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Abstract 
This paper deals with a trajectory planning problem 

that we call the ‘highway problem’. It consists in planning 
a time-optimal trajectory for a mobile which is travelling 
in a structured workspace amidst moving obstacles and 
is subject to constraints on its velocity and acceleration. 
By structured workspace, we mean that there exists lanes 
characterized by one-dimensional curves along which the 
mobile is able to move. The mobile has to follow a lane 
but it may also shift from its lane to an adjacent one. 

This paper presents an efficient method which de- 
termines an approximate time-optimal solution to the 
highway problem. The approach consists in discretizing 
time and selecting the accelerations applied to the mobile 
among a discrete set. These hypotheses make it possible 
to define a grid in the mobile’s time-state space, i.e. the 
mobile’s state (or phase) space augmented of the time di- 
mension. This grid is then searched in order to find a 
soh tion. 

1 Introduction 
1.1 Overview of the problem 

Planning motions for robots is a fundamental prob- 
lem which encompasses a wide range of approaches 
and assumptions. However it seems important to 
make a distinction between path planning and tra- 
jecto y planning: path planning is characterized by 
the search of a continuous sequence of collision-free 
configurations between a start and a goal configura 
tion, whereas trajectory planning is concerned with 
the time history of this sequence of configurations. 

This paper deals with a particular trajectory plan- 
ning problem that we call the ‘highway problem’. It 
consists in planning a time-optimal trajectory for a 
mobile which is travelling in a structured workspace 
amidst moving obstacles and is subject to constraints 
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on its velocity and acceleration. By structured 
workspace, we mean that there exists lanes character- 
ized by one-dimensional curves along which the mobile 
is able to move. The mobile has to follow a lane but it 
may also shift from its lane to an adjacent one. Such 
lanes may be a priori defined by the intrinsic struc- 
ture of the workspace, as in 183, but they may also 
be automatically extracted from a description of the 
workspace, as in [2]. 

Planning the motion of a car on the highway among 
other cars is a vivid example of this kind of problem, 
hence the name ‘highway problem’. This framework 
led us to take into account another constraint: in a 
workspace such as the roadway, there are several po- 
tential moving obstacles (cars, pedestrians. . . ) and it 
is impossible to have a full a priori knowledge of their 
motions. Therefore we will assume that the knowledge 
that we have of the motions of the moving obstacles is 
restricted to a certain time interval-the time-horizon. 
The main consequence of this assumption is to define 
an upper bound on the time available to plan the mo- 
tion of the mobile considered. 

1.2 Contribution of the paper 
This paper presents an efficient method which 

solves the highway problem. The approach which we 
have chosen was initially motivated by the work de- 
scribed in (41: it consists in discretizing time and se- 
lecting the accelerations applied to the mobile among 
a discrete set. These hypotheses make it possible to 
define a grid in the mobile ’s state (or phase) space. 
This grid is then searched in order to find a solution. 
In our case however, moving obstacles have to be dealt 
with, therefore we will define the grid in the time-state 
space1 of the mobile rather than in its state space. As 
we will see further down. the choice of the time-step 
determines the size of the grid which, in turn, deter- 
mines the running time of the algorithm as well as how 
close the solution is to the exact time-optimal solution. 

The time dimension is explicitly added to the mobile’s state 
space. 
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The paper is organized as follows: $2 briefly reviews 
the complexity issues and the works related to trajec- 
tory planning. Then 53 formally states the highway 
problem. 54 describes the algorithm developped in or- 
der to solve this problem while $5 presents an imple- 
mentation of this algorithm along with experimental 
results. 

2 
2.1 Complexity of the problem 

Complexity issues and related works 

The ‘piano mover’ problem -i.e. path planning - 
is well-known for its complexity. Various instances 
of this problem have been shown to be Pspace-hard, 
Pspace-complete or NP-hard (see [12]).  Since trajec- 
tory planning takes into account an extra dimension - 
time- and extra dynamic constraints, one can expect 
it to be as computationally expensive as path plan- 
ning, and it is indeed. The various results presented 
in [3,13] or [14] indicate that the highway problem is 
intricate. Therefore, in order to have a chance to meet 
the time-horizon constraint, a few simplifying assump- 
tions are required. These assumptions rely upon the 
specific structure of the workspace considered. They 
are presented in 53 along with the formal statement of 
the ,problem. 

