynamic environments using Velocity Obstacles. Specifically, we The solution is shown to be along an extremal, generated on
propose the minimum time horizon for the velocity obstacle to the boundary of the control constraints.

ensure that the boundary of the velocity obstacle approximates Det L th fe i hori . tati I
conservatively that boundary of the set of inevitable collision etermining thé salé ime honzon IS compuiationally

states. Thus, using the velocity obstacle to select potential efficient and it does not require a prior mapping of ineviéabl
avoidance maneuvers would ensure that only safe maneuvers collision states. Since the time horizon is obstacle spxecifi
are being selected. The computation of the minimum time motion safety is guaranteed if obstacles can be avoided
horizon is formulated as a minimum time problem, which . 4iviqually or if the state-space between the currenttjpwsi

is solved numerically for each static or moving obstacle. .

The “safe” velocity obstacles are used in an on-line planner and the goal State_ S_tays CpnneCte_d' The velocity obstacles,
that generates near-time optimal trajectories to the goal. The truncated at the minimum time horizon, are used for an on-
planner is demonstrated for on-line motion planning in very line planner that generates near-time optimal trajecidoie
crowded static and dynamic environments. minimizing at each time step the time-to-go to the goal. The
planner is demonstrated for on-line motion planning in very

crowded static and dynamic environments.
The main challenge in motion planning in dynamic envi-

ronments is reaching the goal while selecting on-line among [I. THE VELOCITY OBSTACLE

only safe avoidance maneuvers. While reaching the goalThe velocity obstacle represents the set of all colliding
cannot be guaranteed with an on-line planner, one can reduggocities of the robot with each of the neighboring obstacl
the state space search to only safe states, i.e. states frpm [19], [13]. It maps static and moving obstacles into
which at least one other safe state is reachable. Some logs robot's velocity space. The velocity obstacle of a plana
(reactive) planners exist [9], [21], [15], [16], but mostdot  gpstacleB, that is moving along a general known trajectory,
guarantee safety as they are too slow and hence their abilift), is a warped cone in the velocity space of the point robot
to look-ahead and avoid states of inevitable collision [52] A |t is called a nonlinear velocity obstaclBll(VO) since it
very limited. Recently, iterative planners [10], [4], [1}4],  accounts for a general (nonlinear) trajectory of the oftstac
[6], [20] were developed that compute several steps at g timgelecting asingle velocity at timet = t, outside theNLVO
subject to the available computation time, but those too dguarantees no collision at all times, as long as the obstacle
not address the issue of safety. A promising approach to sag‘fays on its current trajectory.
motion planning in dynamic environment is the consideratio  The non-linear v-obstacle is constructed as a union of its
of "regions of inevitable collision,” first introduced in 81 temporal element$yLVO(t), which is the set of all absolute
and later extended in [11], [17], [12], [3]. velocities ofA, va, that would result in collision at a specific
We address the issue of safety for an on-line local plann@met. Referring to Figure 1v, that would result in collision
in dynamic environments using velocity obstacles. Safety iyith point p € B(t) at timet > to, expressed in a frame
guaranteed by ensuring that the robot's velocity does nekntered at\(ty), is simply
penetrate the velocity obstacle, which is generated for a
carefully selected time horizon. This time horizon, if peoy Vo — ct) +r (1)
selected, ensures that the boundary of the velocity olestacl t—to '
conservatively approximates the boundary of the set qfherer is the vector to poinp in the obstacle’s fixed frame.

inevitable collision states. Repelling the robot's vetpdiom |t is a homothety transformation [5], centeredAdty) and
entering the inevitable collision states ensures (if at&mu scaled byk = %;
—to

exists) that the robot does not crash into any static or ngovin
obstacle. The _c_om_putatlon of the safe t_|rr_le honz_on, which is Va = Hax(c(t) +1);k = ) )
obstacle specific, is formulated as a minimum time problem t—1to

that minimizes the time for the robot velocity to exit the The setNLVO(t) of all absolute velocities o that would
result in collision with any point iB(t) at timet > tg is thus:

