Path Planning Approaches

Dr. Thierry Fraichard
Path Planning Problem

\[W, A \rightarrow C, B_i \rightarrow CB_i, \ i = 1 \ldots b, \ q_s, q_g \]

Goal: explore \(C_{\text{free}} \) to compute a collision-free path between \(q_s \) and \(q_g \)
Completeness Issue

Complete algorithm: finds a solution if one exists, reports failure if not

Complexity of complete path planning: strong evidence that it takes time exponential in d, the dimension of the configuration space C

Specific complete path planning algorithms have been implemented for $d = 2, 3$ or 4

Two complete general purpose path planning algorithms have been proposed [Schwartz & Sharir 81, Canny 87], (resp. twice and singly exponential in d) but…

None has been implemented!

Complete algorithms: Theoretical interest mostly
In practice, difficult to implement and not robust

What to do then?
Completeness Issue (C’ed)

What can be done:

(1) Be practical, forget about completeness and be *heuristic*
 ⇒ Hopefully works well in most encountered situations, no performance guarantee

(2) Settle for a weaker notion of completeness:

Resolution completeness: based on a systematic discretization of C
Completeness is guaranteed for a given resolution level
(Does not work well when d is high)

Probabilistic completeness: the probability of finding a solution converges
towards 1 when the algorithm is given infinite time
(Weaker property: if no solution is found within a finite time then what?)
Possible Classifying Criteria for Path Planning Methods

Is the method complete?

(a) *Exact* approaches Complete
(b) *Approximate* approaches Resolution complete
(c) *Randomized* approaches Probabilistically complete
(d) *Heuristic* approaches Uncomplete

Does the method explicitly compute the configuration space?

Does the method attempt to capture the topology of the configuration space?

Is the method designed to handle multiple path planning problems?

(a) Single query Goal-dependent
(b) Multiple query Goal-independent preprocessing

...
Families of Path Planning Methods

(1) Methods exploring a *search graph*

Attempt to capture the topology of the configuration space \rightarrow Graph structure

Preprocessing of the configuration space independently of any goal (multiple query)

(2) Methods incrementally building a *search tree*

No attempt to capture the topology of the configuration space

Goal-dependent methods (single query)

(3) “Other” methods
Graph-Based Methods

Visibility graph [Nilsson, 69]

Retraction[\-like]
 Voronoï diagram [Dunlaing & Yap, 82]
 Silhouette [Canny, 88]
 Generalized cylinders [Brooks, 82]

Cellular decomposition
 Exact
 Approximate

Probabilistic roadmap and its variants
Visibility Graph [Nilsson, 69]

Network of 1D curves capturing the topology of \(C_{\text{semifree}} \), structured as a graph.

Path planning: (1) connect \(q_s \) and \(q_g \) to the roadmap, (2) graph search.

Shortest path in 2D space (no longer true in a 3D space).
Voronoï Diagram \cite{Dunlaing & Yap, 82}

Based on the topological notion of \textit{retraction}: continuous surjective mapping (n to 1) of a topological space onto one of its subset (of lower dimensionality)

In addition, it should preserve the connectivity of the initial topological space

\[C = R^2 \], polygonal configuration obstacles regions

Voronoï Diagram: retraction defined as the set of points whose minimal distance to \(\delta C_{\text{free}} \) is achieved with more than one points of \(\delta C_{\text{free}} \)

\[\rightarrow \text{1D network of } C_{\text{free}} \text{ curves: straight segments + parabolic arcs} \]
Voronoï Diagram (C’ed)

Generate paths maximizing the clearance to the obstacles.
Applicable mostly to 2D spaces
Silhouette [Canny, 87]
General (configuration space of arbitrary dimensionality n) and complete
Single-exponential time complexity in d but…
Never implemented! Theoretical interest only

Generalized Cylinders [Brooks, 82]
Approximation of the Voronoï diagram in the workspace
Cellular Decomposition