2.2 Related works 
There is a large body of works related to trajectory 

planning. Some of them focus on trajectory planning 
amidst moving obstacles while others deal more par- 
ticularly with dynamic constraints. 

Moving obstacles: a general approach in or- 
der to deal with moving obstacles is the so-called 
‘configuration-time space’ approach which consists in 
adding the time dimension to the robot’s configura- 
tion space. (cf [7, 9, 14, 161). An alternate approach 
is the ‘path-velocity decomposition’. The basic idea is 
to decompose the trajectory planning into two sub- 
problems: (a) planning a path which avoids colli- 
sion with the static obstacles of the workspace and 
(b) planning the velocity along this path in order to 
avoid collision with the moving obstacles. This ap- 
proach was first introduced in [ l l ] .  It is efficient but, 
unfortunately, it is inherently incomplete. 

Dynamic constraints: dealing with dynamic con- 
straints has proved to be an intricate problem. There 
are some results for exact time-optimal trajectory 
planning for Cartesian robots subject to bounds on 
their velocity and acceleration [13, 51. Besides op- 
timal control theory provides some exact results in 
the case of robots with full dynamics moving along 

a given path [ I ,  181. However the difficulty of the 
general problem and the need for practical algorithms 
led some authors to develop approximate methods. 
Their basic principle is to  define a grid which is 
searched in order to find an optimal solution. Accord- 
ingly trajectory planning is reduced to graph search 
(cf [4,  6 ,  10, 17, 151). 

3 Statement of the problem 
The lanes which represent the structure of the 

workspace are modelled by a set of 1 straight planar 
curves Lj ,  i = 0 , 2 .  . . I  - 2 , l  (the reason for this pecu- 
liar indexing will appear later). The Lj have an equal 
length p,,, and are arranged in the way depicted in 
figure 1 .  A lane will be referred to by its index. 

h 

4.2 

Figure 1: the lanes Lj , i = 0 , 2  . . . l -  2 , l  

A set of particles t?j , j = 1 . . . n, represents the ob- 
stacles to be avoided. Wlog, it is assumed that they 
are moving along the lanes. The position of such a par- 
ticle at time t is defined by the tuple ( L s j ( t ) , p e j ( t ) )  
where L e j ( t )  is the lane of Bj and where paj@) E 
[0, pmar] is its curvilinear abcissa along this lane. 
The functions Laj  (t) and paj  ( t )  are defined (but not 
necessarily everywhere) over the closed time interval 
[0, tmcz] where t,,, represents the time-horizon, i.e. 
the time interval over which the motions of the Bj are 
known. 

The mobile whose motions are to be planned is also 
represented by a particle A. The normal behaviour of 
A is to follow a given lane; however A has also the 
possibility to make a lane-changing, i.e. to shift from 
its current lane to an adjacent one. The particular 
nature of these motions led us to decouple the mo- 
tion along the lane -longitudinal motion- from the 
motions between the lanes -lateral motions. 

Let us consider the lateral motion, i.e. the lane- 
changing depicted in figure 2-a. At time t ,  A shifts 
smoothly from its current lane Lj to an adjacent lane 
Lj+2. Let At be the time interval necessary to perform 
the lane-changing. The shape of the lane-changing 
trajectory and the value of At depend on the char- 
acteristics of d.  Assuming that the value of 6 L  is of 
the order of the width of the vehicles represented by 
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A and the Bj2 ,  it is reasonable that during the lane- 
changing, A should avoid collision with the obstacles 
of both lanes Li and Li+2. This property makes it 
possible to model the lateral motion as a three-step 
process: (a) at timet, A instantaneously ‘jumps’ from 
Lj to a fictitious intermediate lane Li+l,  (b) A moves 
along Li+l during [ t ,  t + At] (the obstacles of both Li 
and Li+2 are assumed to be on Li+ l )  and (c) at time 
t + At, d instantaneously ‘jumps’ from Li+l to Li+2 
(see figure 2-b). Accordingly this modelling reduces a 
lateral motion to a longitudinal motion along a ficti- 
tious lane. 

