
REAL-TIME MOTION PLANNING FOR AGILE

AUTONOMOUS VEHICLES

Emilio Frazzoli 1 Munther A. Dahleh 2

Eric Feron 3

Massachusetts Institute of Technology, Cambridge, MA 02139

Abstract

Planning the path of an autonomous, agile vehicle in
a dynamic environment is a very complex problem, es-
pecially when the vehicle is required to use its full ma-
neuvering capabilities. Recent efforts aimed at using
randomized algorithms for planning the path of kine-
matic and dynamic vehicles have demonstrated con-
siderable potential for implementation on future au-
tonomous platforms. This paper builds upon these ef-
forts by proposing a randomized motion planning plan-
ning architecture for dynamical systems in the pres-
ence of fixed and moving obstacles. This architecture
addresses the dynamic constraints on the vehicle’s mo-
tion, and it provides at the same time a consistent de-
coupling between low-level control and motion plan-
ning. Simulation examples involving a ground robot
and a small autonomous helicopter, are presented and
discussed.

1 Introduction

This paper is concerned with the problem of generat-
ing and executing a motion plan for an autonomous
vehicle. In other terms, this paper considers develop-
ing an algorithm that enables the robot to move from
its original location to a new location (presumably to
perform a given task such as performing an observation
or delivering a payload), while avoiding collisions with
fixed or moving obstacles.
The full exploitation of the vehicle’s dynamics and
maneuvering capabilities often plays a crucial role in
achieving the mission goals. This is true in cases in
which the characteristic dimensions of the environment
(e.g. the size of the obstacles, and of the gaps between
them) and of the vehicle’s dynamics (e.g. the turning
radius) are comparable. In such cases motion planning
strategies should account for the dynamics of the ve-
hicle to the best extent possible. In other words, it is
desirable that the output from the motion planning be
executable by the system dynamics.

1Research Assistant, Department of Aeronautics and Astro-
nautics. AIAA Member.

2Professor, Department of Electrical Engineering and Com-
puter Science.

3Associate Professor, Department of Aeronautics and Astro-
nautics. AIAA Senior Member

Motion planning research is a well-established disci-
pline in Robotics.1–4 The computational complexity
of a deterministic, complete algorithm, even in the
simplest cases of motion planning, grows exponentially
with the number of the degrees of freedom of the ve-
hicle.5,6 In order to circumvent the computational
complexity of deterministic, complete algorithms, a
new class of motion planning algorithms, known as
Probabilistic RoadMap (PRM) planners, was recently
introduced.7–12 Probabilistic Roadmap Planners are
based on the construction of a graph of feasible paths
(roadmap), connecting different locations (milestones)
in the workspace. An incremental version of PRMs,
the Rapidly-exploring Random Tree (RRT), was in-
troduced by LaValle and Kuffner13–15 as a means to
provide rapid, single-query exploration of the environ-
ment, as well as to take into account the dynamics of
the system. In Hsu, Kindel, et al.16 a new incremental
roadmap building algorithm is introduced that provides
not only probabilistic completeness, but also perfor-
mance guarantees on the algorithm. That is, the prob-
ability of the algorithm finding a solution if one exists
converges exponentially fast to one with the number of
planning iterations. One difficulty pointed out by the
authors, however, lies with the fact that algorithm per-
formance relies upon uniform sampling of milestones in
the reachable space of the workspace. Practical imple-
mentations (which have reportedly demonstrated excel-
lent performance16) rely upon uniform sampling of the
system’s control inputs instead, which in general does
not guarantee uniform sampling of the workspace.
Motivated by these considerations, this paper proposes
a new randomized, incremental path planning algo-
rithm. This incremental roadmap building algorithm
is able to effectively deal with the system’s dynamics,
in an environment characterized by moving obstacles.
Central to this algorithm is the assumption that an
obstacle-free guidance loop is available, which is able
to steer the system from any state (including location
and velocities) to any desired location at rest, assum-
ing that there are no obstacles in the environment.
This guidance loop enables uniform sampling of the
workspace while generating trajectories that are exe-
cutable by the dynamical system. As a consequence,
this path planning algorithm satisfies the technical con-



ditions elicited by Hsu, Kindel et al16 and therefore
offers guaranteed performance, in the sense of bounds
on the convergence rate to unity of the probability of
correct termination. Considering real-time computa-
tion issues, the path planning algorithm provides safety
guarantees in the sense that it provides intermediate
milestones with guaranteed buffer time before a colli-
sion occurs. If possible and practical, the buffer time
can be extended to infinity, thus resulting, in principle,
in hard safety guarantees on the generated plan.

