
Distributed Reactive Collision Avoidance for Multivehicle Systems

Emmett Lalish and Kristi A. Morgansen

Abstract— The focus of this paper is the n-vehicle collision
avoidance problem. The vehicle model used here allows for
three-dimensional movement and represents a wide range of
vehicles. The algorithm works in conjunction with any desired
controller to guarantee all vehicles remain free of collisions
while attempting to follow their desired control. This algorithm
is reactive and distributed, making it well suited for real time
applications, and explicitly accounts for actuation limits. A
robustness analysis is presented which provides a means to
account for delays and unmodeled dynamics. Robustness to an
adversarial vehicle is also presented.

I. INTRODUCTION

As multi-vehicle autonomous systems are studied and
implemented, the issue of conflict resolution becomes an
increasingly important point. From mobile robots performing
a cooperative search to air traffic control for unmanned aerial
vehicles (UAVs), collision avoidance is of utmost importance
for safety. The Distributed Reactive Collision Avoidance
(DRCA) algorithm presented here is an extension of the
previous work in [1], which performed collision avoidance
for a planar group of n variable-speed unicycles.

In order to capture the essential dynamics of a wider
range of vehicles than in earlier work, this implementa-
tion uses three-dimensional double-integrator dynamics with
arbitrary control (acceleration) saturation. Proper choice of
saturation limits allow these simple dynamics to model even
nonholonomic systems such as unicycles (in this way the
results presented in [1] are still a special case of this more
general algorithm). Vehicles with more complex dynamics
(like aircraft, which must bank to turn) are accounted for in
the robustness analysis, which details how to choose gains
in order to account for filtering lags, time delays, and other
unmodeled dynamics.

The motivation for this work comes from applications such
as automating air traffic control and shipping traffic, where
collisions must be avoided at all costs, and the amount of
acceleration available compared to the speed is relatively
small. Therefore, the point of this work is to guarantee
that collisions will be avoided while taking into account the
limited control authority available. Additionally, a centralized
solution should be avoided so that a central node is not
needed and so that the solution can be scaled to many
vehicles by distributing the computational load across all of
the vehicles involved.

This work supported by AFOSR grant FA9550-07-1-0528.
E. Lalish is with Moiré Inc., Issaquah, WA. emmett@moireinc.com.
K. A. Morgansen is with the Department of Aeronautics and Astro-

nautics, University of Washington, Box 352400, Seattle, WA 98195-2400.
morgansen@aa.washington.edu.

A wide variety of collision avoidance algorithms exist in
the literature, of which an overview of some can be found
in [2]. Why then do we need another one? The answer is
that certain important aspects are lacking from each existing
algorithm. Many existing collision avoidance algorithms do
not actually guarantee collision avoidance [3], [4], [5], since
for some applications (e.g. mobile robots) collisions will not
necessarily destroy the vehicles and a heuristic approach will
suffice.

Other algorithms guarantee avoidance without restricting
the maximum acceleration available [6], [7], [8], which isn’t
really a guarantee at all. The reason is that any two vehicles
with finite acceleration will have a space of initial conditions
for which collision avoidance is impossible (for instance
when they are approaching one another at relatively high
speed). Therefore, to have a valid collision avoidance proof,
one must also have a restriction on the initial conditions. This
restriction will be related to quantities like breaking distance
and turning radius, which may be negligible in some small-
scale systems, but are fundamental to large-scale systems. Of
the approaches that do guarantee avoidance in the presence
of control limitations, many can only do so for a finite
number of vehicles (usually two or three) [9], [10]. The work
presented here accounts for n vehicles simultaneously.

The final distinction comes with the degree of centraliza-
tion. Several optimization approaches to collision avoidance
[11], [12] yield strong results, however they are completely
centralized and scalability is a major issue (even O(n3) is
not great, and there is no guarantee of even this degree of
scalability). On the other end of the scale is [13], which
is completely decentralized, as in each vehicle needs only
the states of vehicles within a given distance. It works by
reserving an area the size of the minimum vehicle orbit and
not letting any of those potential orbits overlap. While that
algorithm may be ideal for mobile robot applications, its
performance is fundamentally poor for vehicles with a large
radius of curvature compared to their physical size.