Figure 2: lane-changing 

The longitudinal motion of A along a real or fic- 
titious lane is a one-dimensional motion which is ob- 
tained by applying an acceleration $(t)  to A. The 
velocity p( t )  and the position p ( t )  of A along this lane 
are respectively defined as the first and second inte- 
gral of j ( t )  subject to an initial position and an initial 
velocity. Besides p ( t )  and p ( t )  are bounded: 

-Pmaz I P(t) I P m a z  (1) 
0 I P(t) 5 Pmaz (2) 

In this framework, a state of A is defined as being 
the tuple ( L , p , $ )  where LE(0 . .  . l }  is the index of the 
current lane of A, pEIO,pmaz] its curvilinear abcissa 
along this lane and fi€[O,$maz] its instantaneous ve- 
locity. Accordingly a trajectory for A is defined by 
a mapping I’ taking a time t E [0, tr] to a state 
I’(t) = ( L ( t ) , p ( t ) , p ( t ) ) .  The time for the trajectory 
I’ is simply t j .  The two components L( t )  and ( p ( t ) ,  
p ( t ) )  of this trajectory are defined by the two following 
maps: 

1. L :  [0,  t i ]  - (0..  . I }  which indicates the cur- 
rent lane of d.  If Lt is even then d is on the 
real lane L t ,  otherwise it is performing a lane- 
changing between the lanes Lt - 1 and Lt + 1. 

2. p :  [0, tr] - [-@mar, lima*] which is the in- 
stantaneous acceleration applied to A. 

As to collision avoidance, a trajectory I‘ is theoret- 
ically collision-free iff V t ~ [ 0 ,  t j ] ,  p ~ ~ ( t ) # p ( t )  for every 
Bj such that Lej(t) = L( t ) .  However, in order to have 

2As is the case on a highway. 

a trajectory which be of a certain practical value, A 
should avoid the obstacles Bj by a velocity-dependent 
safety margin 6( t ) .  The purpose of this safety mar- 
gin 6 ( t )  is twofold -it generates a trajectory which 
(a) takes into account the fact that A and the Bj rep- 
resent real sized vehicles and (b) is ‘robust’ in the sense 
that it does not skim over the obstacles (by doing so 
tracking errors will be allowed at execution time). For- 
mally, a trajectory I’ is said to be safe iff 

Vt€[O, t j ] ’ V B j 1 j  = 1. .  .n : 
LBj ( t )#L( t )  or 
Laj ( t )=L( t )  and IP(t) - PBj(t)l > b ( t )  

where 6 ( t )  = c O + q  I p(t)  I with CO and c1 two positive 
scalars. 

Given an initial state s = (Ls,ps,pJ) and a final 
state g = ( L ,  p g  , p g ) ’  a trajectory I’ constitutes a so- 
lution to the highway problem considered iff 

The problem to be solved is to find a time-optimal 
solution, i.e. a solution I’ defined for t E [0, t r ]  such 
that t f  should be minimal. 

4 The approach 
4.1 The basic idea 

In 93, we have defined the type of trajectory which 
is a solution to the highway problem. The intrinsic 
complexity of the problem (see 52.1) along with the 
time-horizon constraint led us to choose an approx- 
imate method to solve this problem. The approach 
consists in discretizing time -a time-step T being 
chosen- and selecting the accelerations applied to the 
mobile from the discrete set (-Pmaz, 0, fimaz). AC- 
cordingly, the solution trajectories that we consider 
meet the following constraints: 

0 p(t)E{ - pmor, 0, pmaz} with p piecewise con- 
stant. 

0 L ( t )  and p( t )  only changes their values at times 
t = k~ for some integer B 2 0. 
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Such a trajectory will be called a bang-trajectory. Un- 
der these restrictions, the problem to be solved is to 
find out the time-optimal bang-trajectory. Obviously 
the complexity of this problem depends on the num- 
ber of bang-trajectories which, in turn, is directly re- 
lated to the size of r -the smaller r ,  the higher the 
number of bang-trajectories. On the other hand, we 
intuitively3 feel that the closeness of the approxima- 
tion is also related to the size of 7 -the smaller 7, the 
better the approximation. Thus it is possible to trade 
off the computation speed against the quality of the 
solution. 

In the next section, we show how to reduce 
the problem of finding out the time-optimal bang- 
trajectory to that of finding out a shortest path in 
a directed graph. 

