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Inria Rhône-Alpes & Gravir -CNRS

http://www.inrialpes.fr/sharp
Contact:firstname.lastname@inrialpes.fr

Abstract— Reliable and efficient perception and reasoning
in dynamic and densely cluttered environments is still a
major challenge for driver assistance systems. Most of
today’s systems use target tracking algorithms based on
object models. They work quite well in simple environments
such as freeways, where few potential obstacles have to
be considered. However, these approaches usually fail in
more complex environments featuring a large variety of
potential obstacles, as it is usually the case in urban driving
situations. In this paper, we propose a new approach for
robust perception and risk assessment in highly dynamic
environments. This approach is calledBayesian Occupancy
Filtering, it basically combines a 4-dimensional occupancy
grid representation of the obstacle state-space with Bayesian
filtering techniques.

Index Terms— Multi-target tracking, bayesian state esti-
mation, occupancy grid

I. I NTRODUCTION

A. The ADAS Context

Unlike regular cruise control systems, Adaptive Cruise
Control (ACC) systems use a range sensor to regulate the
speed of the car while ensuring collision avoidance with
the vehicle in front. ACC systems were introduced on
the automotive market in 1999. Since then, surveys and
experimental assessments have demonstrated the interest
for this kind of systems. They are the first step towards
the design of future Advanced Driver Assistance Sys-
tems (ADAS) that should help the driver in increasingly
complex driving tasks. The use of today’s commercially
available ACC systems is pretty much limited to motor-
ways or urban expressways without crossings. The traffic
situations encountered are rather simple and attention can
be focused on a few, well defined detected objects (cars
and trucks). Nonetheless, even in these relatively simple
situations, these systems display a number of limitations:
they are not very good at handling fixed obstacles and
because of that may generate false alarms. Moreover, in
’cut-in’ situations, i.e. when the intrusion of an other
vehicle or a pedestrian in the detection beam is too close
to the vehicle, they may be unable to react appropriately.

A wider use of such systems requires to extend their
range of operation to more complex situations in dense

traffic environments, around or inside urban areas. In such
areas, traffic is characterised by lower speeds, tight curves,
traffic signs, crossings and “fragile” traffic participants
such as motorbikes, bicycles or pedestrians.

B. Problem

Prerequisites to a reliable ADAS in such complex traffic
situations are:

• Robust and accurate sensingof the environment.
In particular, dynamic characteristics of the traffic
participants, such as position and velocity, have to
be correctly estimated;

• Appropriate sensing representationthat allows both
to have a good understanding of the traffic situation,
and to select the most appropriate driving decisions.

C. Related Work

1) Multi-Target Tracking: The estimation of the dy-
namic characteristics of the traffic participants is basically
a multi-target trackingproblem. The objective is to collect
observations, i.e. sensor data, on one or morepotential
obstaclesin the environment of the vehicle, and then to
estimate at each time step (and as robustly as possible) the
obstacles positions and velocities. Classical approach isto
track the different objects independently, by maintaining
a list of tracks, i.e. a list of currently known objects.
The main difficulty of multi-target tracking is known as
the Data Associationproblem. It includes observation-
to-track association and track management problems.
The goal of observation-to-track association is to decide
whether a new sensor observation corresponds to an
existing track or not. Then track management includes
deciding whether existing tracks should be maintained
or deleted, and whether new tracks should be created.
Numerous methods exist to perform data association [1],
[2], [3]. The reader is referred to [4] for a complete review
of the existing tracking methods with one or more sensors.

Urban traffic scenarios are still a challenge in multi-
target tracking area: the traditional data association prob-
lem is intractable in situations involving numerous appear-



ances, disappearances and occlusions of a large number
of rapidly manoeuvring targets.

In [5], a classical Multiple Hypothesis Tracking tech-
nique is used to track moving objects while stationary
objects are used for SLAM. Unfortunately, the authors
did not explicitly address the problem of the interaction
between tracked and stationary objects,e.g.when a pedes-
trian is temporary hidden by a parked car. It is one of the
purpose of our approach to solve this problem.

2) Grid Representation of the Environment:The oc-
cupancy gridsframework [6], [7] is a classical way to
describe the environment of a mobile robot. It has been
extensively used for static indoor mapping using a 2-
dimensional grid [8]. The goal is to compute from the
sensor observations the probability that each cell is full
or empty. To avoid a combinatorial explosion of grid
configuration, the cell states are estimated asindependent
random variables.