The D in DRCA stands for distributed (instead of decen-
tralized as in [1], which is not strictly correct), since the
states of all other vehicles are required (not just nearest
neighbors), but the computation is spread over the group.
Each vehicle only needs to account for its own interactions,
so the computations scale as O(n) on each vehicle (making
the overall computation O(n2)).

This paper is organized as follows. Section II gives the
problem statement and introduces definitions and notation
used throughout the paper. The DRCA algorithm is described
in Section III, while Section IV contains a robustness anal-
ysis thereof. Conclusions and future work are in Section V.

II. PROBLEM STATEMENT

The work here presents a method for deconflicting n
vehicles. Each vehicle has a nominal desired control input,
ud(t), which comes from an arbitrary outer-loop controller.
This controller is designed for the vehicle to perform a
desired task, which could range from target tracking to way-
point navigation, area searching, etc. The goal of the DRCA
algorithm is to adjust the control input on each vehicle to
guarantee collision avoidance while simultaneously staying
close to the desired control input (keeping in mind that this
desired control can change with time).

A. Vehicle Model

For this approach to collision avoidance, the only vehicle
states that matter are position and velocity. Orientations
affect performance, as they often have bearing on the magni-
tude of acceleration available in a particular direction, but do
not affect the underlying concepts of conflict and collision.
In this way, many different vehicle models work equivalently
with this approach. To simplify the math, a simple vehicle
model will be used for most of the following analysis: a 3D
double integrator, which for the ith vehicle is given by

d

dt

 ri
vi
Θi

 =

 vi
ui

ΩiΘi

 , (1)

where r,v,u ∈ R3 are the position, velocity, and control
input, respectively. The matrix Θ = [̂t, n̂, b̂] defines the
orientation and Ω is the cross product matrix of the body
rotation vector ωωω = [ωt, ωn, ωb]

T. The notation throughout
this paper will use bold face for vectors, hats over unit-
vectors, script capital letters for sets, standard capital letters
for matrices and functions, and everything else is assumed
scalar. Quantities subscripted with t, n, or b refer to the
tangent, normal, or binormal direction, respectively.

Note that the orientation (defined by the t̂, n̂, and b̂
vectors) is only used as a local coordinate frame for the
DRCA algorithm. The orientation does not directly affect
the dynamics (r and v), and as such can be arbitrary.
However, many vehicle’s input constraints are related to their
orientation, and so it can be useful to tie this local coordinate
frame to the actual body coordinates of the vehicle.

We constrain the input by use of an arbitrarily varying
constraint set, ui ∈ Ci. The only requirement is that Ci
always contain the origin. A simple example of an input
constaint set that limits maximum acceleration and velocity
is

Ci =
{
ui ∈ R3∣∣ ‖ui‖ ≤ umax,

‖vi‖ ≥ vmax =⇒ uT
i vi ≤ 0

}
. (2)

For the DRCA algorithm, one must choose a set of
rectangular constraints R (which can also vary with time,
state, etc.) for each vehicle that encloses its C, as well as a
corresponding saturation function, S : R → C. The function
S must be continuous, must become the identity map for

any u ∈ C, and must preserve the sign of each component
of u when decomposed in the t̂, n̂, and b̂ directions. In this
example, one can choose

Ri =
{
ui ∈ R3∣∣− umaxi

≤ uti ≤ umaxi
, . . .

}
, (3)

and

Si =


ui

umax

‖ui‖ , ‖ui‖ > umax

ui − viu
T
i vi

vmax
, ‖vi‖ ≥ vmax,uT

i vi ≥ 0

ui, otherwise.

(4)

An example of how more complex vehicle dynamics can
be represented by this simple model with an appropriate
choice of input constraint set follows. Let us model a vehicle
which can go forward with variable speed and turn in two
axes (a 3D unicycle model) and with limits on its turn
rate, forward acceleration, and maximum speed. One way
to describe the model mathematically is by

d

dt

 r
s
Θ

 =

 st̂
ua
ΩΘ

 ,
where |ua| ≤ uamax

, |ωn| ≤ ωnmax
, |ωb| ≤ ωbmax

, and
|s| ≥ smax =⇒ uas ≤ 0. Alternatively, an equivalent
representation of the system is (1) with u = uat̂+‖v‖ωbn̂−
‖v‖ωnb̂. The tangent vector must be initialized to the same
direction as the velocity vector, but the dynamics will keep
them aligned from then on. In this case, R can be defined
by

utmax = −utmin = uamax

unmax = −unmin = ‖v‖ωbmax

ubmax = −ubmin = ‖v‖ωnmax ,

and the accompanying saturation function is

S =

{
u− vuTv

smax
, ‖v‖ ≥ smax,uTv ≥ 0

u, otherwise.