I. INTRODUCTION

This work was performed at the Paslin Robotics Research batyrat

the Ariel University Center, Israel. 1

Zvi Shiller is with the Department of Mechanical Engineerirdyiel NLVO(t) = Hak(B(t)); k= ——. 3)
University Center, Israg{shill er@riel.ac.il) t—to

Oren Gal is a graduate student at the Dept. of Mechanicalngéegng, . . .
Technion, |Srae|_g P 99 Integrating (3) overt = [to,) yields the non-linear v-

Thierry Fraichard is with Inria Rine-Alpes, Montbonnot, France. obstacleNLVOy, representing the set of all linear velocities



of A that would collide withB(t) at timet = (tg, «): at times that are practically insignificant at the decisiomet
1 to. Setting the time horizon too high would be too prohibitive,
NLVOP = JHak(B(t)); k= t= (to,o).  (4) as it would mark as dangerous maneuvers that might result
t 0 in collision at a distant time; selecting it too small would

The non-linear v-obstacle is a warped cone, as showsermit dangerous maneuvers that are too close and at too
schematically in Figure 2. Ié(t) is bounded over= (tp,»), high speeds to avoid the obstacle. We wish to select the
then the apex of this cone is Aftg). The boundaries of the smallest time horizon that would mark as dangerous only
NLVO represent velocities that would result & grazing those velocities at which the obstacle is unavoidable given
B. The smallest safe time horizon is the one that allowsobot dynamics and its dynamic and kinematic constraints.
sufficient time to avoid or escape collision as discussed. nexn other words, the velocity obstacle that is truncated kgy th

smallest time horizon should consist only of velocitiest tha

BLO) belong to the inevitable collisions states (ICS). ConJgrse
any velocity that does not penetrate this velocity obstacle
should allow sufficient time under the given control auttyori
to avoid collision. The smallest safe time horizon thus
allows sufficient time for the robot to avoid the obstacle,
or equivalently, bring its velocity vector outside the ety
obstacle.

We define the smallest safe time horizon as the minimum
time to exit the velocity obstacle from a given state, subjec
to robot dynamics and actuator constraints. It is the smhuti
of the minimization problem:

.th
Fig. 1. A temporal element of the non-linear v-obstacle. min A 1dt, (6)
0

with the initial condition

X(to), X(to) )
the final condition
clto) X(th) ¢ NLVOy, (8)
satisfying system dynamics
X= f(x,X,u) 9)
< and control constraints
ueu, (10)

whereNLVO[;, denotes a nonlinear velocity obstacle gener-
ated at time, for an infinite time horizon.
Fig. 2. A non-linear velocity obstacle It is easy to show that the solutioky,, to problem (6)
is bang-bang, or obtained by an extremal trajectory that is
generated on the boundary of the control constraints [2].
lIl. TIME HORIZON For a point mass model, there are four such trajectories,
The nonlinear velocity obstacle consists of the union ofienerated by the four corners of the set of admissible contro
temporal velocity obstacles from tintg to infinity. It thus U. Figure 3 shows a point robet, a static obstacl®, and
accounts for colliding velocities that would result in ¢oll the initial velocityv, that is pointing toward$®. Obviously,
sions at all times. To account for collisions that occur onlys, is inside the velocity obstacle & or v; € VOg. Applying
within a specified time horizort,, the NLVO is truncated the controls associated with the four corners of the set
by setting a time limit in (4): of admissible controlJ results in four extremal trajectory
. 1 denotedx; — x4. We wish to compute the minimum time at
NLVO{ = JHak(B(t));k = ot= (to,th).  (5)  which the velocity along at least one of the extremals points
t -0 outside of the velocity obstacle, or equivalently, the e#io
TruncatingNLV O to reflect specific time limits allows to v, is tangent toB.
focus the motion planning problem on potential collisions For the case shown, three of the four extremals penetrate
occurring within a specified time interval, such as imminenthe obstacle and one does not. The minimum timéhat
collisions occurring within some given time horizon. Thisis the solution to problem (6) is the time where the tangent
permits avoidance maneuvers that are potentially risky, bline atx;(t,) is tangent tdB, as shown in Figure 3. The case



shown in Figure 3 is for a static obstacle. The analysis for a
moving obstacle is similar except thatis replaced with the
relative velocityv,, andvy, is subtracted from the extremals.
The smallest time horizoty, is obstacle specific, and it
depends on the size of the obstacle, its velocity, the rebot’
velocity and its dynamic constraints. Using the smallest
time horizon allows to detect if the robot approaches an
inevitable collision state (by determining how fanigfrom