More recently, occupancy grids have been adapted
to track multiple moving objects [9]. In this approach,
spatio-temporal clustering applied totemporal mapsis
used to perform motion detection and tracking. A major
drawback of this work, relatively to the ADAS context, is
that a moving object may be lost due to occlusion effects.

D. Contribution

The objective of this paper is to propose a new approach
for a robust perception, representation and analysis of
highly dynamic environments. Four main motivations were
taken into account in the design of this approach:

• Taking explicitly into account the uncertainty(which
is inherently present in any model of a real phe-
nomenon) when estimating the state of the environ-
ment;

• Avoiding the “data association problem”, which
usually fail to solve the complex scenarios we would
like to address,i.e. scenarios involving numerous ap-
pearances, disappearances and occlusions of several
rapidly manoeuvring targets;

• Increasing the robustness of the system relatively to
object occlusions, appearances and disappearances,
by exploiting at any time all the relevant information
on the vehicle environment; this information includes
the description of the occupied areas, of the unoccu-
pied areas, and of the hidden areas (i.e. areas of the
environment that are temporary hidden to sensors by
an obstacle);

• Designing a method that could be implemented later
on a dedicated hardware, in order to both reach
high performances and decrease the costs of the final
system.

Our approach is based on aprobabilistic grid represen-
tation of the obstacles state space. This approach allows

us to meet the four previous objectives:

• Uncertainty is explicitly taken into account thanks
to the probabilistic reasoning paradigm, which is
becoming a key paradigm in robotics: various ap-
proaches based on this paradigm have already been
successfully used to address several robotic prob-
lems, such as CAD modelling [10] or map building
and localisation (SLAM) [11], [12], [13].

• The data association problemis avoided by rea-
soning on a probabilistic grid representation of the
dynamic environment. In such a model, concepts
such asobjects or tracks do not explicitly exist;
they are replaced by more useful properties such as
occupancy or risk, which are directly estimated for
each cell of the grid using both sensor observations
and some prior knowledge. Furthermore, when esti-
mating occupancy probability thanks to an adequate
sensor model, the hidden parts of the environments
can also be explicitly characterised. Since we con-
sider both the positions and the velocities of the
potential obstacles with respect to our vehicle, this
grid is 4-dimensional and is called theObstacle State
Space (OSS)grid .

• The dynamic nature of the environment and robust-
ness to object occlusionis addressed using a novel
two-steps mechanism allowing to take into account
the sensor observations history and the temporal
consistency of the scene. This mechanism estimates,
at each time step, the state of the occupancy grid
by combining a prediction step (history) and an
estimation step (new measurements). This approach
is derived from theBayes filtersapproach [14]; our
filter is called theBayesian Occupancy Filter (BOF).

• The Bayesian Occupancy Filter has been designed in
order to be highly parallelisable. So a hardware im-
plementation on a dedicated chip is possible, which
will lead to a really efficient way to represent the
environment of an automotive vehicle. This problem
(i.e. SoC for theBOF) is currently addressed within
the scope of the Safemove France-Korea project.

Fig. 1. TheCyCab experimental vehicle. It is equipped with a Sick
laser range finder



E. Outline of the Paper

The next section presents the estimation of the occu-
pancy grid in a static case,i.e. taking into account only the
last sensor observation. Section III describes the Bayesian
Occupancy Filter itself,i.e. how we take into account the
sensor observation history. Experimental results are shown
in sections II and III. Section IV describes a collision
avoidance application based on theBOF. This approach
has been implemented on theCyCab, an electric vehicle1

equipped with a Sick laser range finder, allowing the
system to estimate targets position and velocity (Fig 1).

II. STATIC ESTIMATION OF THE OCCUPANCY

PROBABILITY

In this section, we introduce first the bayesian for-
malism (calledBayesian Programming) which has been
used for developing our approach. Then, we present the
bayesian program which has been developed for esti-
mating the state of the occupancy grid of the vehicle
environment, by using only the latest sensor observations
(i.e. static estimation). In a third part, experimental results
are presented and discussed.

A. Bayesian formalism and related computational tools

The Bayesian Programmingframework has initially
been developed by our research team, for designing robust
robot control programs [15], [16], [17]. Today, it is used
for addressing various problems involving uncertain or
incomplete knowledge, e.g. in [10], [18]. This framework
is based on a well-defined mathematical theory, and it pro-
vides both formal and computational tools for designing
applications in a systematic way.