2 Problem formulation

This section introduces the elements used to formulate
the path planning algorithm. The algorithm for path
planning presupposes the existence of a closed-loop ar-
chitecture that enables the guidance of the vehicle from
any state to any location at rest. Thus, rather than
working with an ”open-loop” system, as presented in
earlier publications,13,15, 16 our basic dynamical system
is a closed-loop one.

2.1 System dynamics
The usual representation of the dynamics of an au-
tonomous vehicle or robot is a set of Ordinary Differ-
ential Equations (ODEs) of the form:

dx

dt
= f(x, u) (1)

where x ∈ X is the state, belonging to a n-dimensional
manifold X (the state space), and u is the control in-
put, taking values in the set U ⊆ Rm. In some cases,
additional inequality constraints of the form Fi(x) < 0
must be added on the state variables, to ensure safe op-
eration of the system (e.g. flight envelope protection).
Assume that the state space X can be decomposed, at
least locally, in the product C×Y . Furthermore, assume
that the system dynamics are invariant with respect to
group operations (e.g. translations or rotations) on C.
The space C can be regarded as a reduced configura-
tion space, in the sense that it is defined by a subset of
the configuration variables of the system, with respect
to which the system has certain symmetry properties.
The space Y encodes the remaining configuration vari-
ables, as well as the vehicle’s velocity and higher order
derivatives of the configuration variables.
In this paper we consider problems in which the desired
destination is an equilibrium point. We can define equi-
librium points for the system (1) as the points (x̄, ū)
for which f(x̄, ū) = 0. Since the system dynamics are
invariant with respect to translations (and rotations)
on C, a family of equilibrium states can be expressed
by a point in C × {ȳ}, where ȳ ∈ Y is a constant.
A major consequence of this restriction is the fact that
the motion planning algorithm is directly applicable
only to a class of autonomous vehicles which are indeed
able to ”stop”. This includes autonomous helicopters,
VTOL aircraft, spacecraft, ground vehicles, and sur-
face/underwater vessels; in its basic configuration the

algorithm may not include conventional fixed-wing air-
craft.

2.2 Obstacle-Free Guidance system
The second element that is assumed to be available is a
guidance algorithm in environments with no obstacles.
More specifically, we assume knowledge of a guidance
law that can steer the system, in the absence of obsta-
cles, from any state to a particular target set T (xeq),
centered at an equilibrium point xeq.
While, admittedly, finding such a guidance law is per se
a very difficult problem, it also has been the object of
an enormous amount of work over the past century: In
many cases efficient, obstacle-free guidance laws may
be computed analytically.17,18 This is the case of sys-
tems with linear dynamics and a quadratic cost. It also
includes numerous cases of aerospace interest such as
double or triple integrators with control amplitude and
rate limits. In addition, many of these problems, al-
though they may not admit closed-form solutions, may
be solved numerically via the approximate or exact so-
lution to an appropriate optimal control problem by
minimizing the cost functional

J(x0, xeq) =
∫ tf

t0

g(x, xeq, u)dt, x(tf ) ∈ T (xeq) (2)

for some initial conditions x0, under the dynamics con-
straints (and possibly state and control constraints).
Such a formulation includes for example minimum time
and minimum energy control problems. Advances in
computer power, combined with appropriate plant sim-
plifications (such as the introduction of the maneuver
model outlined in19) make it possible in many cases of
practical interest to compute and store an approximate
expression for the optimal value function J∗(x, xeq), for
all x ∈ X , and all equilibrium points xeq ∈ C ×{ȳ}, us-
ing for example iterative methods.19,20

