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ABSTRACT
In order to shed lights on the cognitive representations
likely to underlie early vocal imitation, we tried to simulate
Kuhl and Meltzoff's experiment (1996), using Bayesian
robotics and a statistical model of the vocal tract that had
been fitted to pre-babblers' actual vocalizations. It was
shown that audition is compulsory to account for infants'
early vocal imitation performance, inasmuch as the
simulation of purely visual imitation failed to reproduce
infants' score and pattern of imitation. Further, a small
number of vocalizations (less than 100!) appeared to be
enough for a learning process to provide scores at least as
high as those of pre-babblers. Thus, early vocal imitation
lies in the reach of a baby robot, with only a few
assumptions about learning and imitation.  

1. INTRODUCTION

The present study is part of a project that aims at modeling
speech development through the construction of a virtual
baby robot, viewed as a growing sensori-motor system
which is able to learn and to interact, and that takes into
account how infants progress from non-speech to the
mastery of their ambient languages in line with the
Frame/Content theory [5]. The held viewpoint is that
phonetic development relies on two basic mechanisms: the
exploration of the current sensori-motor abilities of the
vocal tract and the imitation (overt simulation) of
caretakers’ language sounds. In a previous paper [7], the
focus was on assessing infants’ early articulatory skills to
specify our robot first capacities, exploiting the Variable
Linear Articulatory Model (VLAM) [1], which integrates the
non-uniform growth of the tract, and sets of formant
frequencies, produced before and at the beginning of
canonical babbling by 4- and 7-month-olds, respectively.

This paper deals with the imitation issue. What about
infants' pre-speech sensori-motor skills? (a) At birth, they
are able to imitate three gestures from vision (facial
imitation): tongue and lips protrusions, and mandible
depression [6]. Although this ability is not obviously
linked with speech development, infants are nonetheless
likely to gain some sensori-motor experience from it. (b) At
a few weeks old, infants vocalize. They tend to direct their
productions towards vowels perceived in their
environments (early vocal imitation) [3], and to match a
vowel sound to the moving image of the face that utters i t
(multimodal matching) [2].

According to [3], vocal imitation "requires that infants
recognize the relationship between articulatory movements
and sound". However, as [8] pointed out, there is no clear
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ensus as to whether early vocal imitation, brought to
 by Kuhl and Meltzoff [3], needs visual, auditory or
 information, given that the subjects are exposed to
ovisual face-voice stimuli while newborns display
l imitation capabilities [6]. The present study tries to

late [3]'s experiment, exploiting the VLAM that was
 to prebabblers' inferred motor abilities [7] and
sian robotics [4] that provides our robot with a means
arn and to use the relationships between its tract

ements and their perceived consequences.
he purpose was to gain some insights into the
itive representations that might be involved in early
l imitation and to test whether and how our robot i s
to reproduce, at least, the actual infants' imitation
rmance when supplied with purely visual, purely

tory and audiovisual information.

 HUMAN INFANTS AND BABY ROBOT

Early vocal imitation

], 72 subjects, aged from 12 to 20 weeks old, were
sed to audiovisual adult face-voice stimuli
sponding to the vowels [i], [a] and [u]. Their

equent vowel-like productions were, whenever
ible, phonetically and acoustically described. The
m of transcription was that of the set of English vowels
the transcribed items were merged into three main
es: the /a/-like, including  [a ], the /i/-like, with [i I

d the /u/-like for [  u]. Table 1 provides the resulting
usion matrix. In sum, the pre-babblers produced vocalic
ds significantly more often categorized as being like
target" after they had been exposed to this stimulus
otherwise, with about 59 % of total responses that are
ruent (hereafter %CR) with an imitative behavior.

 Assessing prebabblers's motor skills
e-babblers' imitation abilities are to be simulated, the
step is to evaluate the set of articulatory configurations
eir disposal to vocalize. This issue was tackled in a
ious work [7] capitalizing on the Variable Linear
ulatory Model (VLAM) [1] which is a statistical
ulatory-acoustic model that integrates the non-uniform
th of the vocal tract [9], thereby, taking into account
ormalization phenomenon. Its computational core [10]

med from a statistical analysis of mid-sagittal sections
speaking adult vocal tract, which led to 7 relevant axes.
e tract shape descriptors turned out to be related to