Normally one would not equate a holonomic model to a
nonholonomic one, largely because of differences in control-
lability. However, controllability is not essential to the DRCA
algorithm since orientations are arbitrary and only position
and velocity matter. The DRCA algorithm is designed to use
any control authority available, but it does not require the
state space to be locally accessible.

B. Definitions

The relative position vector from vehicle i to vehicle j is
denoted r̃ij ≡ rj − ri, while the relative velocity vector is
defined in the opposite sense: ṽij ≡ vi−vj . Note that these
definitions imply that ˙̃rij = −ṽij , and ˙̃vij = ui − uj .

In order to avoid collisions, first a strict definition of col-
lision is necessary. These vehicles are modeled as nonholo-
nomic point masses, however real vehicles have finite size.
To account for this volume, a minimum allowed separation
distance is included in the definition of a collision. This
minimum distance could be, for example, the five nautical

dsep

dsep
α

α
β

vj

vi

ṽ

pt,ij t̂i

ĉ

r̃

e

pn,ijn̂i

Fig. 1. Geometry of the e and ĉ vectors, as seen in an r̃-ṽ section through
the 3D collision cone (dotted lines). The conflict measures pt and pn are
shown, but b̂ points into the page, so pb is infinite (ĉTṽ > 0 in this
example).

mile separation between aircraft required by the FAA or the
sum of the radii of two mobile robots.

Definition 1 (Collision): A collision occurs between two
vehicles when

‖r‖ < dsep, (5)

where dsep is the minimum allowed separation distance
between the vehicles’ centers. This distance can be different
for each pair of vehicles in order to account for heterogeneity
in the system.

For two vehicles not in a collision, the next question is
whether they will collide if they remain at their present
velocities. This first order prediction of a collision will be
called a conflict.

Definition 2 (Conflict): A conflict occurs between two
vehicles (i and j) if they are not currently in a collision,
but with null control inputs (i.e. constant velocity) will at
some future point in time enter a collision:

min
t>0
‖r(t)‖ < dsep. (6)

Lemma 1: A necessary and sufficient condition for there
to be no conflict is |β| ≥ α, where β = ∠v − ∠r and
α = arcsin

(
dsep
‖r‖

)
.

This lemma is proven in [14]. The angle α denotes the
half-width of the collision cone, similar to [15], [11], [10],
and is described geometrically in Fig. 1.

III. DRCA ALGORITHM

The DRCA algorithm uses a two-step process: a deconflic-
tion maneuver and a deconfliction maintenance phase. The
deconfliction maneuver is designed to bring the vehicles to
a conflict-free state. One basic deconfliction maneuver was
presented in [1], in which each vehicle turns (uTv = 0) until
the system reaches a conflict-free state. This maneuver can
still be applied to this system, but better maneuvers have
been developed in the meanwhile and will be presented in
a separate publication. This paper will instead focus on the
deconfliction maintenance controller.

Once a group of vehicles is conflict-free, the deconfliction
maintenance controller will keep them that way. This con-
troller allows each vehicle to use its desired control input un-
less that input would cause the vehicle to come into conflict

Vehicle
Control
Desired Conflict

Maintenance

ud u

z

zi

Fig. 2. Block diagram of the system when using the deconfliction
maintenance controller. The vector z = [z1, z2, . . . , zn]T and zi =
[ri,vi]

T. Note that the deconfliction maintenance block acts as a type of
saturation on the desired control, ud.

with another vehicle. This algorithm and corresponding proof
mirror [1], but extend it work in three dimensions and for
the more general vehicle model (1). A basic block diagram
of this setup is shown in Fig. 2.