If the optimal cost function J∗(x, xeq) is known for all
x ∈ X , and all equilibrium points xeq ∈ C×{ȳ}, then it
is relatively easy to recover the optimal control policy
π : X × C → U , as a (feedback) policy that returns at
each time instant the control input that minimizes the
total (future) cost-to-go to the target.21 The feedback
policy π can be thought of as a function of the state
x, parameterized by the destination equilibrium point
xeq. The solution to an optimal control problem in the
free space thus provides us with a control policy π that
ensures that the system is driven towards a target set in
finite time, effectively parameterized by configurations
in C.
2.3 Environment characterization
We consider an environment in which both fixed and
moving obstacles are present, and we assume that
the motion of the obstacles (or conservative estimates
thereof) is known in advance. Since the environment
is time-varying, collisions must be checked on (space ×
time) pairs (x, t) ∈ X × R. For this purpose, a colli-



sion checking algorithm is assumed to be available (via
trajectory sampling or other appropriate method). A
pair (x, t) is said to be feasible if it does not result in a
collision, and x satisfies the flight envelope constraints.

2.4 Problem formulation
The motion planning problem can now be stated as fol-
lows: Given an initial state x0 ∈ X , at time t0, and a
goal equilibrium configuration xf ∈ C×{ȳ}, find a con-
trol input υ : [t0, tf ]→ U , that can steer the system the
system from x0 to T (xf ). A motion planning algorithm
is said complete if it returns a feasible solution when-
ever there exists one and returns failure otherwise. By
feasible here we mean a solution for which no collisions
occur, and the flight envelope and control saturation
constraints are satisfied. While the usual formulation
of the motion planning problem is concerned only with
finding a feasible trajectory, in many engineering ap-
plications we are also interested in finding a trajectory
minimizing some cost. In this paper, we will assume
the cost is defined by a functional of the form (2), that
is J(x0, xeq) =

∫ tf
t0
g(x, xeq, u)dt.

The motion planning problem, even in its simplest for-
mulation, has been proven computationally hard. It is
possible to circumvent this difficulty through the defini-
tion of a randomized motion planning algorithm which,
by replacing completeness with probabilistic complete-
ness (in the sense that the probability of the algorithm
terminating correctly approaches one as the number of
iterations grows) achieves computational tractability,
while retaining formal guarantees on the behavior of
the algorithm.

3 Path planning in the presence of obstacles

The motion planning algorithm in the presence of
obstacles is based on the determination of a time-
parameterized sequence of “attraction points” xeq(t)
that effectively steers the system to the desired con-
figuration while avoiding obstacles. In this way, the
obstacle-free solution to an optimal control problem
forms the basis for the problem of motion planning
in the presence of obstacles. Such an approach casts
the location of the equilibrium configuration as a func-
tion of time as a “pseudo-control” input for the system.
Since the actual control inputs can be computed from
the knowledge of the optimal control policy π(·, xeq),
this means that the low-level control layer (the layer ac-
tually interacting with the vehicle) and the high-level,
guidance layer are effectively decoupled, while at the
same time ensuring full consistency between the two
levels. As a consequence, unlike earlier randomized
motion planning approaches, the motion planning al-
gorithm can be run at a rate that is much slower than
the rate required for the low-level control layer.
Note also that the ideas outlined above in a probabilis-
tic roadmap setting can be seen as a motion planning
technique through scheduling of Lyapunov functions,
where the Lyapunov functions are defined to be the