Configuration space C

Connectivity Graph

Graph Search

q_s, q_g

Path Construction

“Channel”
Exact Cellular Decomposition

Main features: Complete approach: \(U \ cells = C_{\text{free}} \)
Adapted cell shape
Reduced cell number
Increased decomposition complexity
Increased connectivity graph building complexity

e.g. Collins’ cells decomposition for semi-algebraic sets \([Collins 75]\) (used in \([Schwartz & Sharir 81]\) to establish the decidability of the Generalized Piano Mover problem)
Convex Cell Decomposition
Trapezoidal Decomposition

Configuration space
Upward extensions
Deleting the trapezoids within the obstacles
Building the connectivity graph
Approximate Cellular Decomposition

Main features:
- Resolution complete approach: $U \, cells \subset C_{\text{free}}$
- Fixed cell shape
- Large cell number
- Reduced decomposition complexity
- Reduced connectivity graph building complexity

e.g. rectangular decomposition:
Hierarchical Cellular Decomposition

Quadtree
Hierarchical Cellular Decomposition

Octree

EMPTY cell MIXED cell FULL cell
Probabilistic Roadmap

[Kavraki et al., 96; Svetska & Overmars, 96]

Rationale: in general, computing C_{free} is too hard whereas checking whether a configuration or a path is collision-free can be done efficiently using recent collision-checking or distance computation techniques.
Probabilistic Roadmap Principle

Key idea: approximate the free space by random sampling

Principle is very simple:
(1) Sample C randomly
(2) Keep the samples in C_{free} (milestones)
(3) Connect pair of milestones with simple paths

→ Roadmap: network of 1D curves that approximate the connectivity of C_{free}
Probabilistic Roadmap Principle (C’ed)
“Good” Probabilistic Roadmap

Probabilistic completeness only

Main issue is to compute a “good” roadmap

Desirable properties:

Coverage: the milestones should “see” most of C_{free} so as to guarantee that any start and goal configurations can be connected to the roadmap easily

\rightarrow Concept of ε-goodness of C_{free}

Connectivity: there should be a single-connected component of the roadmap in every connected component of C_{free}

\rightarrow Concept of (α, β)-expansiveness of C_{free}
Narrow Passage Issue

Difficult

Easy
ε-Goodness

Let $\varepsilon \in (0, 1]$, $q \in C_{\text{free}}$ is ε-good if it sees an ε-fraction of $\mu(C_{\text{free}})$, the volume of C_{free}.

C_{free} is ε-good if every free configuration is ε-good.

ε represents the smallest fraction of C_{free} visible from any configuration: $\varepsilon = \min \frac{\mu(V(q))}{\mu(C_{\text{free}})}$.

If C_{free} is ε-good, the volume of the subset of C_{free} not seen by any of s milestones picked uniformly at random has a probability proportional to e^{-s} of being greater than $\varepsilon \mu(C_{\text{free}})$ [Kavraki et al., 95].
Narrow Passage Issue

\[\varepsilon = 0.5 \]

\[\varepsilon \approx 1 \]
Let $\beta \in (0, 1]$, the β-lookout of an arbitrary subset S of C_{free} is the subset of the points of S that see a β-fraction of the volume $C_{\text{free}} \setminus S$.

β-Lookout
(α, β)-Expansiveness

C_{free} is (α, β)-expansive if every subset S of C_{free} has a β -lookout of relative volume α

\[\alpha = \frac{\mu(\beta - \text{lookout}(S))}{\mu(S)} \]

If C_{free} is expansive with large α and β then it is easy to sample new milestones that will expand the visibility region significantly (until C_{free} is completely covered)

[Hsu et al., 97] have established the relationship between (α, β), the number of milestones to sample and the probability that a connected component of C_{free} contains several roadmap components
Narrow Passage Issue

Lookout of F_1
Narrow Passage Issue

$\varepsilon = 0.5$
Poorly expansive

$\varepsilon \approx 1$
Expansive

ε-goodness and (α, β)-expansiveness are interesting results connecting the algorithm performance to s and ε or α and β, one problem though: they are both defined in terms of C_{free} that cannot be computed efficiently...