In order to smoothly transition from the desired control to
the avoidance control, each vehicle needs a way to measure
how close its velocity vector is to causing a conflict. The first
step is to construct a unit-vector, ĉ, representing the side of
the collision cone nearest ṽ. The vector ĉ is found by rotating
r̃ by α around a vector q = r̃× ṽ and normalizing:

ĉ =
r̃

‖r‖
cosα+

(
q× r̃

‖q‖ ‖r‖

)
sinα. (7)

Next, construct a normal vector, e, from the collision cone
to the relative velocity vector, ṽ (see Fig. 1). If ĉTṽ > 0,
then e = (I−ĉĉT)ṽ, but if ĉTṽ ≤ 0 (the vehicles are headed
away from each other), then no normal exists, and the nearest
point on the collision cone is the tip, so e = ṽ. Therefore:

e =

{
ṽ, ĉTṽ ≤ 0

(I − ĉĉT)ṽ, ĉTṽ > 0.
(8)

In order to combine the effects of multiple collision cones,
it is helpful to decompose the system into three component
directions and analyze those directions separately. Let the
coordinate system be defined by the orthonormal vectors
t̂, n̂, and b̂. The orientation of this coordinate system is
arbitrary, but the convention of using tangent, normal, and
binormal notation is chosen since fixing the coordinates to
the body of the vehicle often simplifies analysis.

The next step is to determine how much control (change
in velocity) can be applied in each of these directions before
a conflict forms. For simplicity, a conservative approach is
taken whereby the signed distance is found from ṽ to the
tangent plane enclosing the collision cone (defined by the
normal vector e) in each of the t̂, n̂, and b̂ directions. These
signed distances are

pt,ij =
‖eij‖2

eTij t̂i
, pn,ij =

‖eij‖2

eTijn̂i
, and pb,ij =

‖eij‖2

eTijb̂i
,

which are described graphically in Fig. 1.
Define εt, εn, εb > 0 as thresholds such that when |pt| >

εt, the conflict is far enough away that it can be ignored
(and likewise for pn and pb). The n-vehicle deconfliction

maintenance controller running on vehicle i computes pt,
pn, and pb to each of the other vehicles and then finds the
closest conflict in each direction, i.e.

p+ti = min
j
{pt,ij > 0, εti}

p−ti = −max
j
{pt,ij < 0,−εti} ,

(9)

and likewise for pn and pb. Note that by definition 0 < p± ≤
ε. To simplify notation, in any case where a relation holds in
the tangent, normal, and binormal directions, the subscript
will be suppressed.

The input is constructed using a function, F , such that in
each direction u = F (p+, p−). The control function chosen
for this implementation of the DRCA algorithm is

F (p+, p−) =
umin
ε

p+ +
umax
ε

p−

+
ud − umax − umin

ε2
p+p−, (10)

because it is a bilinear interpolation of the following ordered
triples of the form (p+, p−, u):

P1 = (0, 0, 0) P2 = (ε, 0, umin)
P3 = (0, ε, umax) P4 = (ε, ε, ud).

An example of this control function is shown in Fig. 3.
Because F depends on the desired control, ud must be
saturated such that

umin ≤ ud ≤ umax. (11)

This choice of control function means that once the u
vector is constructed from its three components, then u ∈ R.
Then the saturation function S will give the final resultant
control vector, which will be in C. The octant-preserving
nature of S will ensure this final saturation step does not
violate the requirements for the proof of collision avoidance.

A more intuitive way to choose values for ε is to relate it
to a gain-like parameter,

k =
umax − umin

ε
.

Note that k has units of inverse seconds. Also, one can see
that the magnitude of the gradient of the control function will
always be less than or equal to k, regardless of the desired
control.

Theorem 1: The deconfliction maintenance controller de-
scribed above, when implemented on n vehicles with dynam-
ics (1) and inputs constrained by Ci, will keep the system
collision free for all time if the system starts conflict-free.

Proof: To measure the distance to a collision, define m
as a signed version of ‖e‖ (in terms of ṽ from the geometry
in Fig. 1):

m =

{
‖ṽ‖ , ĉTṽ ≤ 0

‖ṽ‖ sin(|β| − α), ĉTṽ > 0.
(12)

Note that m is negative during conflict and positive outside
of conflict.

Fig. 3. Example of the control function, F . Note that P4 moves up and
down with changing ud.