value function J∗ associated with the optimal guidance
law introduced earlier. While the concept is not en-
tirely new in control theory,22–24 to the authors’ knowl-
edge, this is the first application to motion planning in
a workspace with moving obstacles. A fundamental
difference can also be seen in the fact that in our algo-
rithm the ordering of Lyapunov functions is performed
on-line, whereas in the references the ordering was de-
termined a priori.
The algorithm can be outlined as follows. Starting
with a node representing the initial condition, a tree
is built by iteratively adding new “milestones”, which
are connected to the tree by a feasible trajectory seg-
ment. Note that in the dynamic environment case the
tree must be rooted at the initial condition, at θ sec-
onds in the future, because of the finite computation
time; θ is the amount of time allotted for each mo-
tion planning cycle . Each new milestone is computed
through the generation of a random equilibrium point
xrand ∈ C×{ȳ} and the associated target set T (xrand);
the control policy π(·, xrand) is applied in turn to all the
nodes of the current tree, until the ensuing propagated
trajectory is feasible, and the end point satisfies certain
safety conditions (discussed in the following). In this
case the new milestone is added to the tree. If a feasible
trajectory can not be found for any of the nodes in the
current tree, the candidate milestone is discarded. The
milestones generated according to the above procedure
can be regarded as primary milestones. We assume
that xrand is generated from a uniform distribution on
the subset of C defining the workspace.
The order in which the nodes in the tree are tested in
conjunction with the new candidate milestone is left as
yet unspecified. However, it can be convenient from a
computational point of view to test first the nodes in
the trees from which the candidate milestone is more
likely to be reachable. This can be accomplished by
sorting the nodes in the tree according to some measure
of ”distance” to the candidate milestone. An appropri-
ate measure of distance in the case we are examining
is given by the obstacle-free optimal cost function J∗.
The control policy to the destination π(·, xf ) is applied
to the newly generated milestone: if the resulting tra-
jectory is feasible, a complete trajectory from the initial
condition (tree root) to the target set T (xf ) has been
found. Hence the feasibility problem is solved. How-
ever, it is possible to use the remaining part of the al-
lotted time to try to improve the current solution. For
this purpose, a record of estimates of the lower and up-
per bound on the cost to go at each node can be main-
tained. Each time a new feasible trajectory is found,
it is possible to climb the tree back towards the root,
along the feasible trajectory, updating the estimates on
the upper bound on the cost-to-go (see below).
Notice that, even though the system is moving among
equilibrium points, the resulting trajectories will not,
in general, be composed of straight lines; moreover, the



trajectories cannot, in general, be reversed in time. In
this sense the resulting roadmap is different from the
roadmap constructed in the original PRM algorithm.
To our knowledge, the algorithm outlined above is the
first one to which the convergence result in16 fully ap-
plies. In this sense the most significant contribution of
this paper is to propose to shift the search for reachable
milestones from an open-loop process, where by explo-
ration is done by randomly sampling the controls avail-
able to the system to a closed-loop process, whereby
the exploration is done by randomly (and uniformly)
sampling the milestones, and the obstacle-free guidance
system then chooses the controls leading the vehicle
from its current state to that milestone. In this sense
the guidance law can in fact be interpreted as a prac-
tical implementation of an ideal inversion mechanism
proposed in.16

3.1 Improving performance
As it can be easily recognized, the algorithm outlined
above consists of jumps from equilibrium point to equi-
librium point, and as such is unlikely to provide satis-
factory performance, in terms of the cost (2).
However, performance may be restored by realizing
that the available guidance policy may not only steer
the vehicle from equilibrium state to equilibrium state,
but from any state to an equilibrium state. This sug-
gests introducing the following step: consider the tree
at some point in time and a newly added milestone to
the tree. A secondary milestone is defined to be any
state of the system (continuous or hybrid) along the
path leading from the parent node in the tree to the
newly added milestone. Pick n ≥ 1 such secondary
milestones at random along that path. Because the
vehicle is in motion along the path, these secondary
milestones are likely to be at points in the state space
that are “far” from the equilibrium manifold.
These secondary milestones are added to the tree, and,
as for all newly generated milestones, feasibility is
checked for the resulting trajectory to the destination
xf . Moreover secondary milestones can be selected as
the tree node to be expanded in later iterations. Note
that all secondary milestones, by construction, have a
primary milestone in a child subtree.

3.2 Data structure
The roadmap is constructed as a tree, consisting of
nodes and edges. At the tree nodes all the informa-
tion concerning each milestone is stored, including: 1)
The propagated state of the vehicle (i.e. state x ∈ X ,
time t ∈ R). 2) The cumulative cost and upper and
lower bounds on the cost-to-go. The lower bound on
the cost-to-go coincides with the value of the cost func-
tion J∗(x, xf ), that is, it corresponds to the cost to go
to the target state assuming the presence of no obsta-
cle. The upper bound on the cost-to-go is initialized
to +∞, meaning that a feasible path from the partic-
ular node has not been found yet. 3) A counter of the

total number of milestones in the children trees. The
(state×time) couple is initialized through propagation
of the system dynamics, and the cumulative cost is up-
dated, according to eq.(2).
At the tree edges, the following data are stored: 1)
Information regarding the transitions between single
milestones (namely, the parameters identifying the con-
trol law implemented in the transition, or the tar-
get equilibrium point); 2) The incremental cost in-
curred during the transition, mainly for bookkeeping
purposes; again, this is done using the cost functional
expressed in eq.(2).