From the formal point of view, aBayesian Programis
made up of two main parts: adescriptionand aquestion.

• The description.This part of the bayesian program can
be viewed as a knowledge base containing the a priori
information available on the problem at hand; it mainly
represents a joint probability distribution. This description
is made up of three components:

1) A set of relevant variableson which the joint dis-
tribution is defined, e.g. motor, sensory, or internal
state variables.

2) A decompositionof the joint distribution as a prod-
uct of simpler terms. It is obtained by applying
Bayesian rules and by taking advantages of the
conditional independencies that may exists between
the variables.

3) Theparametric formsassigned to each of the terms
appearing in the decomposition (they are required
to compute the joint distribution).

1http://www.robosoft.fr

• The probabilistic questions.Given a distribution, it is pos-
sible to askprobabilistic questions. Basically, a question
can be expressed by first partitioning the set of variables
into three sub-sets(S,K,F) (representing respectively the
“searched variables”, the “known variables”, and the “free
variables”), and by writing a probabilistic expression of
the type :

P (S | K)? (1)

Given the previous description, it is always possible to
answer such a question,i.e. to compute the probability
distribution P (S | K). This can be done using the
following general inference :

P (S | K) =

∑

F
P (S F K)

P (K)

=
1

α
×
∑

F
P (S F K), (2)

whereα is a normalization term.
From the computational point of view, it is well known

that a brute force approach cannot be applied in practice
for solving the previous inference problem (Bayesian
inference has been shown to be NP-Hard [19]), and that
a previous symbolic simplification phase can drastically
reduce the number of sums necessary to compute a given
distribution. This is why we have developed an API2,
called ProBTR©, which allows to easily express Bayesian
Programs and to perform in an efficient way the related
symbolic and numerical operations. This engine operates
in two complementary stages:

• A symbolic simplification stage which reduces the
complexity of the probability distribution to be com-
puted.

• A numerical stage that actually computes the related
distributions.

This engine is now commercialized by the Probayes3

company. The approach described in this paper has been
implemented using this framework.

B. Bayesian Program for static estimation

Our goal is to estimate the occupancy probability of
each cell of the grid, using the last set ofsensor ob-
servations. These observations represent a pre-processed
information given by a sensor. At each time step, the
sensor is able to return a list of detected objects, along
with their associated positions and velocities in the sensor
reference frame. In practice, this set of observations could
also contain two types of false measurements : thefalse
alarms(i.e. when the sensor detects a non existing object)
and themissed detection(i.e. when the sensor does not
detect an existing object).

2Application Programming Interface
3http://www.probayes.com
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z1 = (8.3,−4, 0, 0) P ([EC = 1] | Z c) P ([EC = 1] | Z c)

z2 = (5, 3, 0, 0) [c = (x, y, 0, 0)] [c = (x, y, 0, 0.8)]
z3 = (7.3, 1.9, 0, 0.8)

Fig. 2. Example of static grid estimation. a) the situation and the sensor observations, given in(x, y, ẋ, ẏ); b) and c) values of occupancy probability
for two “slices” of the 4-dimensional grid,i.e. for all possible positions at a given speed.

Then, solving the previous static estimation problem
can be done by building the following Bayesian Program :

(1) Chosing the relevant variables and decomposition.
• C : The cell itself; this variable is 4-dimensional

and represents a position and a speed relative to the
vehicle.

• EC : The state of the cellC, occupied or not.
• Z : The sensor observation set; one observation is

denotedZs; the number of observation is denotedS;
each variableZs is 4-dimensional.

• M : The “matching” variable; its goal is to specify
which observation of the sensor is currently used to
estimate the state of a cell.

Then, the following decomposition of the joint distri-
bution determined by these variables can be chosen:

P (C EC Z M) =







P (C)P (EC |C)P (M)

×
S
∏

s=1

P (Zs |C EC M)






. (3)

(2) Assigning the parametric forms.According to our
knowledge of the problem to be solved, we can assign
the following parametric forms to each of the terms of
the previous decomposition:

• P (C) represents the information on the cell itself. As
we always know the cell for which we are currently
estimating the state, this distribution does not need
to be specified.

