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Abstract Human observers can perceive the three-di-
mensional (3-D) structure of their environment using
various cues, an important one of which is optic flow. The
motion of any point’s projection on the retina depends
both on the point’s movement in space and on its dis-
tance from the eye. Therefore, retinal motion can be used
to extract the 3-D structure of the environment and the
shape of objects, in a process known as structure-from-

motion (sfm). However, because many combinations of
3-D structure and motion can lead to the same optic
flow, sfm is an ill-posed inverse problem. The rigidity
hypothesis is a constraint supposed to formally solve the
sfm problem and to account for human performance.
Recently, however, a number of psychophysical results,
with both moving and stationary human observers, have
shown that the rigidity hypothesis alone cannot account
for human performance in sfm tasks, but no model is
known to account for the new results. Here, we con-
struct a Bayesian model of sfm based mainly on one new
hypothesis, that of stationarity, coupled with the rigid-
ity hypothesis. The predictions of the model, calculated
using a new and powerful methodology called Bayesian
programming, account for a wide variety of experimental
findings.
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1 Introduction

Relative motion between an observer and the objects in
a visual scene leads to a deformation of the image on
the retina, called optic flow. Optic flow is generated by
the 3-D motion of shapes, therefore it contains informa-
tion, which is relevant to recover the scene geometry.
Motion parallax and the kinetic depth effect are special
cases of this phenomenon, noticed by Helmholtz (1867),
and experimentally quantified by Wallach and O’Connell
(1953).

Although it is simple to derive the optic flow corre-
sponding to given 3-D geometry and motion, perception
faces the inverse problem, to derive 3-D shape and mo-
tion from optic flow. Because an infinite number of com-
binations of geometry and motion can lead to the same
optic flow, sfm is an ill-posed inverse problem.

Formally, the sfm problem can be solved if the rigid-

ity hypothesis holds, that is if optic flow is only due to
3-D translations and rotations of a rigid body. In this
case, the number of degrees of freedom associated with
motion is drastically reduced and both structure and mo-
tion can be theroretically recovered from very little op-
tic flow information (Ullman 1979). Several algorithms
based on the rigidity hypothesis for special cases, such
as planes, have been developed (Mayhew and Longuet-
Higgins 1982). Psychophysical results show that human
performance on some sfm tasks is at least broadly con-
sistent with predictions based on the rigidity hypothesis
(Wallach and O’Connell 1953; Koenderik 1986). How-
ever, more recent affine models are based only on local
velocity information, rather than on the entire optic flow
field, to account for human perception (Todd and Bres-
san 1990; Todd and Norman 1991); then, even percep-
tion of affine properties has been questioned (Domini and
Braunstein 1998). It has also been shown that sometimes
human perception do not abide to the rigidity hypoth-
esis even if a rigidity interpretation of a stimulus exists
(Wexler et al. 2001a).



2

Most studies of sfm involve an immobile observer ex-
periencing optic flow consistent with moving 3-D objects.
However, it is known that sfm is also effective when optic
flow is generated by the observer’s own head movement
about a stationary 3-D scene (Rogers and Graham 1979).
Until recently, it has been thought that 3-D shapes per-
ceived in subject-motion sfm are the same as those per-
ceived in object-motion sfm, as long as the optic flow is
the same (Wallach et al. 1974; Rogers and Graham 1979).
However, in some cases, this turns out to be false: even
when optic flow is kept constant, the observer’s move-
ment influences perceived 3-D shape (Rogers and Rogers
1992; Dijkstra et al. 1995; Wexler et al. 2001b).

This influence of self-motion on perceived 3-D shape
lead to the postulate of a second hypothesis in the in-
terpretation of optic flow, that of stationarity : the vi-
sual system prefers the solution whose motion is minimal
in an observer-independent, allocentric reference frame
(Wexler et al. 2001b,a; Wexler 2003). This can be sup-
ported by the observation that most of the objects in the
visual field are static. While the rigidity hypothesis may
be seen as the minimization of relative motion between
the points of a possible object, the stationarity hypoth-
esis is the minimization of absolute object motion in an
observer-independent reference frame. Taken separately,
neither the stationarity nor the rigidity hypothesis can
explain human sfm performance. However, until now, no
coherent model has integrated these two hypotheses.