concrete muscular actions: they are degrees of freedom of a
virtual vocal tract and serve as the VLAM inputs along with
the selected age. The model output is a description of the
tract shape (from the lips to the glottis), which includes its
inter-lip area (Al), as well as the formants of the resultant
sound. In sum, the VLAM simulates, with a growing tract,
adult motor skills from which 4-mth-olds' skills were
inferred. The foregoing were assessed by seeking the
minimal set of the age-matched VLAM commands best able
to recover the formant frequencies of 20-week-olds' actual
vocalizations. These vocalic sounds were those plotted on
figure 3 of [3]. Several articulatory sub-models having
various subsets of VLAM motor parameters with diverse
ranges of variation were comparatively assessed according
to a probability criterion (see [7]): the “best” sub-model was
the one which minimized the distance between the
distribution of its acoustic outputs and that of the actual
data in the first two formants (F1, F2) plan. Hereafter, I4S
will refer to this Inferred 4 months Sub-model. The I4S set of
motor parameters consists of the lower lip height (LH), the
tongue body (TB) and dorsum (TD) VLAM commands with
restricted ranges of variation.

3. SIMULATING EARLY VOCAL IMITATION

3.1. Testing for facial imitation
Newborns are able to imitate seen but unfelt specific facial
gestures (performed by an adult) while they feel but do not
see their own faces [6]. Could early vocal imitation be based
on "hard-wired" purely visuo-motor imitation skills?

3.1.1.    Method

To test whether facial imitation could account for the
performance of [3]'s experiment, the values of the [i a u]
interlip areas (Al) in the 4 months old VLAM were used as
targets: they were exhaustively inverted through the I4S as
follows. A series of simulations was randomly generated
within the I4S motor abilities. The configurations that had
Al values falling within the neighborhood of each target
were selected. The sounds corresponding to these
simulations, having suitable lip- but arbitrary tongue-
shapes, were computed and, then, categorized as [i], [a] or [u]
according to their nearest targets in the (F1, F2) plan, in
terms of Euclidean distance.

3.1.2.    Results

Globally, this modeling experiment yielded about 51% CR
which is not much lower than the actual score (59%). This
suggests that facial imitation could partially explain early
vocal imitation. However, as there is no reason to suppose
infants to perform a perfect visual imitation of Al values,
the score of this experiment should be lower than 51%.
Moreover, the confusion matrix of this test provided a
typical pattern of visual confusion: many confusions
occurred between [i] and [a] or [i] and [u], but none did
between [a] and [u] whose interlip areas are very different.
This is quite unlike the actual pattern (Table 1). In sum,
visual information alone and, thus, pure visuo-motor
imitation are not enough on their own to account for early
vocal imitation.
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Testing for auditory and audiovisual imitation

hey vocalize, the pre-babblers are likely to build a
eptuo-motor map of their vocal tract behaviors, i.e. a
itive representation of the correspondence between the
ulatory configurations they perform and the matched
ry feedbacks. Such acquired knowledge could underlie

l imitation, since it allows to infer the motor
iguration that can generate a sensory state equivalent to
erceived target.

.    Sensori-motor  relationships in Bayesian robotics

sian robotics [4] was capitalized on to model audition-
audiovision-based imitations. In this framework, the
t learns a sensori-motor map of its vocal tract behavior
sponding to a probabilistic description of the

rvable links between its articulatory and its perceptual
bles. Then, imitation conforms to inversion that is the
ersion of a sensory state into a motor counterpart.
he chosen motor parameters were those of the I4S, i.e.

ower lip height (LH), the tongue body (TB) and dorsum
commands while the auditory variables were the first

formant frequencies (F1, F2) expressed in Bark, that is, a
 of frequency perception. The formants of a vocalic
d are function of the tract shape which can be described
ree geometric variables: the inter-lip area (Al) and the

dinates (Xh, Yh) of the tongue highest point in a fixed
m of reference on the tract mid-sagittal section. The
 are potential outputs of the somesthetic system and Al
be either a somatosensory or a visual variable

ending on whether this piece of information is self- or
-generated). All the model variables are supposed to be
ete with mutually exclusive values.
he computational core of a Baseyian robot is the joint

ability whose decomposition states the set of
theses about the statistical relationships between its
bles so as to represent their links. (Xh, Yh, Al) were
 as pivots of the decomposition. Indeed, as they form an
mediate space between the auditory and the articulatory
es, they help reduce the impact of the many-to-one
lem on inversion when they function as independent
bles in the joint probability decomposition which i s
ed in the present implementation by:

⊗TB⊗TD⊗Xh⊗Yh⊗Al⊗F1⊗F2)             (1)
Xh) * P(Yh) * P(Al)
(LH/Al) * P(TB/Xh⊗Yh) * P(TD/Xh⊗Yh⊗TB)
(F1/Xh⊗Yh⊗Al) * P(F2/Xh⊗Yh⊗Al)

quation (1), Xh, Yh and Al are considered to have
rm distributions. All other factors are supposed to
 conditional Gaussian laws whose means and variances
 be tuned in a learning phase.