3.3 Real-time considerations
A significant issue arising from the usage of random-
ized algorithms for path planning is the distinct pos-
sibility of driving the system towards a dead-end due
to finite computation times. The notion of τ -safety is
introduced to prevent such situations to develop:

Definition 1 (τ-safety) A milestone (x, t) ∈ C ×
{ȳ} × R is said to be τ -safe if (x, t̃) is feasible for all
t̃ ∈ [t, t+ τ ].

Primary milestones are added to the tree only if τ -
safe. If possible, and practical, primary milestones can
be checked for the absence of collisions over an infinite
horizon (τ → ∞). This is possible in many cases of
interest (including all static environments), and results
in hard safety guarantees on the resulting motion plan,
if the initial condition is itself safe. In cases in which
safety cannot be ensured over an infinite time horizon,
τ -safety only ensures that the algorithm will always
have at least τ seconds to compute a new solution.
The τ -safety of the generated plan derives from the
fact that all the primary milestones are by construc-
tion τ -safe, and all secondary milestones have at least
one primary milestones in their sub-tree. Maintain-
ing safety guarantees in the face of finite computation
times is particularly important, since the algorithm it-
self has no deterministic guarantees of success. In the
sense outlined above the algorithm will always produce
safe motion plans, even in the case in which a feasible
trajectory to the target set has not been found.
The time available for computation is bounded by ei-
ther θ, or by the duration of the current trajectory
segment. When the time is up, a new tree must be se-
lected from the children of the current root. If there are
none, since every primary milestone is τ -safe, the sys-
tem has at least τ seconds of guaranteed safety, avail-
able for computing a new tree (secondary milestones
always have at least one child). If the current root
has children, then two cases arise: At least one of the
children leads to the destination through an already
computed feasible solution. If there is more than one
such feasible solution, the solution with the least upper
bound on the cost-to-go is chosen; No feasible solutions
have been computed yet. In this case there is no clear



indication of the best child to explore. Maintaining the
same approach at the basis of the algorithm, the child
to descend can be selected randomly, according either
to a uniform distribution, or to a distribution weighted
on the total number of primary milestones in the sub-
children of each tree. In the latter case the selected
tree is likely to cover a bigger portion of the reachable
set.

3.4 Tree pruning
The upper and lower bounds on the cost to go stored
for each tree milestone may be profitably used for prun-
ing the tree and speeding up computations. Recall the
lower bound coincides with the optimal cost-to-go in
the obstacle-free case, and the upper bound is equal to
the cost of the best trajectory from the milestone to
the destination xf if this trajectory has been found or
+∞ otherwise.
Every time a new feasible solution is found, the upper
bounds on the cost-to-go may be updated by climbing
the tree backwards along that feasible solution towards
the tree root. While performing this operation, it is
also possible to look at all the children of the node being
updated. If the lower bound on the total cost-to-go
for such a children (plus the cost of the corresponding
edge) is higher than the upper bound on the cost-to-go
for the current node, the corresponding subtree can be
safely removed, as it cannot possibly provide a better
solution than the one which has just been found.
The end result of such a process is the removal from
the trajectory tree of all the provably bad candidates
for the “optimal” solution. The trajectory tree, fol-
lowing this pruning process, contain a smaller number
of nodes, thus improving the overall computational ef-
ficiency. However, it must be kept in mind that tree
pruning can only be carried out once a feasible solution
has been found, and is of no help before that happens.

4 Application Examples

In the next sections we present three examples which
show the power and the flexibility of the proposed algo-
rithm. We consider first a linear system, then a system
endowed with a control architecture patterned after
the hybrid control structure introduced in.19 All algo-
rithms have been implemented in C++ on a Pentium II
300 MHz machine, using the LEDA25 library. The sta-
tistical data are referred to a data set of one thousand
simulation runs for each example. Computer anima-
tions of the simulation examples are available from the
authors.