In this article, we present a generic Bayesian model
that integrates the stationarity and rigidity hypotheses
in the perception of 3-D surfaces from optic flow. The
aim is to build a Bayesian model of an observer pre-
sented with uncertain stimuli. Then, we instantiate the
generic model for the perception of 3-D planar surfaces.
This choice is motivated by the availability of data, as
well as the complexity of analysis and calculation. This
model not only accounts for sfm performance in mov-
ing and stationary observers that led to the postulation
of the stationarity hypothesis, but also for a number of
other, sometimes puzzling, results that have been previ-
ously reported. We investigate experiments focusing on
the monocular perception of a rotating planar patch with
a neutral or non-informative texture. In these experi-
ments, motion was the only cue for plane orientation.
However, we look into variations in the experimental
conditions involving the motion of the observer’s head
or eyes, or the plane, or both, as well as the size of the
displayed stimulus. Although perception of planes is a
special case, it is a very important special case of spa-
tial vision, as the visual world is composed mostly of
surfaces, which, if sufficiently regular, can be locally ap-
proximated as planes.

In recent years, growing attention has been paid to
Bayesian inference, as a common theoretical framework,
to understand perceptive skills and multimodal interac-
tions (Weiss et al. 2002; Ernst and Banks 2002; Kersten
et al. 2004). In most works, however, the probabilistic

reasoning has been limited to simplified forms of Bayes’
theorem. One simplification is to use the linear Gaussian
assumption, which is not valid in the case of optic flow
processing as the different information sources do not
combine linearly (see appendix A). The other simplifi-
cation is to restrict Bayesian models to a combination
of prior knowledge and a set of observations. In order
to combine several hypotheses, such as rigidity and sta-
tionarity, in a mathematically correct form, we found it
necessary to put perception models back into a more gen-
eral Bayesian framework that includes not only observed
sensory data and perceived states, but also intermedi-
ate variables. Focusing on the sfm problem, we show
here that our general Bayesian formalism allows us to
express and to test several hypotheses originating from
psychophysical experiments, in a very natural and effi-
cient way.

2 Methods

We first present a generic, unified model of perception of
the structure of an object from optic flow. Then, we give
a precise instantiation for the perception of planes that
yields the results presented in section 3.

2.1 Generic model

The generic Bayesian model we propose is the expres-
sion of the hypotheses evoked above. The first two are
the rigidity (H1) and stationarity (H2) hypotheses. We
also assume that the structure of the object is indepen-
dent of its motion, the motion of the observer and the
conditions of observation (H3), and that the conditions
of observations are independent of the motions of both
the object and the observer (H4).

For sake of simplicity, we have called ”rigidity hy-
pothesis” the expression of the relationship between the
observed optic flow and the unknown 3-D object struc-
ture and motion. In the following, we will describe the ob-
ject motion relative to the observer as any combination of
3-D rotation and translation. Therefore, we excluded any
explicit description of object deformation in motion vari-
able. Any deviation from a strictly rigid object is then en-
tirely defined as a mismatch between the observed optic
flow and the optic flow that can be predicted from rigid
object transformation. But, of course, there is a natural
extension of the present model with explicit non rigid
object transformation, adding for instance the first order
deformation tensor to the 3-D translation and rotation
in the description of object movement. Having restrained
the object motion description to isometric transforma-
tion does not imply that the perceived movement will
be the rigid transformation that explains the best the
observed optic flow, since other hypotheses, and partic-
ularly the stationarity hypothesis, might induce a strong
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deviation from the best rigid solution. The stationarity
hypothesis is expressed in the probabilistic relationship
between the object’s movement with respect to the ob-
server’s reference frame and the observeer’s movement
with respect to the allocentric reference frame. It states
that the most probable relative object movement is equal
and opposite to the observer’s movement. As a conse-
quence, the most probable object movement in the allo-
centric reference frame is null. In the following, we have
not included the object movement in the set of variables,
since it can be directly reconstructed by combining the
relative object movement and the observer’s movement.
Rigidity (H1) and stationarity (H2) are the two main
hypotheses of our model. As they are expressed in prob-
abilistic forms, none of them could be simultaneously
satisfied. The most probable output would be rather the
optimal compromise. The last two hypotheses are com-
mon assumptions made explicit. Indeed, H3 states that
the shape of the object does not influence a priori the mo-
tion of the observer, nor the motion of the object itself,
nor the conditions by which the object is observed. These
conditions of observations can be the size of the image
(as in the ollowing example) or the dots density on the
object. Hypothesis H4 further adds that the conditions
of observation do not influence the object motion and the
subject motion. Both these hypotheses reflect the exper-
imental protocols and help reduce the complexity of the
model.

We follow the Bayesian programming methodology
to specify a model with these hypotheses (Lebeltel et al.
2004). This model uses probabilities to represent and
handle the uncertainty faced by an observer. This is a
model of what an observer can deduce from the limited
information of optic flow.