• P (EC | C) represents thea priori information on the
occupancy of the cell. If available, aprior distribu-
tion could be used to specify it. Otherwise, a uniform
distribution has to be selected. Next section will
explain how the prior distribution may be obtained
from passed estimation.

• P (M) is chosen uniform.
• The shape ofP (Zs |C EC M) depends on the value

the matching variable:

– if M 6= s, the observation is not due to the
cell C. Consequently, we cannot say anything
on this observation.P (Zs |C EC M) is defined
by a uniform distribution.

– if M = s, the form ofP (Zs |C EC M) is given
by the sensor model. Its goal is to model the
sensor response knowing the cell state. Details
on this model can be found in [7].

(3) Solution of the problem.It is now possible to ask the
bayesian questioncorresponding to the searched solu-
tion4. Since the problem to solve consists in finding a
good estimate of the cell occupancy, the question can be
stated as follows :

P (EC | Z C)? (4)

Following the general inference mechanism given
by (2), the result of the inference can be written as
follows:

P (EC | Z C) ∝
S
∑

M=1

(

S
∏

s=1

P (Zs | EC C M)

)

. (5)

The result of this inference is computed by our in-
ference engine. During this inference, the sum on the
previous variables allows toconsider every sensor ob-
servationwhen updating the state of one cell. It should
be noticed that the estimation step is performed without
any explicit association between cells and observations;
this problematic operation is replaced by the integration
of all the possible values ofM .

C. Experimental result

We have tested the previous approach for the static
estimation of an occupancy grid, using both a simulator
and a real vehicle equiped with a laser sensor (the Cycab).

4The answer to this question is given by our inference engine.It
represents the searched probability distribution



Fig 2 shows some resulting grid estimations. The left
picture depicts the situation: the sensor mounted on the
CyCab is located at(x = 0, y = 0); the part of the
environment covered by the grid is represented by the
light gray rectangle; the sensor field of view is modeled
by the dark gray area. In this situation, three obstacles
(black disks) are present in front of the Cycab; two of
them are stationary objects, the third one is moving from
the left to the righ, at a speed of0.8 m/s represented by
a black arrow. In this first experiment, the CyCab is not
moving.

As mentioned earlier, we use a 4-dimensional grid.
Thus only 2-dimensional “slices” of the grid are depicted
by Fig. 2b and Fig. 2c. On both figures, the occupancy
probability value is given by the gray level of the cell. We
could see the correspondence between probability value
and gray level on the right side of the figure.

Fig. 2b depicts the occupancy probability of each
cell corresponding to a null relative velocity (i.e. c =
[x, y, 0, 0]), which is the speed associated to the two
previous sensor observations. As expected, two areas with
high occupancy probabilities are visible. These probability
values depends on several factors attached to the sensor
model: the probability of true detection, the probability of
false alarm, and the sensor accurancy. Since the measured
speed for the third obstacle is not null, any area of high
occupancy probability corresponding to this observation
is only represented in the related slices of the grid (i.e.
the slice corresponding toc = [x, y, 0, 0.8] in this case,
see Fig. 2c). It should be noticed that the cells located
outside of the sensor field of view, or the cells hidden
by one of the three sensor observations (i.e. the cells
located behind the three detected obstacles) cannot be
observed; consequently, nothing really consistent can be
said about these cells, and the system has given an
occupancy probability value of0.5 for these cells (red
areas). Finally, all the cells located in the observable area
and not related to any sensor obsvervation, are associated
to a low occupancy probability value (purple areas).

III. T HE BAYESIAN OCCUPANCY FILTER

A. Problem addressed and approach

We are now interested in taking into account the sensor
observation history, in order to be able to make more
robust estimations in changing environments (i.e. in order
to be able to process temporary objects occlusions and
detection problems). Our approach for solving this prob-
lem is to make use of an appropriate Bayesian filtering
technique called theBayesian Occupancy Filter (BOF).

Bayes filters [14] address the general problem of esti-
mating the state sequencexk, k ∈ IN of a system given
by:

xk = fk(xk−1, uk−1, wk), (6)

wherefk is a possibly nonlinear transition function,uk−1

is a “control” variable (e.g. speed or acceleration) for
the sensor which allows to estimate its ego-movement
between timek − 1 and timek, and wk is the process
noise. This equation describes a Markov process of order
one.