4.1 Ground robot
In this section, we are interested in planning the path
of a planar system with equations of motion

ẍ1 + ẋ1 = u1

ẍ2 + ẋ2 = u2
(3)

The magnitude of each control u1 and u2 is assumed to
be bounded by umax. Although this system model is

quite simple, it is a good representation of the ground
robots used by the Cornell University team to win the
RoboCup-2000 contest.26

For any one axis, let the initial position and velocity be
x0 and v0; the final (equilibrium) conditions are charac-
terized by a desired final position xf and zero velocity.
In order to provide The minimum time maneuver from
origin to destination for any of the degrees of freedom
(assuming a general maximum control intensity umax)
is a bang-bang control law18 given by

u(t) = U for 0 < t < t1
u(t) = −U for t1 < t < t1 + t2

(4)

The sign of the initial control value U can be deter-
mined through the switching function:

∆0 :=
{
x0 − xf + v0 − umax log(1 + v0/umax) for v0 ≥ 0
x0 − xf + v0 + umax log(1− v0/umax) for v0 < 0

(5)

If the initial conditions are such that ∆0 ≥ 0 then
U = −umax, and U = umax otherwise.
The time length of the two bang-bang segments can be
determined as follows:

t1 = t2 − C/U
t2 = log(1 +

√
1− exp(C/U)(1− v0/U))

(6)

with C = x0 + v0 − xf .
The policy π used to control the vehicle described
by (3) is then defined as follows: Considering the two
degrees of freedom x1 and x2, the ”slowest” axis is de-
termined first, and the corresponding time optimal con-
trol is applied. Let t∗min be the minimum time corre-
sponding to that axis. The other, fastest axis is then
controlled using a minimum ”effort” solution, by solv-
ing the minimum time problem using the equations (4),
with U = ±γumax, and by iterating over the parameter
γ ∈ (0, 1) until tmin = t∗min.
The randomized path planning has been tested in sev-
eral examples, including cases with both fixed and mov-
ing obstacles, and in general proved to be very fast
and reliable. The first example involves navigating the
ground robot through a set of obstacles represented as
spheres in the configuration space, as shown in Fig. 1 .
This example was very easily handled by the proposed
planner: a feasible solution was found on average in 14
ms (standard deviation 14 ms).
In the second example the robot must go through mov-
ing openings in two walls: This example can be partic-
ularly difficult for randomized planners, since the en-
vironment is characterized by the presence of “narrow
passages” (see Fig. 2). However, the algorithm pro-
posed in the paper was able to deal with this scenario
quite effectively. A feasible solution was found on av-
erage in 61.7 ms, (standard deviation 96.5 ms). More-
over, notice that in about 75% of the simulation runs,
the first feasible solution was found in under 100 ms.



Start

End

0 10 20 30 40 50 60 70 80 90 100 110 120
0

10

20

30

40

50

60

70

Time to compute first feasible solution (ms)
%

 s
am

pl
es

Mean: 14.1 ms
St.Dev.: 14.1 ms
Median: 10 ms

Figure 1: Ground robot moving among fixed spheres

0 50 100 150 200 250 300 350 400 450 500 550 600
0

5

10

15

20

25

30

35

40

%
 s

am
pl

es

Time to compute first feasible solution (ms)

