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Path Planning Problem
W, A → C, Bi → CBi , i = 1…b, qs , qg
Goal: explore Cfree to compute a collision-free path between qs and qg
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Completeness Issue

Complete algorithm: finds a solution if one exists, reports failure if not

Complexity of complete path planning: strong evidence that it takes time exponential 
in d, the dimension of the configuration space C

Specific complete path planning algorithms have been implemented for d = 2, 3 or 4

Two complete general purpose path planning algorithms have been proposed
[Schwartz & Sharir 81, Canny 87], (resp. twice and singly exponential in d) but…

None has been implemented!

Complete algorithms: Theoretical interest mostly
In practice, difficult to implement and not robust

What to do then?
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Completeness Issue (C’ed)

What can be done:

(1) Be practical, forget about completeness and be heuristic
⇒ Hopefully works well in most encountered situations, no performance guarantee

(2) Settle for a weaker notion of completeness:

Resolution completeness: based on a systematic discretization of C
Completeness is guaranteed for a given resolution level 
(Does not work well when d is high)

Probabilistic completeness: the probability of finding a solution converges 
towards 1 when the algorithm is given infinite time
(Weaker property: if no solution is found within a finite time then what?)
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Possible Classifying Criteria
for Path Planning Methods

Is the method complete?

(a) Exact approaches Complete
(b) Approximate approaches Resolution complete
(c) Randomized approaches Probabilistically complete
(d) Heuristic approaches Uncomplete

Does the method explicitly compute the configuration space?

Does the method attempt to capture the topology of the configuration space?

Is the method designed to handle multiple path planning problems?

(a) Single query Goal-dependent
(b) Multiple query Goal-independent preprocessing

…
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Families of Path Planning Methods

(1) Methods exploring a search graph

Attempt to capture the topology of the configuration space → Graph structure

Preprocessing of the configuration space independently of any goal (multiple query)

(2) Methods incrementally building a search tree

No attempt to capture the topology of the configuration space

Goal-dependent methods (single query)

(3) “Other” methods
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Graph-Based Methods

Visibility graph [Nilsson, 69]

Retraction[-like]
Voronoï diagram [Dunlaing & Yap, 82]
Silhouette [Canny, 88]
Generalized cylinders [Brooks, 82]

Cellular decomposition
Exact
Approximate

Probabilistic roadmap and its variants



© Th. Fraichard

Visibility Graph [Nilsson, 69]
Network of 1D curves capturing the topology of  Csemifree, structured as a graph

Path planning: (1) connect qs and qg to the roadmap, (2) graph search

Shortest path in 2D space (no longer true in a 3D space)
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Voronoï Diagram [Dunlaing & Yap, 82]
Based on the topological notion of retraction: continuous surjective mapping (n to 1)
of a topological space onto one of its subset (of lower dimensionality)

In addition, it should preserve the connectivity of the initial topological space 

C = R2, polygonal configuration obstacles regions

Voronoï Diagram: retraction defined as the set of points whose minimal distance 
to δCfree is achieved with more than one points of δCfree

→ 1D network of Cfree curves: straight segments + parabolic arcs
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Voronoï Diagram (C’ed)
Generate paths maximizing the clearance to the obstacles.
Applicable mostly to 2D spaces
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Silhouette [Canny, 87]
General (configuration space of arbitrary dimensionality n) and complete 

Single-exponential time complexity in d but…

Never implemented! Theoretical interest only

Approximation of the Voronoï diagram in the workspace

Generalized Cylinders [Brooks, 82]
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Cellular Decomposition

Cellular 
Decomposition

of Cfree

Graph Search

Configuration space C

Connectivity Graph

Start
Goal

“Channel”

Path 
Construction

qs , qg
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Exact Cellular Decomposition
Main features: Complete approach: U cells =Cfree

Adapted cell shape
Reduced cell number
Increased decomposition complexity
Increased connectivity graph building complexity

e.g. Collins’ cells decomposition for semi-algebraic sets [Collins 75]
(used in [Schwartz & Sharir 81] to establish the decidability of the 
Generalized Piano Mover problem)
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Convex Cell Decomposition
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Trapezoidal Decomposition

Upward extensions

Deleting the trapezoids
within the obstacles

Downward extensions

Building the
connectivity graph

Configuration space
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Approximate Cellular Decomposition

Main features: Resolution complete approach: U cells ⊂ Cfree
Fixed cell shape
Large cell number
Reduced decomposition complexity
Reduced connectivity graph building complexity

e.g. rectangular decomposition:
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Hierarchical Cellular Decomposition

Quadtree
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Hierarchical Cellular Decomposition
Octree
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Probabilistic Roadmap
[Kavraki et al., 96; Svetska & Overmars, 96]

Rationale: in general, computing Cfree is too hard whereas checking whether 
a configuration or a path is collision-free can be done efficiently using recent
collision-checking or distance computation techniques
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Probabilistic Roadmap Principle

Key idea: approximate the free space by random sampling

Principle is very simple:
(1) Sample C randomly
(2) Keep the samples in Cfree (milestones)
(3) Connect pair of milestones with simple paths

→ Roadmap: network of 1D curves that approximate the connectivity of Cfree
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Probabilistic Roadmap Principle (C’ed)

Cfree

qs

qg

Milestone
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“Good” Probabilistic Roadmap

Probabilistic completeness only

Main issue is to compute a “good” roadmap

Desirable properties:

Coverage: the milestones should “see” most of Cfree so as to guarantee that any start
and goal configurations can be connected to the roadmap easily

→ Concept of ε-goodness of Cfree

Connectivity: there should be a single-connected component of the roadmap in every
connected component of Cfree