Let zk be the sensor observation of the system at time
k. The objective of the filtering is to recursively estimate
xk from the sensor measurements:

zk = hk(xk, vk). (7)

wherehk is a possibly nonlinear function andvk is the
measurement noise. This function models the uncertainty
of the measurementzk of the system’s statexk.

In other words, the goal of the filtering is to recursively
estimate the probability distributionP (Xk | Zk), known
as theposteriordistribution. In general, this estimation is
done in two stages:prediction and estimation. The goal
of the prediction stage is to compute ana priori estimate
of the target’s state known as theprior distribution. The
goal of the estimation stage is to compute theposterior
distribution, using thisa priori estimate and the current
measurement of the sensor.

Exact solutions to this recursive propagation of the
posterior density do exist in a restrictive set of cases.
In particular, the Kalman filter [20][21] is an optimal
solution when the functionsfk andhk are linear and the
noiseswk andvk are Gaussian. But in general, solutions
cannot be determined analytically, and an approximate
solution has to be computed.

Prediction

P(Ek

C
| Ck Uk−1)

Estimation

P(Ek

C
| Zk Ck)

6 ? ?

zk

Fig. 3. Bayesian Occupancy Filter as a recursive loop.

In our case, the state of the system is given by the
occupancy state of each cell of the grid, and the required
conditions for being able to apply an exact solution such
as the Kalman filter are not alway verified. Moreover, the
particular structure of the model (occupancy grid) and the
real-time constraint coming from the ADAS application,
has led us to develop the new concept ofBayesian
Occupancy Filter. This filter consists in estimating the
occupancy state in a two-steps, as depicted in fig 3.



B. The BOF estimation step

In this loop, the estimation step is similar to the static
estimation of the grid depicted in the previous section,
except that thea priori on the cell occupancyP (Ek

C
| Ck)

is not given by an uniform distribution, but by the result
of the previous prediction step.

C. The BOF prediction step

The goal of this processing step is to estimate an
a priori model of the occupancy probability at timek of
a cell using the latest estimation of the occupancy grid,
i.e. the estimation at timek − 1. The variables that are
relevant here are the followings :

• Ck : Cell C considered at timek.
• Ek

C
: State of cellC at timek.

• Ck−1 : Cell C at timek − 1.
• Ek−1

C
: State of cellC at timek − 1.

• Uk−1 : “control” input of the CyCab at time k −
1. For example, it could be a measurement of its
instantaneous velocity at timek − 1.

Using these variables, we can define the following
decomposition of the joint distribution :

P (Ck Ek

C
Ck−1 Ek−1

C
Uk−1) =













P (Uk−1)P (Ck−1)

×P (Ek−1

C
|Ck−1)

×P (Ck |Ck−1 Uk−1)

×P (Ek

C
|Ek−1

C
Ck−1 Ck)













(8)

Then, we can assign the following parametric to each
of the previous decomposition terms :

• P (Ck−1) andP (Uk−1) are chosen as uniform dis-
tributions.

• P (Ek−1

C
|Ck−1) is given by the result of the estima-

tion step at timek − 1.
• P (Ck | Ck−1 Uk−1) is given by the dynamic

model. It represents the probability that an object
has moved from the cellCk−1 to the cellCk. This
movement is due to the object himself and to the
CyCab movement between timesk − 1 and k. To
define this model, we suppose a constant velocity
model subject to zero mean Gaussian errors for the
moving objects.

• P (Ek

C
|Ek−1

C
Ck−1 Ck) represents the probability

that an existing object at timek−1 (i.e. [Ek−1

C
= 1]

still exists at timek (i.e. [Ek

C
= 1]). As we consider

that objects can not disappear, Dirac are chosen for
these distributions.

The problem to be solved is to find an estimate of the
occupancy probability for each cell of the grid. Solving

this problem can be done by asking the following question
to our inference engine :

P (Ek

C | Ck Uk−1)? (9)

The result of the inference can be expressed as follows :

P (Ek

C | Ck Uk−1)∝
∑

Ck−1

E
k−1

C

(

P (Ck | Ck−1 Uk−1)

×P (Ek−1

C
| Ck−1)

)

. (10)

Unfortunately, most of the time this expression cannot
be expressed analytically, and it cannot be computed
in real time. This is why an approximate solution of
the integral term has to be computed. Our approach for
making this computation is based on the fact that only
few points are needed to approximate the integral. Thus,
for each cell of the grid at timek − 1, we can compute
the probability distributionP (Ck |Ck−1); then, A cellck

is drawn according to this probability distribution; finally,
the cellCk−1 is used to update the predicted state of the
cell ck. It should be noticed that the complexity of the
previous algorithm increases linearly with the number of
cells in our grid, and ensures that the most informative
points are used to compute the sum appearing in (10).