Importance of the sampling strategy, several were proposed: uniform, uniform with refinement in “difficult” regions, “push” non-free milestones in C_{free}, visibility-based...
Probabilistic Roadmap’s Features

Proved to be an effective (easy to implement, fast, robust) computational framework to solve path planning problems in high-dimensional configuration spaces.

Successfully applied to different motion planning problems: moving obstacles, kinematic and dynamic constraints, manipulation...

Remaining issues:

How to obtain a good roadmap?
No rigorous termination criterion when no solution is found
Tree-Based Methods

Grid-based methods
 Dynamic programing
 A* algorithm

Rapidly-exploring random trees [LaValle, 98]

Ariadne’s Clew algorithm [Ahuactzin, 94]
Grid-Based Methods

Regular discretization of the configuration space (grid)
Adjacency relationship between the grid nodes (neighbours)

Starting from q_s, an exploration tree can be built and expanded until q_g is reached

Tree expansion techniques:
- Dynamic programming
 - Open nodes sorted by increasing c_{root}
- A^* ($c_{goal} =$ underestimate of the cost to q_g)
 - Open nodes sorted by increasing $c_{root} + c_{goal}$
- BF^*
 - Open nodes sorted by increasing c_{goal} (no optimality then)

Variant: bi-directional search
Rapidly-Exploring Random Tree (RRT)
[LaValle, 98]

RRT = search tree grown from an initial state, expanded through incremental motion

Naive random tree vs. RRT
Voronoï Interpretation of RRT

Bias towards unexplored regions
Rapidly-Exploring Random Tree
RRT ’ Features

Simple

Bias towards unexplored region

Eventually, uniform coverage

Probabilistic completeness

Performance depending on the metric

Rate of convergence?

Relationship to optimal paths?

Variants: single-tree vs. dual-tree

Relatively large standard deviation of planning time
Probabilistic Roadmap’s Features

Proved to be an effective (easy to implement, fast, robust) computational framework to solve path planning problems in high-dimensional configuration spaces

Successfully applied to different motion planning problems: moving obstacles, kinematic and dynamic constraints, manipulation…

Remaining issues:

How to obtain good roadmaps?

No rigorous termination criterion when no solution is found
Ariadne’s Clew Algorithm [Ahuactzin, 94]

Tree T expanded from the start configuration

Local connecting function: $\text{Search} (q_1, q_2)$

Search defines a reachability set $R(T)$

Optimization procedure: Explore
that selects a new node as far as possible from the other nodes of T

When a new node is selected, the algorithm tries to connect it to the goal configuration
Ariadne’s Clew Algorithm (C ’ed)

Main property: relationship between the number of nodes nb and a scalar ε, e.g. a measure of the difficulty of the planning problem (size of a narrow passage)

$$nb > \left| \frac{\sigma_n(size(C_{free}) + \varepsilon)^n}{J_n\left(\frac{\varepsilon}{2}\right)^n} \right| - 1 \Rightarrow d(T(nb), q_g) < \varepsilon$$

$\sigma_n = $ Rogers’ density, i.e. maximum % of C (of dimension n) that can be covered by n-balls

$J_n = $ volume of a unit n-ball

\Rightarrow Resolution completeness (and even completeness when q_g lies in a C_{free} ε -ball)
Ariadne’s Clew Algorithm (C ’ed)
“Other” Methods

Navigation function

Path deformation
Navigation Function

Aka Feedback motion planning

Navigation function: scalar function defined over the free configuration space

Incremental robot motion: negated gradient descent

Ideally, a navigation function should be smooth, with a global minimum at the goal, without any local minimum
Potential Field \([Khatib, \, 86]\)

Force field analogy

Technique originally designed for real-time collision-avoidance
Potential Field-Based Navigation Function

$U(q) = U_{\text{goal}}(q) + U_{\text{obstacles}}(q)$

Negated gradient descent

Main issue: local minima (how to design a good potential field?)
Optimal Navigation Function

NF1
Path Deformation

Nominal path, *on-line* deformation given updated world model

Variational aproaches [*Lamiraux 02*]

External + internal forces: elastic strip analogy [*Brock*]
Path Deformation

Loss of connectivity \Rightarrow local replanning