To ensure that a conflicted state is never reached (i.e. m
is always greater than zero), it is sufficient to show that

lim
m→0+

ṁ ≥ 0, (13)

for every pair of vehicles. This condition implies that as the
boundary of a collision cone approaches, it will either stop
approaching or recede before a conflict is formed. The fact
that this limit is one-sided is important because ṁ does not
exist at m = 0 for the same reason that d

dt ‖ṽ‖ does not
exist at ṽ = 0. However, if (13) is satisfied, then m > 0 for
all time, ensuring that m 6= 0.

The rest of this proof closely follows the two-dimensional
version in [1], so most of the details will be skipped here
for the sake of brevity. For ĉTṽ ≤ 0,

ṁ =
eT ˙̃v

m
= êT ˙̃v, (14)

where ê = e
‖e‖ .

For ĉTṽ > 0, the derivative of (12) becomes

ṁ = sin(|β|−α)
d ‖ṽ‖
dt

+‖ṽ‖ cos(|β|−α)
d

dt
(|β|−α). (15)

The derivative exists because m > 0 implies ‖ṽ‖ 6= 0, |β| ≥
α > 0, and ‖r̃‖ ≥ dsep > 0. Taking these derivatives and
simplifying (15) yields

ṁ = êT ˙̃v + cos(|β| − α)
‖ṽ‖2

‖r̃‖
(|sinβ| − cosβ tanα).

This expression can be further simplified by recognizing
that

m

‖ṽ‖ cosα
=

sin |β| cosα− sinα cos |β|
cosα

= |sinβ| − cosβ tanα.

Therefore

ṁ = êT ˙̃v +m
‖ṽ‖ cos(|β| − α)

‖r̃‖ cosα
. (16)

The second term is always positive because ĉTṽ > 0 implies
that cos(|β|−α) > 0, and α ≤ π/2 by definition. Combining
this result with (14) implies that

ṁ ≥ êT ˙̃v (17)

for any value of ĉTṽ.
Expanding ui into its components yields ui = [uti t̂i +

uni
n̂i + ubi b̂i]. Following the logic in [1], (17) can be

rewritten as (using the ij notation again briefly for clarity)

ṁij ≥ mij

(
uti
pt,ij

+
uni

pn,ij
+

ubi
pb,ij

+
utj
pt,ji

+
unj

pn,ji
+

ubj
pb,ji

)
. (18)

As long as the controller ensures that uti has the same
sign as pt,ij , etc. then ṁ ≥ 0 for that pair of vehicles. Note
that each vehicle need only calculate its control from its
own point of view, and this rule will automatically cause the
vehicles to cooperate in avoiding conflicts.

Combining this result with the definitions (9), any contin-
uous control function that satisfies

lim
p+ti
→0+

uti ≥ 0, lim
p+ni
→0+

uni ≥ 0, lim
p+bi
→0+

ubi ≥ 0,

lim
p−ti
→0+

uti ≤ 0, lim
p−ni
→0+

uni
≤ 0, lim

p−bi
→0+

ubi ≤ 0,

(19)
also ensures that

lim
mij→0+

ṁij ≥ 0,

guaranteeing the system cannot enter a conflicted state.
The control function used in this implementation (10)

satisfies (19), so the deconfliction maintenance controller will
cause the n-vehicle system to remain conflict-free for all
time, assuming it started that way.

Note that this result holds for arbitrary (even time varying)
ud, umin and umax, so long as they satisfy (11) and R
contains the origin at every instant. In addition, u can be
further saturated using S in order conform to the non-
rectangular constraint set C without affecting the guarantee.
The key for this saturation to work is that S preserves the
octant of u, such that (19) is still satisfied.

IV. ROBUSTNESS ANALYSIS

Robustness for this system can be split into two areas:
robust stability and robust avoidance. Robust stability en-
compasses the traditional ideas of linear stability analysis,
focused on how much gain can be applied to the system
before time delays or other unmodeled dynamics drive the
system to oscillate explosively. Robust avoidance is a higher-
level idea relating to how relaxation of the assumptions (in
this case cooperation) affects the validity of the collision
avoidance guarantees.