Using the BOF approach, the estimation of the oc-
cupancy grid at timek is done in two steps : (1) the
prediction step makes use of both the result of the
estimation step at timek−1 and a dynamical model, for
computing ana priori estimate of the grid; (2) then, the
estimation step makes use of both this prediction result
and the sensor observations at timek, to compute the grid.

D. Experimental results

Fig 4 shows a short sequence of successive prediction
and estimation results, for a dynamic scene involving
two moving obstacles. The objective of this example,
is to experimentally demonstrate the robustness of our
approach to objects occlusions. The first row describes
the experimental conditions : theCyCabis immobile, and
its sensors can observe two moving objectsO1 and O2
(O1 is moving from left to right, andO2 is moving from
right to left). In the situation depicted by the fig 4-c1,O1
is temporary hidden byO2 (and thusO1 is not detected
by the Sick laser range finder).

The second and the third row respectively show the
results of the prediction step and of the estimation
step. We have chosen to only represent the cells of the
grid corresponding to a relative speed equal to(ẋ =
0.0m/s, ẏ = 1.0m/s), which is close to the speed of
O1. The occupancy probability of the related cells are
represented by several colors.

In this example, an area of “high occupancy probabil-
ity”, which corresponds to the moving objects, is well
characterized in fig 4-a2 and in fig 4-a3. One can also
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Fig. 4. A short sequence of a dynamic scene. The first row describes the situation: a moving object is temporary hidden by a second object. The second
row shows the predicted occupancy grids, and the third row the result of the estimation step. The grids showP ([Ek

C
= 1] | x y [ẋ = 0.0] [ẏ = 1.0])

noticed that the areas hidden by the moving objects have
an occupancy probability values equals to0.5. Similar
results can be seen on fig 4-b2 and fig 4-b3. The fig 4-c2
shows the result of the prediction step, based on the grid
of fig 4-b3 and on the used dynamic model; this prediction
shows that an object is probably located in the area hidden
by O2 (i.e. an area of high occupancy probability is found
in the fig 4-c3). Of course, the confidence in the presence
of a hidden object (i.e. the values of the occupancy
probability in the grid), progressively decreases when this
object is not observed by the sensor during the next times
steps. In the example depicted by fig 4-d3, the object is
no longer hidden byO2; it is detected by the laser, and
the related occupancy probability values increase.

Fig 5 shows another sequence of successive predic-

tion and estimation results. The first row describes the
experimental conditions : theCyCab is moving forward
at a constant speed equal to2.0m/s; a static object is
present in the sensor field of view theCyCab. Since the
CyCab is moving forward, this object finally goes out
of the sensor field of view, as depicted in fig 5-d1. The
second and the third row respectively show the results of
the prediction and of the estimation steps. We have chosen
to only represent the cells of the grid corresponding to a
relative speed equal to(ẋ = −2.0m/s, ẏ = 0.0m/s),
which is close to the relative object/CyCab. As in the
case of the example of fig 4, the prediction step allows
to infer knowledge on the current occupancy state of
the CyCabenvironment, even if the object is no longer
observed by the sensor; this is the situation depicted by
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Fig. 5. A short sequence of a dynamic scene. TheCyCabis moving forward at a constant speed. The grids showP ([Ek

C
= 1] | x y [ẋ = −2.0] [ẏ =

0.0])

fig 5-d3, where an area of high occupancy probability still
exists when the object is going out of the sensor field of
view. In some sense, our prediction step can be seen as
a “short-term memory”, which allows to combine in an
evolutive way past and current observations.

E. Performance

As mentioned earlier, thanks to our approximation
algorithm, both the prediction step and the estimation step
complexitiesincreases linearly with the number of cells
of the grid. This make the approach tractable in real sit-
uations involving reasonnable grid sizes. This is the case
for the experimental examples described in this section
and in the next section; typically, the characteristics of
the related grid models are the followings:

• 0 to 10 m in theX direction, with a0.5 m resolution;
• −5 to 5 m in the Y direction, with a 0.5 m

resolution;
• −3 to 1 m.s−1 in theẊ direction, with a0.4 m.s−1

resolution;
• −3.2 to 3.2 m.s−1 in the Ẏ direction, with a

0.4 m.s−1 resolution.