As a summary, we have a set of hypotheses related to
the experiment and a methodology for the specification
of a Bayesian model. At each step of the methodology,
we extract the relevant knowledge from the hypotheses.

From relevant information to variables The unified mo-
del is based on relevant variables common to all instances
of structure-from-motion perception. Additional varia-
bles can be used to comply with specific experimental
conditions.

In this context, we propose a model that takes into
account: (i) the observed optic flow (noted Φ), (ii) the
3-D structure of the object (noted Θ), (iii) the motion of
the object (noted X) in the observer’s reference frame,
(iv) the motion of the observer in the allocentric refer-
ence frame (noted M), and (v) the general viewing con-
ditions as defined by the experimental protocol (noted
Λ).

Due to our rigidity hypothesis, we restrict the form
of relative motion of the object and self-motion to iso-
metrics transformations of the 3-D space.

As this is a generic model, these are formal variables.
In the next section, presenting the instantiation of this

generic model for the case of a moving plane, these vari-
ables will be given actual mathematical expressions.

From dependencies to decomposition At the core of a
Bayesian model lies the joint probability distribution
over all its variables. This joint distribution follows from
the assumptions of a model. The structural part in the
specification of the joint distribution summarizes the de-
pendencies and independencies between the variables.
This structure is called decomposition. Bayesian pro-
gramming methodology includes making the formal sim-
plifications of the decomposition before actually dealing
with the specification of each factor.

The structure and relative motion of the object are
sufficient to define the optic flow of an object. Therefore,
the absolute self-motion is unnecessary for the optic flow.
This corresponds to the following mathematical simpli-
fication:

P (Φ | Θ M X Λ) = P (Φ | Θ X Λ) (1)

The stationarity hypothesis (H2) states that object
motion is most likely to be small in the allocentric refer-
ence frame. This defines a constraint on P (X | M) (see
next section); therefore we use Bayes’ rule to write:

P (M X) = P (M) P (X | M). (2)

The application of Bayes’ rule to P (M X) can lead also
to P (X) P (M | X) but the stationarity hypothesis will
be a simpler to express with equation 2.

Hypothesis H3 states that the structure of the ob-
ject is independent of the relative motion of the object,
the self-motion, and the conditions of observation. This
translates as a product of independent factors in the de-
composition:

P (Θ M X Λ) = P (Θ) P (M X Λ). (3)

The last hypothesis (H4) states the independence be-
tween the motions and the general viewing conditions:

P (M X Λ) = P (M X)P (Λ). (4)

Finally, using Bayes’ rule, we can write :

P (Θ M X Λ Φ) = P (Θ M X Λ) P (Φ | Θ M X Λ). (5)

Putting together equations 5, 3, 4, 2, and 1, we ob-
tain the decomposition, shown in equation 6, that is the
structural expression of our hypotheses.

P (Θ M X Λ Φ) = P (Θ) P (Λ) P (M) (6)

× P (X | M)

× P (Φ | Θ X Λ).

The decomposition states the lack of relation between
some of our generic variables. In this case, the structure
of the object, the conditions of observation, and self-
motion are independent; relative motion only depends
on self-motion, due to the stationarity hypothesis; and
optic flow does not depend on self-motion, but only on
relative motion, structure of the object, and conditions
of observation.
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From physical and physiological laws to distributions
The decomposition only state whether there is a relation
between variables. In order to get a usable expression for
the joint distribution, these relations have to be defined.
This is done by specifying each of the probability distri-
butions that appear as factors of the decomposition of
the joint distribution.

The first factor, P (Θ), is the prior on the structure
of the object. As we build the model of perception by
an observer, it represents what this observer expects be-
fore any observation. It can be an uninformative prior or
it can reflect some bias in perception, in favor of more
common shapes.

In the same way, P (M) and P (Λ) represent respec-
tively the expectation by an observer of her or his own
motion, and of the conditions of observation. If we con-
sider that the model has an exact knowledge of them (as
will be the case later in this article), this probability dis-
tribution is simplified in the final inference and thus can
be left unspecified.

The fourth factor P (X | M) specifies the relative mo-
tion expected from a given self-motion. According to sta-
tionarity, the object is more likely to undergo a smaller
absolute motion. Therefore, the most probable relative
motion should be defined as the opposite of self-motion.
The actual parametrical form varies once again with the
experiment, but a general expression could be propor-
tional to the exponential of the opposite of kinetic en-
ergy (Gibbs distribution). In some cases, this means a
Gaussian distribution. A dirac distribution set to the
opposite of self-motion would mean absolute certainty
of a non-moving object in the absolute reference frame,
and would therefore rule out any interpretation of the
stimulus involving a moving object.