A. Robust Stability

As complex as this control algorithm may appear, it
can still be analyzed for robustness using linear tools. The
deconfliction maneuver is a feed-forward control, so robust
stability does not apply, since the input is static. The desired
controller is assumed to exhibit an adequate degree of robust
stability, since this controller is designed for the system in
question. Therefore, the deconfliction maintenance controller
is the part of this algorithm that needs to be analyzed
for robust stability. Depending on the system in question,
uncertainties can take many different forms. The following
analysis is based upon a complex multiplicative uncertainty
bounded by the transfer function w(jω).

Stability in this case is analyzed about an equilibrium in
the conflict space, i.e. where ṁ = 0 for the pair of vehicles
in question. This equilibrium refers to the period from when
the vehicles end their deconfliction maneuver to when they
begin to pass each other, characterized by nearly constant-
velocity trajectories.

Theorem 2: Let kij = kti +kni +kbi +ktj +knj +kbj . The
system is stable in the presence of a complex multiplicative
uncertainty bounded by w(jω) if kij satisfies

kij√
k2ij + ω2

<
1

|w(jω)|
∀ω. (20)

Proof: Recalling (14), (16), and (18), one has that

ṁij = mij

(
uti
pt,ij

+
uni

pn,ij
+

ubi
pb,ij

+
utj
pt,ji

+
unj

pn,ji
+

ubj
pb,ji

+ hij

)
, (21)

where hij is a positive quantity given by

hij =

{
‖ṽ‖ cos(|β|−α)
‖r̃‖ cosα , |β| − α ≤ π

2

0, |β| − α > π
2 .

The worst case for robust stability is when the feedback gain
is the largest (most negative), and one can see by looking at
Fig. 3 that the largest gain in terms of p+ will occur when
p− = ε and ud = umin. One can assume without loss of
generality that the nearest conflict is in the positive direction,
i.e p > 0. In this case,

m
ut
pt

= m
F (pt, ε)

pt

= m

(
ut,max
pt

+
ut,min − ut,max

εt

)
= −ktm+ êTt̂ut,max.

Applying to (21) yields

ṁij = − (kij − hij)mij + êTΘiui,max + êTΘjuj,max,
(22)

where ui,max = [uti,max
, uni,max

, ubi,max
]T. The second two

terms are always positive (pt > 0 =⇒ êTt̂ > 0, etc.) and
only serve to push the equilibrium to an m that is greater than

zero. Only the first term has bearing on the robust stability of
the system. One can open the loop on this negative feedback
system and examine the loop gain as a transfer function,
L(s):

L(s) =
kij − hij

s
.

Note that hij < kij or else this system does not have an
equilibrium and the stability analysis does not apply.

The complementary sensitivity function, T (s), is given by

T (s) =
L

1 + L
=

kij − hij
s+ kij − hij

. (23)

For a system perturbed by a complex multiplicative uncer-
tainty, the perturbed loop gain, Lp(s), is given by

Lp(s) = L(1 + w∆), |∆(jω)| ≤ 1,∀ω.

In this case, robust stability to an uncertainty bounded by w
is guaranteed if

|T (jω)| < 1

|w(jω)|
∀ω,

as shown in [16]. From (23),

|T (jω)| ≤ kij − hij√
(kij − hij)2 + ω2

.

Since 0 ≤ hij ≤ kij , then

kij − hij√
(kij − hij)2 + ω2

≤ kij√
k2ij + ω2

,

which implies that (20) is a sufficient bound for stability.
Depending on the nature of the system on which this

algorithm is implemented, the uncertainty, w, could take
many forms. As an example, one common type of unmodeled
dynamics is time delay. Delays can be caused by sensors,
communication, or even the discretization of this continuous-
time system.

Lemma 2: The system is stable in the presence of a pure
time delay no greater than τ , if

k <
1.47

τ
. (24)

Proof: A multiplicative uncertainty, w, that bounds this
time delay is given in [16]:

w(ω) =

{∣∣1− e−jωτ ∣∣ , ω < π/τ

2, ω ≥ π/τ.

If the limiting case is when ω ≥ π/τ , then (20) becomes

k√
k2 + ω2

<
1

2

k <
ω√
3
<

π

τ
√

3
.

If the other case is limiting, then

k√
k2 + ω2

<
1

|1− e−jωτ |
k√

k2 + ω2
<

1√
2− 2 cos(ωτ)

k2 (1− 2 cos(ωτ)) < ω2

kτ <
ωτ√

1− 2 cos(ωτ)
.

