> next up previous contents index
: Built-in computable objects : Variable values : Loops   目次   索引

Some notation

In order to introduce some concepts in the following chapters, we now give some definitions.

Definition 7   The cardinality of an unidimensional variable $X$ is defined as follows:


$\displaystyle Card(X)$ $\textstyle =$ $\displaystyle \left\{
\begin{array}{ll} (max-min) & \mbox{ if } X=[min,max] \\ ...
... } X=<v_0,v_1,...,v_{m-1}> \\
k & \mbox{ if } X=[min:max):k
\end{array}\right.$ (2.1)

Definition 8   The order of a variable set of unidimensional variables $\Omega=\{X_1,X_2,...,X_n\}$ is denoted as $O(\Omega)$ and it is defined as $O(\Omega)= Card(X_1)*Card(X_2)...*Card(X_n)$.

Definition 9   Let $x$ be a value of $X$ then $index(x)$ denotes the position of $x$ on $X$. Particularly we have that


$\displaystyle index(x)$ $\textstyle =$ $\displaystyle \left\{
\begin{array}{ll} (x-min) & \mbox{ if } X=[min,max] \\
i...
...i\\
j & \mbox{ if } X=[min:max):k \mbox{ and }
x\in Ai\in X
\end{array}\right.$ (2.2)



Juan-Manuel Ahuactzin 平成17年3月31日