Mean: 61.7 ms
St.Dev.: 96.5 ms
Median: 40 ms

Figure 2: Ground robot through moving doors

4.2 Small autonomous helicopter
One of the prime motivations for the development of
the algorithm presented in this paper is the path plan-
ning task for a small autonomous helicopter.
This section presents simulation results for a test case
involving a small autonomous helicopter. The simu-
lations rely upon a fully non-linear helicopter simula-
tion, based on a commonly used minimum-complexity
model.27 The motion planning algorithms operating on
the hybrid automaton structure19,28 are complemented
a nonlinear control law29 to ensure tracking of the ref-
erence trajectory.
The planner was tested using the same scenarios as for
the ground robot examples. The output of the simula-
tions was scaled, in such a way as to provide a mean-
ingful comparison of the two cases.
The cost function used in all the examples is the total
time needed to go to the destination. The first exam-
ple involves navigating the helicopter through a set of
obstacles represented as spheres in the configuration
space (Fig. 3) . This example was very easily handled
by the proposed planner: a feasible solution was found
on average in 136 ms (standard deviation 73.5 ms).
In the second example the helicopter must go through
moving openings in two walls (see Fig. 4) . The basic
algorithm, was not able to handle this case very effec-
tively.30 In most runs, it took upwards of 20 seconds
to compute a feasible trajectory. However, the exten-
sions presented in this paper resulted in a significant
reduction in the required computation time: tests per-
formed indicate the average time required to compute

Start

End

0 50 100 150 200 250 300 350 400 450 500 550 600
0

5

10

15

20

25

30

35

40

45

%
 s

am
pl

es

Time to compute first feasible solution (ms)

Mean: 135.6 ms
St.Dev.: 73.5 ms
Median: 120.4 ms

Figure 3: Helicopter flying among fixed spheres

Start

End

−1 0 1 2 3 4 5 6 7 8 9
0

5

10

15

20

25

30

%
 s

am
pl

es

Time to compute first feasible solution (s)

Mean: 1.44 s
St.Dev.: 1.61 ms
Median: 0.98 s

Figure 4: Helicopter flying through moving doors

a feasible solution to be only 1.44 seconds (standard
deviation 1.61 seconds).

5 Conclusions

In this paper a randomized motion planning algorithm
was presented, based on using an obstacle-free guidance
systems as local planners in a probabilistic roadmap
framework. The main advantage of the algorithm is the
capability to address in an efficient and natural fashion
the dynamics of the system, while at the same time
providing a consistent decoupling between the motion
planning and the low-level control tasks.
From a theoretical point of view, it was shown how
to perform uniform sampling in the reachable space of
the vehicle, as opposed to sampling in the input space.
Real-time issues were directly addressed: in the case in
which finite computation time and available resources
do not allow the computation of a feasible solution be-
fore a decision has to be made, it was shown how to en-
sure safety and how to choose likely candidates for fur-
ther exploration. Future work address motion planning
in uncertain environment, with limited sensor range,
and multi-vehicle operations.

References
[1] J.-C. Latombe. Motion planning: a journey of
robots, molecules, digital actors, and other artifacts.
International Journal of Robotics Research, 18(11),
November 1999.

[2] J. C. Latombe. Robot Motion Planning. Kluwer
Academic Publishers, Boston, MA, 1991.

[3] Z. Li and J.F. Canny, editors. Nonholonomic Mo-



tion Planning. Kluwer Academic Publishers, Boston,
MA, 1993.

[4] J.-P. Laumond, editor. Robot Motion Planning
and Control, volume 229 of Lectures Notes in Control
and Information Sciences. Springer, 1998. Available at
http://www.laas.fr/ jpl/book.html at the time of
writing.

[5] J.H. Reif. Complexity of the mover’s problem
and generalizations. In FOCS, pages 421–427, 1979.

[6] J. Canny. The Complexity of Robot Motion Plan-
ning: ACM Doctoral Dissertation Award. MIT Press,
1988.

[7] L.E. Kavraki, P. Svestka, J.C. Latombe, and
M.H. Overmars. Probabilistic roadmaps for path plan-
ning in high-dimensional configuration spaces. IEEE
Transactions on Robotics and Automation, 12(4):566–
580, 1996.

[8] M. H Overmars and P. Svestka. A paradigm for
probabilistic path planning. Technical report, Depart-
ment of Computer Science, Utrecht University, March
1996.

[9] L. E. Kavraki, M. N Kolountzakis, and J.C.
Latombe. Analysis of probabilistic roadmaps for path
planning. In Proceedings of the 1996 IEEE Interna-
tional Conference on Robotics and Automation, pages
3020–3025, 1996.

[10] L. E Kavraki, J.C. Latombe, R. Motwani, and
P. Raghavan. Randomized query processing in robot
path planning. Journal of Computer and System Sci-
ences, 57(1):50–60, August 1998.