The right hand side is now in terms of a single variable (ωτ),
and the minimum can be calculated numerically:

min
ωτ

ωτ√
1− 2 cos(ωτ)

≈ 1.4775.

This case is indeed limiting because 1.4775 < π/
√

3.
Therefore (24) is sufficient to guarantee stability in the
presence of the time delay τ .

This type of analysis can be used to find similar bounds
on the gain of the system to guarantee stability to other types
of unmodeled dynamics and uncertainty, for instance noise
or lags caused by filtering.

B. Robust Avoidance

Another possible problem for this system is a vehicle
which does not cooperate, i.e. does not satisfy (19). This
vehicle is regarded as antagonistic, regardless of its actual
goals. Note that a vehicle which does not run the DRCA al-
gorithm, but rather holds a constant velocity always satisfies
(19) and is therefore not considered antagonistic.

One can see that in a multivehicle scenario, several an-
tagonistic vehicles could surround another vehicle’s velocity
vector with their collision cones, bringing them together until
no conflict-free region was left, leaving the hapless vehicle
with no guarantee of collision avoidance. Indeed, in some
situations collision avoidance may be impossible against
adversaries. Likewise even a single adversary can pin another
vehicle between itself and one or more constant-velocity
vehicles (or vehicles with very small control authority). This
problem is fundamental to pursuit-evasion within groups
of vehicles, and this algorithm does not provide an easy
solution. However, for a two-vehicle system with a single
adversary, the DRCA algorithm still provides a guarantee.

Theorem 3: For a two-vehicle system in which the vehi-
cle’s dynamics are restricted by (3), and vehicle one runs
the deconfliction maintenance controller, and vehicle two is
an adversary using an unknown controller, the vehicles will
remain conflict-free for all time provided they started that
way and that

u1,max ≥
u2,maxv1,max

√
3√

v21,max − v22,max
, (25)

which implies also that v1,max > v2,max.
Proof: The choice of the control function (10) ensures

that at the edge of a conflict, not only does vehicle one
not approach the conflict any further, but it actually applies
its maximum control authority in the opposite direction.

γθ

v1,max

u1
u2

v2,max

Fig. 4. Geometry of the worst situation for avoiding an adversary. The
dotted lines represent the collision cone and the circles represent the set of
allowable velocity vectors for the two vehicles.

Rederiving (22) for only vehicle one using deconfliction
maintenance yields

ṁ = − (kt + kn + kb − h)m+ êTΘiu1,max + êTΘju2,

where one can see that the first term goes to zero as m→ 0.
The second term is always greater than or equal to u1,max
because êTt̂1 ≥ 0, etc. However, the last term is upper-
bounded by u2,max

√
3, so u1,max ≥ u2,max

√
3 is sufficient

to guarantee limm→0+ ṁ ≥ 0 and thus that conflict is
avoided.

A problem with this analysis is that the control authority
limits of the vehicles are not actually fixed, but get restricted
when the maximum speed, vmax, is reached. The worst case
occurs when vehicle one is at its maximum speed and is on
the edge of a conflict with vehicle two, which is nearly at
its own maximum speed. The angle that the collision cone
makes with the boundary of vehicle one’s allowable velocity
set defines the ratio of control authority needed to avoid
vehicle two’s worst action. As can be seen in Fig. 4, the worst
angle for the collision cone to have is when γ is maximized.
The law of sines gives

sin γ

v2,max
=

sin θ

v1,max
,

so γ is maximized when sin θ = 1, and the maximum is
γ = arcsin(v1,max/v2,max). The required control authority
to both stay out of conflict and stay within v1,max is then

u1,max ≥ u2,max sec γ
√

3.

Substituting the maximum γ from above and simplifying
yields the bound (25).

V. CONCLUSION

This work has developed a distributed control algorithm
for deconflicting n vehicles in three dimensions. The DRCA
algorithm is reactive and so can easily be implemented real
time on a wide variety of vehicles, including aircraft, ships,
submarines and cars. Collision avoidance is guaranteed for a
general n-vehicle system once a conflict-free state is reached,
even in the case of arbitrarily small control authority. The
DRCA algorithm allows the vehicles to follow changing
desired controls so long as safety is not sacrificed. This

algorithm has been shown to be robust to time delay and
a variety of other unmodeled dynamics, and can even suc-
cessfully evade an adversarial vehicle given certain bounds
on the performance of the two vehicles.