Time Horizon [sec]

the velocity obstacle) and to plan a safe avoidance maneuver o E s a7
. . . Motion time [sec]
It is important to note that by integrating the extremals to
computet,, one determines if the current state is safe or Fig. 5. The minimum time horizons along the path

not without resorting to the velocity obstacles. However,
knowing that a specific state may lead to a collision does
not help in selecting a safe maneuver. This is where the In addition to focusing the avoidance on imminent colli-
velocity obstacles, generated for the smallest time harizosions, the time horizon allows the consideration of largéist
become most useful. obstacles, such as surrounding walls and highway barriers,
The smallest time horizon can be easily computed bwhose v-obstacles, without a time horizon, would cover the
expressing all four extremal trajectories analyticallydan entire velocity space. Consider a point rolfoat the center
searching for the nearest (in time) tangency point of thef a closed room, as shown on the left in Figure 6. The
common tangent betwed® and every extremal. velocity obstacle of the room’s walls with an infinite time
horizon covers the entire space, except the ordgisince any
velocity other than zero would eventually result in cobisi
with the walls. The boundary of the velocity obstacle of each
wall is determined by computing the velociy that would
traverse the distanag to the wall in some set time horizon

X1(th) ¢ < = th' d
4 Vh= —. (11)
th
A Any velocity larger thanv,, would penetrate the velocity
obstacle since it would result in collision at a shorter time
Fig. 3. The robot and obstacle on a collision course than the time horizom,, whereas any velocity smaller than

Vj, is safe for the duratioh < t,. The inner boundary of the

Figure 4 shows a static obstacle and the trajectory genefelocity obstacle of the closed room is a scaled shape of the
ated by the on-line planner discussed later. The robotsstafbom’s walls, as shown on the right in Figure 6; the shorter
from rest at poin0, —4) at the bottom, and moves in near-the time horizon, the larger the “free” space.
minimum time to the goal at0,2). The minimum time  |nthe case of a closed space, the smallest safe time horizon
horizon along this path is shown in Figure 5. It grows fronis the minimum time to reach zero speed, since zero speed is
zero since the robot starts from rest, then it decreaseseas the only velocity outside the infinite time velocity obsecl
robot moves tangentially to the obstacle. The time horizogf the closed room. It can be approximated by computing the
is zero at the tangency point since the robot velocity igninimum stopping times in the direction of motion, which
not pointing towards the obstacle. For the same reason, tResimply (for a point mass robot):
time horizon is zero when the robot moves away from the v
obstacle. =1 (12)

min

E wherev is the robots current speed, angdin is its maximum
‘ deceleration.
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Fig. 4. Dynamic avoidance of a static obstacle Fig. 6. The velocity obstacle of static walls and boundaries



IV. THE PLANNER model, with constant control constraints, it spans a regéan

The efficient representation of static and moving obstacléd0undVv(t) that is proportional to the shape of the set of
by velocity obstacles allows us to efficiently plan safé@dmissible controld), as shown in Figure 7. The size of
trajectories in dynamic environments. We assume knowledd@iS rectangle depends on the time sfip
of the positions and velocities of the neighboring obstacle 't iS assumed that all velocities IACV (t) are reached

We distinguish between local and global planners. Thit _t'm‘?t’ when In fact they are reached at tinher At. ,
local planner generates one, or a few steps at every timdis discrepancy introduces a small error that can be easily

step, whereas the global planner uses a global search dgantified.
the goal over a time spanned tree. The local planner cannotF19ure 8 shows the actual path followed by the robot from

ensure convergence to the goal and in some cases may IE2g€ initial velocityva(t) under controu = (1, —1) over the
to inevitable collision states [17]. The global planner,tbe time intervalAt. The actual path is compared to the assumed

other hand, is complete, i.e. capable of finding a solution fright line path, also shown in Figure 8. Itis easy to show
one exists. Our planner is local as it generates one move (gt the deviation between the two paths is bounded by the
every time step. distancee between the end points:

The proper choice of the time horizon ensures survival of At?