Using such a grid of64.000 cells, the computation time
for both prediction and estimation steps is about100 ms
on a1 GHz computer. This is fast enough to control the
CyCabat a maximum speed of2 m.s−1.

However, this grid size is not fine enough for an auto-
motive application involving higher speeds. In this case,
the number of cells increases quickly, and the required
computational time becomes to high for satisfying the



real-time constraints. For instance, doubling the size of
the grid in all directions, will result in a global size of
1.024.000 cells, and in a required computation time of
about2.400 ms (using a single1 GHz processor).

Hopefully, our BOF approach has been designed in
order to behighly parallelisable: thanks to the hypothesis
that each cell is independent, the state of each cell can
be computed independently. Current work deals with the
development of a dedicated hardware that will exploit
this characteristic (and consequently allows a real-time
application of theBOF in large scale applications).

This section has described the way the system operates
for continuously interpreting the state of the environment
using theBOF. The next section explains how we have
exploited this information for implementingsafe basic
behaviorson an autonomous robot (and more precisely
on theCyCab).

IV. BOF BASED COLLISION AVOIDANCE

The goal of this section is to show how theBOF can
been used for developing a collision avoidance function
on an autonomous vehicle. This function has been im-
plemented and experimented on theCyCab experimen-
tal vehicle; the goal of the implemented function is to
continuously select the forward speed values, in order to
move safely (i.e. while avoiding moving obstacles such
as pedestrians or other cars) along a given road lane.

As mentioned earlier, the cell state can be used to
encode some relevant properties of the robot environment
(e.g. occupancy, observability, reachability, etc). In the
previous sections, only the occupancy characteristic was
stored; in the case of the vehicle application, we will also
encode thedangerproperty. This will lead us to control
the vehicle by combiningoccupancy and dangercriteria.

A. Danger estimation

For each cell of the grid, the probability that this
cell is hazardous is estimated; this estimation is done
independantly of the occupancy probability property. Let
P (Dk

C
|Ck) be the probability distribution associated to

the cell Ck of the vehicle environment, whereDk

X
is

a boolean variable that indicates whether this cell is
hazardous or not.

Basically, both “time to collision” and “safe traveling
distance” may be seen as two complementary relevant
criteria to be used for estimating the danger to associate to
a given cell. In our current implementation, we are using
the following related criteria which can easily been com-
puted : (1) theClosest Point of Approach (CPA), which
defines the relative positions of the pair (vehicle, obstacle)
corresponding to the “closest admissible distance” (i.e.
safety distance); (2) theTime to the Closest Point of
Approach (TCPA), which is the time required for reaching
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Fig. 6. Cells of high danger probabilities. For each position, arrows
model the speed.
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Fig. 7. Scenario description : the pedestrian is temporary hidden by a
parked car.

the CPA; and (3) theDistance at the Closest Point of
Approach (DCPA), which is the distance separating the
vehicle and the obstacle when theCPA has been reached.
In some sense, these criteria give an assessment of the
future relative trajectories of any pair of environment
components of the type (vehicle, potential obstacle).

The previous criteria are evaluated for each cell, and
at each time stepk, by taking into account the dynamics
characteristics of both the vehicle and the potential obsta-
cles. In practice, bothTCPA andDCPA are estimated
under the hypothesis that the related velocities at timek
remain constant; this computation can easily be one using
some classical geometrical algorithms (see for instance :
http://softsurfer.com/algorithms.htm ).

As previously mentionned, our goal is to estimate the
“danger probability” to associate to each cell of the grid
(or in other terms, the probability for each cellCk that



Fig. 8. Snapshots of the experimental pedestrian avoidancescenario (see Extension 1 for the video).

a collision will occur in the near future between the
CyCab and a potential obstacle inCk). Since each cell
Ck represents a pair (position, velocity) defined relatively
to the CyCab, it is easy to compute theTCPA and
DCPA factors, and in a second step to estimate the
associateddanger probabilityusing given intuitive user
knowledge. In the current implementation, this knowledge
roughly states that when theDCPA and theTCPA
decrease, the related probability of collision increases.In
a future version of the system, one could expect that such
a knowledge could be acquired using a learning phase.