The last factor in decomposition 6 is the distribution
of optic flow, given the structure of the object, the rela-
tive motion between the object and the observer, and the
conditions of observation, P (Φ | Θ X Λ). The rigidity hy-
pothesis states that the optic flow is generated by a rigid
object in motion. Therefore, we specify this factor saying
that the most probable optic flow is the theoretical optic
flow of the object in this particular configuration, given
this particular motion as can be computed by standard
optics calculations. It can be interpreted as the optic flow
formation process, relaxed by a non-null probability of a
different optic flow for a given situation. A dirac distri-
bution on the exact theoretical flow would rule out any
non rigid interpretation of a given optic flow.

Formalized questions A probabilistic question is the dis-
tribution over some variables of the model, possibly given
the knowledge of the values of other variables. With a
completely specified joint distribution, the answers to
such questions can be mechanically inferred with the
rules of probability calculus.

The participants of the experiments have to answer
a unique value to solve the task, instead of a probability

distribution. Without any cost function to specify the
decision process, we sample the distribution computed
to answer the probabilitistic question. As a consequence,
over repeated trials, the distribution of answers of our
model approaches to the probability distribution from
which they are sampled. Error distributions can be com-
puted directly from these distributions, without resorting
to any stochastic process.

The precise question we ask to solve the sfm issue is
the probability of the object structure or shape, given the
optic flow, the self-motion, and the general conditions of
observation written as P (Θ | φ m λ).1 This question is
answered by the following expression, that results from
Bayes’ rule, marginalization rule and use of the decom-
position (expression 6):

P (Θ | φ m λ)

=

∑
x∈X

P (Θ)P (λ)P (m)P (x | m)P (φ | Θ x λ)

P (φ m λ)

∝ P (Θ)
∑

x∈X P (x | m)P (φ | Θ x λ).

(7)

This is essentially the problem we solved to obtain the
results shown later in this article. Given observations of
optic flow and self-motion, this distribution represents
knowledge about the structure of the object (including
its relative position with respect to the observer) that
one can infer from our hypotheses. The observations do
not need to be noiseless. If the added uncertainty (for
example on optic flow) is compatible the probability dis-
tributions (in this case the variance on P (Φ | Θ X Λ)),
the model will behave essentially the same as with clean
input.

Furthermore, the same probabilistic model can be
used to answer other questions. For example, one may
be interested in the estimation of self-motion from optic
flow: P (M | φ λ). This question can be used to study
vection, where optic flow induces the sensation of self-
motion, and the direction of perceived self-motion, called
heading. For this question, Bayesian inference with the
same model gives the following expression:

P (M | φ λ)

=

∑
x∈X,θ∈Θ

P (θ)P (λ)P (M)P (x | M)P (φ | θ x λ)

P (φ λ)

∝ P (M)
∑

x∈X,θ∈Θ P (θ)P (x | M)P (φ | θ x λ).

(8)

2.2 The case of a moving dotted plane

The generic model is a template, which must be adapted
to account for particular experiments. The remaining of
this paper will focus on the perception of a moving planar
object. This allows for a simpler actual model than with
other kind of surfaces while still exhibiting interesting
properties of the ambiguity of perception. In this section,
we present the instantiated model for this particular case
that we use to generate the results presented in the next
section.

1 We use an uppercase letter for a variable and lowercase
for the instantiation of a variable with a particular value.
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Variables For this model, we need only consider instan-
taneous variables, as the experiments deal with short
stimuli without large change during the course of its pre-
sentation. However, the model can be adapted to time-
varying variables with exactly the same instantaneous
structure of dependency. The structure Θ of the object
is reduced to the position and orientation of the plane.
As one point of the plane is already known (the fixa-
tion point)2, only two orientation parameters are needed
to parametrize the structure of the object. For practical
reasons, we use the depth gradients along the transversal
and vertical axes. If we call x, y, and z the coordinates
of a point of the plane along the transversal, vertical,
and sagittal axes respectively, then the structure Θ is

the pair (χ, υ) =
(

∂z
∂x

, ∂z
∂y

)
.

Self-motion M is a set of translation and rotation ve-
locities of the observer, chosen along the transversal, ver-
tical, and sagittal axes. Likewise, relative motion is de-
composed into its rotation and translation components,
Ω and T respectively.