. . . . .. J—— 2 2
the robot, i.e. not entering inevitable collision stat&SS). €= Uy + Uy (16)

For one obstacle, this guarantees convergence to the goal. Fhis error can be made negligible by selectiktgarbitrarily
many obstacles, a solution cannot be guaranteed due t0 W&yl It is possible to account for this error by enlarging
changing nature of the environment: it is possible thatr@ri he gpstacles be. This error does not accumulate since the

the local search, the state space around the robot becomes 5| positions of robot and obstacles are used at each time
disconnected from the goal even though the global searglﬂep to generate the current velocity obstacles.

might escape such a trap. The off-line planner computes a
solution by exploring a tree of attainable states from thet st |
node until the goal node is reached. The tree can be expanded

using any efficient heuristics, such as a depth-first search o M

A*. This search can be drastically reduced by considering \

only "safe” attainable states that satisfy system dynamics f
and are out of thdCS. This planner is new in its on-line
minimization of the time-to-go, combined with the use of
velocity obstacles and the minimum time horizon to guide
the tree search.

A. System Dynamics

The planner was implemented for a simple planar point
mass model. This is necessary for computational reasons,
and is in no way a limitation of this approach.

We consider the following point mass model:
ACV(t)
X=ug;|ug <1 (13) /
y=up;up| <1 (14) v, (t e

where (x,y)" € R? represents the robot’s position in a

Cartesian coordinate frame afah, uy)" € R? represents the

robot’s controls. A
Since the planning is done in the velocity space, we wish

to compute the set of attainable Cartesian velocih€d/() of

the maneuvering robot that can be reached over a given time

interval, At [8]. This set contains the avoidance maneuverB. Tree Search

that are dynamically feasible from a given state. Denoting The planner uses a depth first A* search over a tree that
v(t) = (X(t),y(t))", the set of attainabl€artesian velocities, expands over time to the goal. Each node contains the current
ACV(t) is obtained by integrating the admissible controlosition and velocity of the robot at the current time step.
u= (U, ) €U from the current statex,y,x,y): At each state, the planner computes the set of admissible
_ _ velocitiesACV, which is then tessellated by a uniform grid,
ACV (1) = {aviav=v(t) + ubt,u€ U}. (15) as shown in Figure 7. To test the safety of the nodes on
Each element inACV (t) represents an attainable velocitythe grid, a set of temporal velocity obstacl&VO(t),t €
measured from the origiA. The geometric shape éCV (t) (0,ty) are computed at specified time intervals (the temporal
depends on the specific system dynamics. For a point massocity obstacles are computed in reverse order, starting

Fig. 8. Actual and assumed path ov&r.



from t =t,). In Figure 7, onlyNLVO(t) is shown, where velocity obstacles is not only safe but also very efficient as
nodes insideNLVO(t,), marked red, are inadmissible. Nodest drastically reduces the search tree. The planner gergerat
out of NLVO(t,,) are further evaluated by computing fromnear time-optimal trajectories, using the minimum time-to
each the unconstrained (no obstacles) minimum time-to-gm to guide the tree search. The planner was demonstrated
[13]. The node with the lowest time is then explored to thdor a point mass dynamic model. Other robot models can be
next time step. This is repeated until reaching the goal. Faised with minor modifications. The planner was successfully
one obstacle, this planner is guaranteed to reach the goaltésted for crowded static and dynamic environments. It is
the near minimum time. For many moving obstacles, it maguitable for real time generation of high speed trajectoirie

not, and a global search may be required. crowded static and dynamic environments.
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