.  Learning the statistical relationships

ecome an actual (and useful) description of the robot's
ori-motor behavior, the distributions composing the
e probabilistic structure need to be learnt from a set of
rimental data that corresponds, here, to a random
oration of the I4S articulatori-geometrico-acoustic
s. The robot's "proficiency" in inversion, that is, in
oiting its map via Bayesian inference to draw motor
s likely to make it reach a given target-state of its
ptual variables, will mainly depend on the learning



database size (DBS) and the degree of discretization of the
geometric parameters (GDD). Indeed, as Xh, Yh and Al are the
linchpin of the description, the GDD partly determines the
accuracy of the distributions the robot learns: it sets the
minimal gap required to distinguish two items in the
discretized geometric domain and the size of the learning
space, i.e. the number of articulatory and auditory
distributions that have to be learnt for the description to
represent the whole range of the I4S abilities. However, there
is a trade-off between the GDD and the DBS because a given
geometric "box" must include enough configurations for
the matched motor and auditory distributions to be learnt.

To evaluate which description could best account for the
performance reported in [3], 4 GDD x 15 DBSs were tested.
The DBS ranged from 1 to 60,000 items. The GDD, ranked in
descending order, were {16, 16, 8}, {8, 8, 4}, {4, 4, 2} and {2,
2, 1} for the number of {Xh, Yh, Al} classes, which yielded
2048, 256, 32 and 4 boxes in the geometric space,
respectively. In a first step, the GDD/DBS trade-off was
assessed by studying the ability of the model to invert
vocalizations of its exploration domain.

Figure 1 illustrates the results for the auditory inversion
of 1000 items randomly chosen within the I4S abilities. At
maximal DBS, the error decreases, as the GDD increases, and
reaches lower than 0.5 Bk values (roughly, formant jnd) for
the highest two GDD. Moreover, for a given GDD, the error
tends to decrease, along with the DBS rise, until a limit that
is the lowest this GDD can make the robot perform. However,
all the GDD, but the smallest, yield erratic scores as long as
the DBS is below a certain value from which the GDD-
matched under-learning phase ends. Under-learning is due
to the relatively small number of actually learnt geometric
boxes whose affiliated motor configurations are invariably
chosen by the robot regardless of their irrelevance given the
target. Indeed, the smallest DBS that is required to have an
error at most 10% from the GDD-matched lowest was found
to be three times the size of the geometric space (in boxes).
In other words, the more boxes there are in the geometric
space (the larger the GDD is), the more precise its variables
are, but the larger the DBS must be for the robot's map to be
representative of its sensori-motor skills.

3.2.3.    Implementing A and AV imitation

After a model, defined by a given GDD, had been learnt with
a given DBS, it was evaluated by imitation tests. In auditory
(hereafter A) imitation, the perceptual target was the (F1, F2)
pair of a vowel, while in the audiovisual (AV) imitation i t
was its (F1, F2, Al) values. Two target sets were focused on:
they are referred to as “external” and “internal” [i a u] items,
respectively. The former corresponded to the 4 months old
VLAM [i a u] vowels, the latter were their closest
simulations within the I4S capacity. Thus, both target sets
fitted the 4 months old vocal tract size so as to stand for
“normalized” [i a u] vowels, but the first one consisted of [i
a u] items that are outside the acoustic and the inferred
articulatory regions the actual infants explore, whereas the
second one did of simulations whose sounds are at the three
corners of the I4S (F1, F2) acoustic space. For each target,
300 motor configurations were drawn from the
P(LH⊗TB⊗TD/PerceptualTarget) distribution. The formants
matching each articulatory pattern were worked out and the
sound was categorized as [i], [a] or [u] according to its
nearest target in the (F1, F2) plan, in terms of Euclidean
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nce. In other words, the effect of whether the targets
g to the robot articulatory-acoustic abilities was
tigated, as [3]'s infants imitate vowels that ought to be
f their motor abilities.