4.2 The time-state graph 
A state of A has been defined earlier as being the 

tuple ( L , p , p ) .  A time-state of A is defined by ex- 
plicitely adding the time dimension to a state of A. 
Let us denote TS the set of all such time-states. A 
point in TS is a tuple s = ( L  , p ,  p ,  t )  or equivalently 

Let s(kr) = ( L ( k ~ ) , p ( k ~ ) , p ( k ~ ) )  be a time-state 
of A and let s((E + 1)r) be one of the time-states 
that A can reach by a bang-trajectory of duration 
r. s((E + 1)~)  is obtained by applying an acceleration 
PE{ - pmar, 0, pimar) to ,4 for the duration r. Besides 
A has the possibility either to stay on its current lane 
or to switch to an adjacent lane. Accordingly we have: 

4)  = ( ~ ( t ) , P W ( W *  

L((k  + 1)r) = L ( k r )  + a with a E { - l , O ,  1) 

p( (k  + 1)r) = p(1Cr) + I ~ ( ~ T ) T  + spr2 
1 

p((k + 1)T)  = $(kT) + $7 

As explained in $3, it is assumed that, during the time 
intervallh, (k+l )r ] ,  A is on the real or fictitious lane 
L((k  + 1)r). By analogy with [4], the trajectory be- 
tween s ( h )  and s((E + l ) ~ )  is called a (a,$, r)-bang. 
s((k + 1)r) is said to be reachable from s (kr) .  Obvi- 
ously a bang-trajectory is made up of a sequence of 
(a, p ,  7)-bangs. 

Let s(mr), m 2 k, be a time-state reachable from 
s(kr).  Assuming that p ( k r )  is a multiple of $mazT, 
we can easily show that the following relations hold 
for some integers a1 , 0 2  and 03: 

L ( ~ T )  = L ( k r ) + q a  

3This intuition is confirmedin [4] where it is shown that, for 
8 conct  choice of T ,  any safe trajectory can be approximated 
to 8 tolerance e by 8 safe bang-trajectory. 

Thus all time-states reachable from one given time- 
state by a bang-trajectory lie on a regular grid em- 
bedded in TS. This grid has spacings of r in time, of 
$ijmazr2 in position, of pmazr in velocity and of 1 in 
the lane dimension. 

Consequently it becomes possible to define a di- 
rected graph Q embedded in TS. The nodes of Q 
are the grid-points while the edges of Q are (a, p ,  r)- 
bangs between pairs of these nodes. Such (U ,# ,  r)- 
bangs have to respect the velocity constraint and be 
safe (this point is detailed in &3). Q is called the 
time-state graph, it is illustrated in figure 3 which de- 
picts the ‘timexpositionxvelocity’ space of two adja- 
cent lanes Li and Li+l .  For the sake of clarity, we 
have only represented one node and its neighbours 
on both lanes Li and Li+l (a node has at the most 
three neighbours per lane). Let A be this node. The 
time-states reachable from A by a (a, p, r)-bang lie on 
the grid -they are nodes of Q. An edge between A 
and one of its neighbours represents the correspond- 
ing (a, p, 7)-bang. A sequence of edges between two 
nodes defines a bang-trajectory. The time of such a 
bang-trajectory is trivially equal to r times the num- 
ber of edges in the trajectory. Therefore the short- 
est path between two nodes is the time-optimal bang- 
trajectory between these nodes. 

Figure 3: the graph Q 

Let s = (La, pa, pa) and g = (Lg  , pg  , pg) be respec- 
tively the initial and the goal state for A. Wlog, it 
is assumed that the time-state 5’ = (La, pa, p a ,  0) and 
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the set of time-states G' = {(Lg,pg,$g,k:r) with h = 
0 . .  . [FJ} are grid-points. Accordingly searching 
for a time-optimal bang-trajectory between s and g is 
equivalent to searching a shortest path in E between 
the node s' and a node in G'. 

Note that because we only consider a compact re- 
gion of TS, the number of grid-points is finite. Thus 
6 is finite and the search for the time-optimal bang- 
trajectory can be done in a finite amount of time. The 
next section describes how the search is carried out. 

4.3 Searching the time-state graph 
The algorithm: basically we use an A' algorithm 
to search G Beside its efficiency, such an algorithm is 
interesting because it generates only the parts of Q 
which are relevant to the search. Starting with s' as 
the current node, we 'expand' this current node, i.e. 
we determine all its neighbours, then we select the 
neighbour which is the 'best' according to a given cri- 
terion and it becomes the current node. This process 
is repeated until the goal is reached or until the whole 
graph has been explored. The time-optimal path is 
returned using backpointers. In the next two sections, 
we detail two key-points of the algorithm. Namely 
the cost function assigned to each node and the node 
expansion. 