[11] D. Hsu, L.E. Kavraki, J.C. Latombe, R. Mot-
wani, and S. Sorkin. On finding narrow passages
with probabilistic roadmap planners. In Proceedings
of the 1998 Workshop on Algorithmic Foundations of
Robotics, Houston, TX, March 1998.

[12] D. Hsu, J.-C. Latombe, and R. Motwani. Path
planning in expansive configuration spaces. Int. J.
Comp. Geometry and Applications, 9(4-5):495–512,
1999.

[13] S. M. LaValle. Rapidly-exploring random trees:
A new tool for path planning. Technical Report 98-11,
Iowa State University, Ames, IA, Oct. 1998.

[14] S.M. LaValle and J.J Kuffner. Randomized kin-
odynamic planning. In Proceedings of the 1999 IEEE
International Conference on Robotics and Automation,
1999.

[15] J.J. Kuffner and S.M. LaValle. RRT-Connect:
an efficient approach to single-query path planning. In
IEEE International Conference on Robotics and Au-
tomation, 2000.

[16] D. Hsu, J.C. Kindel, J.-C. Latombe, and S. Rock.
Randomized kinodynamic motion planning with mov-
ing obstacles. In Proc. Workshop on Algorithmic Foun-

dations of Robotics (WAFR’00), Hanover, NH, March
2000.

[17] M. Athans and P. Falb. Optimal Control.
McGraw-Hill, 1966.

[18] A. E. Bryson and Y. C. Ho. Applied Optimal
Control. Hemisphere Publishing, New York, 1975.

[19] E. Frazzoli, M.A. Dahleh, and E. Feron. A hy-
brid control architecture for aggressive maneuvering of
autonomous helicopters. In IEEE Conf. on Decision
and Control, December 1999.

[20] D. P. Bertsekas and J.T. Tsitsiklis. Neuro-
Dynamic Programming. Athena Scientific, Belmont,
MA, 1996.

[21] D.P. Bertsekas. Dynamic Programming and Op-
timal Control. Athena Scientific, Belmont, MA, 1995.

[22] A. Leonessa, V.S. Chellaboina, and W.M. Had-
dad. Globally stabilizing controllers for multi-mode ax-
ial flow compressors via equilibria-dependent lyapunov
functions. In Proc. IEEE Conf. Dec. Contr., San Diego,
CA, December 1997.

[23] R. R. Burridge, A. A. Rizzi, and D.E.
Koditscheck. Sequential decomposition of dynamically
dexterous robot behaviors. International Journal of
Robotics Research,, 18(6):534–555, June 1999.

[24] M.W. McConley, B.D. Appleby, M.A. Dahleh,
and E.Feron. A computationally efficient Lyapunov-
based scheduling procedure for control of nonlinear sys-
tems with stability guarantees. IEEE Transactions on
Automatic Control, January 2000.

[25] K. Melhorn and St. Näher. The LEDA platform
of Combinatorial and Geometric Computing. Cam-
bridge University Press, 1999.

[26] R. D’Andrea, T. Kalmár-Nagy, P. Ganguly, and
M. Babish. The Cornell robot soccer team. In P. Stone,
editor, RoboCup-00: Robot Soccer World Cup IV, Lec-
ture Notes in Computer Science. Springer, 2001.

[27] T.J. Koo and S. Sastry. Output tracking con-
trol design of a helicopter model based on approximate
linearization. In Proc. IEEE Conf. on Decision and
Control, December 1998.

[28] E. Frazzoli, M.A. Dahleh, and E. Feron. Robust
hybrid control for autonomous vehicle motion planning.
In IEEE Conf. on Decision and Control, Sydney, Aus-
tralia, 2000.

[29] E. Frazzoli, M.A. Dahleh, and E. Feron. Trajec-
tory tracking control design for autonomous helicopters
using a backstepping algorithm. In American Control
Conference, Chicago, IL, 2000.

[30] E. Frazzoli, M.A. Dahleh, and E. Feron. Real-
time motion planning for agile autonomous vehicles.
In AIAA Conf. on Guidance, Navigation and Control,
Denver, CO, August 2000.