The primary discussion omitted from this work is the
deconfliction maneuver necessary to bring the system to a
conflict-free state. Significant progress has been made in this
area also, but must be discussed in a separate publication
due to length constraints. That discussion will also include
a method for adding and removing vehicles from the group.
Finally, a discussion of liveness (guaranteeing the system
does not become deadlocked), and a corresponding proof
that the vehicles can get to where they are going in finite
time will also be included.

REFERENCES

[1] E. Lalish and K. A. Morgansen, “Decentralized reactive collision
avoidance for multivehicle systems,” in Proc. IEEE Conference on
Decision and Control, 2008.

[2] J. Kuchar and L. Yang, “A review of conflict detection and resolution
modeling methods,” IEEE Transactions on Intellingent Transportation
Systems, vol. 1, no. 4, pp. 179–189, 2000.

[3] M. Eby and W. Kelly, “Free flight separation assurance using dis-
tributed algorithms,” in Proc. IEEE Aerospace Conference, 1999, pp.
429–441.

[4] J. C. Hill, J. K. Archibald, W. Stirling, and R. L. Frost, “A multi-agent
system architecture for distributed air traffic control,” in Proc. AIAA
Guidance, Navigation and Control Conference, 2005.

[5] E. Lalish, K. A. Morgansen, and T. Tsukamaki, “Formation tracking
control using virtual structures and deconfliction,” in Proc. IEEE
Conference on Decision and Control, 2006.

[6] J. Kosecka, C. Tomlin, G. Pappas, and S. Sastry, “Generation of
conflict resolution maneuvers for air traffic management,” in Proc.
International Conference of Intelligent Robotic Systems, 1997, pp.
1598–1603.

[7] S. Mastellone, D. M. Stipanovic, C. R. Graunke, K. A. Intlekofer, and
M. W. Spong, “Formation control and collision avoidance for multi-
agent non-holonomic systems: Theory and experiments,” International
Journal of Robotics Research, vol. 27, no. 1, pp. 107–126, 2008.

[8] G. P. Roussos, D. V. Dimarogonas, and K. J. Kyriakopoulos, “3D
navigation and collision avoidance for a non-holonomic vehicle,” in
Proc. IEEE American Control Conference, 2008.

[9] C. Tomlin, G. Pappas, and S. Sastry, “Conflict resolution for air
traffic management: a study in multiagent hybrid systems,” IEEE
Transactions on Automatic Control, vol. 43, no. 4, pp. 509–521, April
1998.

[10] C. Carbone, U. Ciniglio, F. Corraro, and L. Luongo, “A novel 3D
geometric algorithm for aircraft autonomous collision avoidance,” in
Proc. IEEE Conference on Decision and Control, 2006.

[11] E. Frazzoli, Z. Mao, J. Oh, and E. Feron, “Resolution of conflicts
involving many aircraft via semidefinite programming,” AIAA Journal
of Guidance, Control, and Dynamics, vol. 24, no. 1, pp. 79–86, 2001.

[12] L. Pallottino, E. Feron, and A. Bicchi, “Conflict resolution problems
for air traffic management systems solved with mixed integer pro-
gramming,” IEEE Transactions on Intelligent Transportation Systems,
vol. 3, no. 1, pp. 3–11, March 2002.

[13] L. Pallottino, V. G. Scordio, A. Bicchi, and E. Frazzoli, “Decentralized
cooperative policy for conflict resolution in multivehicle systems,”
IEEE Transactions on Robotics, vol. 23, no. 6, pp. 1170–1183, 2007.

[14] E. Lalish, K. A. Morgansen, and T. Tsukamaki, “Decentralized reactive
collision avoidance for multiple unicycle-type vehicles,” in Proc. IEEE
American Control Conference, 2008.

[15] A. Chakravarthy and D. Ghose, “Obstacle avoidance in a dynamic
environment: A collision cone approach,” IEEE Transactions on
Systems, Man, and Cybernetics, vol. 28, no. 5, pp. 562–574, September
1998.

[16] S. Skogestad and I. Postlethwaite, Multivariable Feedback Control.
Wiley, 2005.