The cost function: A' assigns a cost f(s) to every 
node s in G. Since we are looking for a time-optimal 
path, we have chosen f(s) as being the estimate of 
the time-optimal path in connecting s* to G' and 
passing through s. f(s) is classically defined as the 
sum of two components g(s) and h(s): 

0 g(s) is the time of the path between s* and s, i.e. 
the time component of s. 

0 h(s)  is the estimate of the time-optimal path be- 
tween s and an element of G', i.e. the amount 
of time it would take A to reach g from its cur- 
rent state with a 'bang-coast-bang' acceleration 
profile4 in an obstacle-free workspace. When such 
an acceleration profile does not exist, h(s)  is set 
to +m. 

The heuristic function h( s) is trivially admissible, 
thus A' is guaranteed to generate the time-optimal 
path whenever it exists. 

The node expansion: the neighbours of a given 
node s in Q are the nodes which can be reached 
from s by a (u,#,~)-bang. As mentioned earlier, 

'i.e. maximum acceleration, null acceleration and maximum 
deceleration. 

U E {- l ,O ,  1) and p E {-Fmac, O,pmaZ}.  Thus s has 
up to nine neighbours. However this number is re- 
duced to three when d is performing a lane-changing 
(indeed d must stay on the fictitious intermediate lane 
for the duration At of the lane-changing). Let us con- 
sider the (u,p,~)-bang between s ( ~ T )  and s((k + 1 ) ~ )  
then, V t € [ k ~ ,  (k: + l ) ~ ] ,  we have: 

This (a, p, T)-bang is valid if it is safe and if it does 
not not violate the velocity bounds (2) introduced 
in $3. The velocity constraint can be tested easily 
using equation (4). As to collision avoidance, we must 
make sure that W[h, (k+ l ) ~ ] ,  p ( t )  is no closer than 
6 ( t )  = CO + c1 I @(t)  I to any obstacle of the lane 
L((h  + 1 ) ~ ) .  p ( t )  is computed using equation (3). A 
practical way to check out the safety of a given posi- 
tion p ( t )  is to 'grow' of 6 ( t )  the obstacles of the lane 
considered before testing whether p ( t )  intersects the 
grown obstacles (see figure 4). 

I '  ,....-.., 
I .  ; :  

A ! !  

Figure 4: safety checking 

5 Implementation and experiments 
The algorithm presented above has been imple- 

mented in C on a Sun SPARC I. In the current imple- 
mentation, the safety margin 6 is constant and lane- 
changings are performed with a null acceleration.. Ac- 
cordingly, a grid point has at the most five neighbours. 
We have tested the algorithm with up to four lanes. 
In these experiments, the obstacles are generated at 
random without caring whether they collide with each 
other. Besides they are assumed to keep a constant ve- 
locity over the time-horizon. An example of trajectory 
planning involving two lanes is depicted in figure 5.  
Each lane is associated with two windows: a trace win- 
dow showing the part of Q which has been explored 
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and a result window displaying the final trajectory. 
Any of these windows represents the ‘timexposition’ 
space of the lane (the position axis is horizontal while 
the time axis is vertical; the frame origin is at the 
upper-left corner). The thick black segments repre- 
sent the trails left by the moving obstacles and the 
little dots are points of the underlying grid. Note that 
the fictitious lane used to perform lane-changings is 
not represented here. A starts from the first lane (lane 
#O), at position 0 (upper-left corner) and with a null 
velocity. It must reach the first lane at position pmaz 
(right border) with a null velocity. A can overtake by 
using the second lane (lane #l). In order to simulate 
the behaviour of a car on the roadway, we have cho- 
sen the following values for the various variables of the 
problem: Pmaz = 500m, 6L = 4m, pmar = 72km/h, 
pmas = lm/sa et tma, = 20s. As mentionned earlier, 
it is the choice of T which determines the average run- 
ning time of the algorithm. For a value of T set to 
Is, we have obtained a running time ranging from less 
than a second to a few seconds. 

Figure 5:  
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