Fig 6 shows the cells for which the danger probability is
greater than0.7 in our CyCabapplication; in the picture,
each cell is represented by an arrow : the tail of the
arrow indicates the position, and its length and direction
indicates the associated relative speed. This figure exhibits
quite intuitive data : any cell located in the vicinity of the
front part of theCyCabare considered as having a high
danger probability for any relative velocity (the arrows are
pointing in all directions); the other cells having a high
“oriented” danger probability, are those having a relative
speed vector oriented towards theCyCab. Since we only
consider relative speeds for constructing the danger grid,
the content of this grid does not depend of the actual
CyCabvelocity.

B. Collision avoidance behaviors

This section describes how we can control the longi-
tudinal speed of the autonomous vehicle (theCyCab),
for avoiding partially observed moving obstacles having
a high probability of collision with the vehicle. The
implemented behavior consists in braking or accelerating,
in order to adapt the velocity of the vehicle to the level
of risk estimated by the system.

As mentionned earlier, this behavior derives from the
combination of two criteria defined on the grid : the
danger probabilityassociated to each cellCk of the grid
(characterized by the distributionP (Dk

C
|Ck), see§ IV-

A), and theoccupancy probabilityof this cell (charac-
terized by the posterior distributionP (Ek

C
| Zk Ck), see

§ III). In practice, we search, at each time step, for
the most hazardous cell that is considered as probably

occupied; this can be done using the following equation :

max
Ck

{P (Dk

C | Ck), with P (Ek

C | Ck) > 0.5}.

Then the longitudinal acceleration/deceleration to apply
to theCyCabcontroller, can be decided according to the
obtained level of danger and to the actual velocity of the
CyCab.

Fig 7 depicts the scenario used for experimentally
validating the previous collision avoidance behavior on
theCyCab; in this scenario, theCyCabis moving forward,
the pedestrian is moving from right to left, and during a
small period of time the pedestrian is temporarily hidden
by a parked car.

Fig 8 shows some snapshots of the experiment (see
also Extension 1, which shows the entire video): the
CyCabbrakes to avoid the pedestrian which is temporarily
hidden by the parked car, then it accelerates as soon as
the pedestrian has crossed the road.
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Fig. 9. Velocity of theCyCab during the experiment involving a
pedestrian occlusion.

Fig 9 shows the velocity of theCyCabduring this ex-
periment. Fromt = 0 s to t = 7 s, theCyCabaccelerates,
up to 2 m/s. At t = 7s, the pedestrian is detected; as
a collision could possibly occur, theCyCabdecelerates.
From t = 8.2 s to t = 9.4 s, the pedestrian is hidden by
the parked car; thanks to theBOF results, the hazardous
cells of the grid are still considered as probably occupied;
as a consequence, theCyCab still brakes. When the
pedestrian reappears att = 9.4s, there is no more a risk
of collision, and theCyCabcan accelerate.

V. CONCLUSIONS

This paper addressed the problem of designing a new
approach for robust perception and danger assesment of



highly dynamic environments. The proposed approach is
called Bayesian Occupancy Filtering; it basically com-
bines a 4-dimensionnal occupancy grid representation
of the obstacle state-space with Bayesian filtering tech-
niques. This approach can be seen as an alternative to
complex multi-target tracking algorithms, which usualy
fail in situations involving numerous appearances, disap-
pearances and occlusions of a large number of rapidly ma-
neuvering targets. It also bring a significant improvement
to traditional approaches, by including a prediction step
which allows to make more robust estimation relatively
to temporary occlusions.

This approach has experimentally been validated on our
experimental vehicle (the Cycab), for avoiding partially
observed moving obstacles. A scenario involving the
Cycab, a moving pedestrian, and a parked car which
temporarily hidde the pedestrian to the sensors of the
Cycab, has sussfully been executed. In this experiment,
the avoidance behavior has been obtained by combining
the occupancy probabilityand thedanger probabilityof
each cell of the grid.

Current and future work deals with three major points:
(a) Improvement of the approximation algorithm used
for the prediction step; this improvement should allow
to estimate bigger grids (which are required for dealing
with complex urban trafic situations). (b) Development of
a dedicated hardware that will exploit the parallelisable
property of theBOF algorithm, for being able to meet
the real-time contraint in large sacle applications. (C) Fu-
sion of the occupancy grid with higher-level information,
such as GPS maps, to better estimate the danger of the
situation.
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