→ Concept of (α, β)-expansiveness of Cfree
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EasyEasyDifficult

Narrow Passage Issue
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ε-Goodness

Let ε ∈ (0, 1], q ∈ Cfree is ε-good if it sees an ε-fraction of μ(Cfree ), the volume of Cfree

Cfree is ε-good if every free configurations is ε-good

ε represents the smallest fraction of Cfree visible from any configuration:

if Cfree is ε-good, the volume of the subset of Cfree not seen by any of s milestones
picked uniformly at random has a probability proportional to e-s of being greater
than εμ(Cfree ) [Kavraki et al., 95]
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ε = 0.5 ε ≈ 1

Narrow Passage Issue
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β-Lookout

Cfree

S
q

V(q)

Let β ∈ (0, 1], the β-lookout of an arbitrary subset S of Cfree is the subset 
of the points of S that see a β-fraction of the volume Cfree \ S

β-lookout(S)
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(α, β)-Expansiveness

Cfree is (α, β)-expansive if every subset S of Cfree has a β -lookout of relative volume α

If Cfree is expansive with large α and β then it is easy to sample new milestones that
will expand the visibility region significantly (until Cfree is completely covered)

[Hsu et al., 97] have established the relationship between (α, β), the number 
of milestones to sample and the probability that a connected component of Cfree
contains several roadmap components
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Lookout of F1

Narrow Passage Issue
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ε = 0.5
Poorly expansive

ε ≈ 1
Expansive

ε-goodness and (α, β)-expansiveness are interesting results connecting the algorithm
performance to s and ε or α and β, one problem though: 
they are both defined in terms of Cfree that cannot be computed efficiently…

Importance of the sampling strategy, several were proposed: uniform, uniform with 
refinement in “difficult” regions, “push” non-free milestones in Cfree, visibility-based...

Narrow Passage Issue
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Probabilistic Roadmap’s Features

Proved to be an effective (easy to implement, fast, robust) 
computational framework to solve path planning problems 
in high-dimensional configuration spaces.

Successfully applied to different motion planning problems: 
moving obstacles, kinematic and dynamic constraints, 
manipulation…

Remaining issues:

How to obtain a good roadmap?

No rigorous termination criterion when no solution is found
97 dof
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Tree-Based Methods

Grid-based methods
Dynamic programing
A* algorithm

Rapidly-exploring random trees [LaValle, 98]

Ariadne’s Clew algorithm [Ahuactzin, 94]
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Grid-Based Methods

Regular discretization of the configuration space (grid)
Adjacency relationship between the grid nodes (neighbours)

Starting from qs, an exploration tree can be built and expanded until qg is reached

Tree expansion techniques:
Dynamic programming

Open nodes sorted by increasing croot
A* (cgoal = underestimate of the cost to qg)

Open nodes sorted by increasing croot + cgoal
BF*

Open nodes sorted by increasing cgoal (no optimality then)
…

Variant: bi-directional search
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Rapidly-Exploring Random Tree (RRT) 
[LaValle, 98]

RRT = search tree grown from an initial state, expanded through incremental motion

Naive random tree vs. RRT
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Voronoï Interpretation of RRT

Bias towards unexplored regions
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mmbb

mmgg

Rapidly-Exploring Random Tree
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RRT ’ Features
Simple

Bias towards unexplored region

Eventually, uniform coverage

Probabilistic completeness

Performance depending on the metric

Rate of convergence?

Relationship to optimal paths?

Variants: single-tree vs. dual-tree

Relatively large standard deviation of planning time
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Probabilistic Roadmap’s Features

Proved to be an effective (easy to implement, fast, robust) computational framework
to solve path planning problems in high-dimensional configuration spaces

Successfully applied to different motion planning problems: moving obstacles,
kinematic and dynamic constraints, manipulation…

Remaining issues:

How to obtain good roadmaps?

No rigorous termination criterion 
when no solution is found
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Ariadne’s Clew Algorithm [Ahuactzin, 94]

Tree T expanded from the start configuration

Local connecting function: Search (q1, q2)

Search defines a reachability set R(T)

Optimization procedure: Explore
that selects a new node as far as
possible from the other nodes of T

When a new node is selected, the algorithm
tries to connect it to the goal configuration

R(T)
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Ariadne’s Clew Algorithm (C ’ed)

Main property: relationship between the number of nodes nb and a scalar ε, 
e.g. a measure of the difficulty of the planning problem (size of a narrow passage)

σn = Rogers’ density, i.e. maximum % of C (of dimension n) 
that can be covered by n-balls

Jn =  volume of a unit n-ball

⇒ Resolution completeness (and even completeness when qg lies in a Cfree ε -ball)
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Ariadne’s Clew Algorithm (C ’ed)
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“Other” Methods

Navigation function

Path deformation
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Navigation Function

Aka Feedback motion planning

Navigation function: scalar function defined over the free configuration space

Incremental robot motion: negated gradient descent

Ideally, a navigation function should be smooth, with a global minimum at the goal,
without any local minimum
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Potential Field [Khatib, 86]

Attractive field

GoalRepulsive  field

Robot

Fa

Fr

Fmotion

C-obstacle Goal Robot

Force field analogy

Technique originally designed for real-time collision-avoidance

Local minimum
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Potential Field-Based Navigation Function

U(q)= Ugoal(q)+ Urobstacles(q)

Negated gradient descent

Main issue: local minima
(how to design a good potential 
field?)
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Optimal Navigation Function

NF1
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Path Deformation
Nominal path, on-line deformation given updated world model

Variational aproaches [Lamiraux 02]

External + internal forces: elastric strip analogy [Brock]
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Path Deformation

Loss of connectivty ⇒ local replanning
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