.    A and AV imitation results

%CRs as functions of the GDD and the DBS in the AV
rsion of the internal and external [i a u] targets are
ayed in Figures 2 and 3, respectively. The A inversion
s (not shown here) were globally lower than the AV

.  Further, the following trends appear.

/DBS Trade-off and under-learning

ould be expected, whatever the case, the same GDD/DBS
-off as in Figure 1 is found. Further, all the GDD, but
smallest, require the robot to have learnt a greater
ber of data to get over the under-learning phase with
nal than with internal targets, be the inversion A or AV.

rnal vs. internal targets: the risk of over-learning
 given DBS, the external targets tend to yield lower
s than the internal ones: this is understandable

idering that the former are outside the I4S vocalization
e whereas the latter are not. Strikingly, in the A case, the
est GDD (2048 geometric boxes) never reached 100%
or external targets, even with the maximal DBS (60,000
s)! This is ascribable to the over-learning problem.
ed, even when the description is completely
sentative of the robot sensori-motor abilities (e.g. with

aximal DBS), as all the distributions of the motor
bles have small variances, i.e. are very accurate, while
 of them matches the target, the robot tends to draw
ulatory configurations regardless of their irrelevance
 the perceptual goal. In other words, the GDD has to
in a rather small number of (large) boxes for the robot

e able to imitate vocalic sounds that are out of its
ri-motor abilities. However, the over-learning problem

vercome if the visual information is also provided
re 3): since the VLAM [i a u] interlip areas belong to
4S ones, the robot is enabled to select configurations
produce the nearest sounds to the target.

y vocal imitation does not need much learning

gether, it is noteworthy that the robot needs neither a
 GDD nor a large DBS, in order to perform as good as,
even better than, the actual infants. Further, the required
 is generally lower in the AV than in the A condition.
nstance, in the case of external targets, which are out of
obot motor abilities so as to best parallel [3]'s actual
riment, the score goes beyond 60% CR with a GDD of
oxes and DBSs of 50 and 25 data, in A and AV

rsion, respectively.

4. CONCLUSION
main conclusions can be drawn from this work. First,

tion ought to be compulsory to account for infants'
 vocal imitation performance with 4-month-olds'
red articulatori-acoustic abilities, inasmuch as the
lation of purely visual imitation failed to reproduce the
 and the pattern of response reported in [3]. Second, a

vocalizations (less than 100!) are necessary for a robotic
ing process to provide imitation scores at least as high
e pre-babblers'.
er, the A and AV imitation experiments revealed a



trade-off between the somesthetic acuity of the tract shape
representation (GDD) and the amount of information (DBS)
to learn in order to build a sensori-motor map that i s
representative enough of the robot skills. Moreover, our
results show that the GDD has to be inaccurate enough for
the robot to be able to imitate vocalic sounds that are out of
its articulatori-acoustic abilities. This is of the utmost
interest as, in fact, the infants must acquire, by imitation, the
speech sounds of their ambient languages although they are
not endowed from birth with the matched motor skills. Last
but not least, this investigation supports the view that the
formation of the cognitive representation likely to underlie
early vocal imitation would require the infants to map less
configurations with audiovisual speech perception than
without vision. This gives some evidence that the latter can
facilitate phonetic development and is congruent with the
slight differences in speech development between sighted
and blind children.

To sum up, this pioneer work confirms that infants
complement their very early visuo-facial imitation map by
that of auditory-to-articulatory relationships, and shows
that a few data are required to reproduce realistic imitation
scores if the tract shape acuity is rough enough.
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i a u Total
i-like 22 11 4 37
a-like 25 66 14 105
u-like 20 18 44 82
Total 67 95 62 224

Table 1:  The confusion matrix of early vocal
imitation reported in [3]. In columns, the targets. In
lines, the phonetic classes of the infants' vowel-like
productions
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Figure 1: Assessing the GDD/DBS trade-off. Mean
formant error at the output of the inversion process
(in Bk) as a function of the DBS (GDD as parameter).
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Figure 3: %CR for the AV inversion of the “external”
[i a u] vowels, as a function of the DBS (GDD as
parameter).
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Figure 2: %CR for the AV inversion of the “internal”
[i a u] vowels, as a function of the DBS (GDD as
parameter).
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