In the case of planar objects, the optic flow is entirely
specified by eight components (see appendix for details),
namely the two velocity components at the origin (Φ0),
the four first-order derivatives of the velocity field at the
origin (Φ1), and the two independent components of the
second-order derivatives of the velocity field at the origin
(Φ2) (Longuet-Higgins 1984).

Finally, we restrain the viewing condition parameters
to the most critical one, the size of the field of view.

Distributions The prior on plane orientation P (Θ) is
chosen to be the least informative, so as not to bias
the inference. This corresponds to a prior invariant to
arbitrary rotation of the plane. Others prior can be cho-
sen based on ecological arguments, for example in favour
of the horizontal plane. However, lacking precise experi-
mental data, we opted for an unbiased distribution.

For sfm question P (Θ | φ m λ), both self-motion,
m, and the size of field, λ, are known. The posterior
distribution does not depend on the priors on variables
M and Λ; therefore, these prior distributions do not need
to be specified, as can be seen in expression 7.

As for the expression of stationarity, the distribution
of relative motion given self-motion P (X | M) yields the
most probable relative motion as equal-and-opposite to
self-motion, corresponding to no absolute motion. To this
end, we choose a Gaussian distribution centered on such
relative motion. Indeed, the Gaussian is the least infor-
mative distribution, given the mean and the uncertainty
of the distribution. It also corresponds to the Gibbs dis-
tribution with kinetic energy. Choosing a least informa-
tive distribution ensures that we do not put additional
constraints into the model that do not appear in our list
of hypotheses.

2 By convention the distance between the fixation point
and the observer is taken as the unit of distance. This way
the scale issue disappears.

Likewise, the distribution of optic flow, given the rel-
ative motion and orientation of the plane and the size
of the field of view, is an expression of the rigidity hy-
pothesis. We chose a Gaussian distribution centered on
the theoretical values of the eight components (see ex-
pression in appendix A). The field of view is assumed
to change the variance of the second-order components
(Φ2). Indeed, in a smaller field of view, second-order
components are much more difficult to extract than in
large field of view compared to first-order components.

Implementation Although the specified distributions are
either Gaussian or uniform, the sfm question has no an-
alytical solution because of the intrinsic nonlinearities
of the optic flow equations (see appendix). Quantitative
simulations are then performed by computing the exact
inference on discretized variables. Table 1 gives the de-
tails of the domains of the variables. ranges (minimum,
maximum and number of samples in between) and di-
mensionality of each component of Θ (top row), of the
relative rotation (second row), of the relative translation
(third row), and of the size of the field of view (bottom
row). Other variables do not need to be discretized as
their values are known for the inference.

On the other hand, some of the distributions in our
decomposition involve parameters. This is the case with
the Gaussians on relative motion and optic flow, whose
parameters are shown in table 2. We use a single set of
parameters for all the results of the following section.
Each covariance matrix was determined accordingly to
reasonnable values for all the experiments then fitted one
by one with a local search against global results. There-
fore the parameters are a trade-off between the different
experiments. The calculations are lead using the ProBT
inference engine (Lebeltel et al. 2004).

Distribution parameters
σT = 0.3 ∗ Id3×3 in m.s−1

σΩ = 1.2 ∗ Id3×3 in rad.s−1

σΦ0 = 1.0 ∗ Id2×2 in m.s−1

σΦ1 = 0.025 ∗ Id4×4 in s−1

σΦ2 | λ=SF = 5.0 ∗ Id2×2 in m−1.s−1

σΦ2 | λ=LF = 0.2 ∗ Id2×2 in m−1.s−1

Table 2: Covariance matrices of each factor of the joint dis-
tribution. From top to bottom: distribution over the relative
translation, relative rotation, order 0 optic flow, order 1 optic
flow, order 2 optic flow in a small field of view and order 2
optic flow in a large field of view.

3 Results

There are numerous sources of ambiguity in the percep-
tion of optic flow. Figures 1 and 6 show five kinds of
situations of motion of the object or the observer that
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Variable Symbol Minimum Value Maximum Value Number of Values by Dimension Dimension
Depth gradient Θ -4.125 4.125 33 2
Angular velocity Ω −1.375 rad.s−1 1.375 rad.s−1 11 3
Linear velocity T −1.375 m.s−1 1.375 m.s−1 11 3

Size of field Λ 0.015 sr 1.05 sr 2 1

Table 1: Domain (minimum, maximum and number of samples in between) and dimensionality of each component of Θ (top
row), of the relative rotation (second row), of the relative translation (third row), and of the size of the field of view (bottom
row).

(a)

(b) (c)

(d) (e)

Fig. 1: Some ambiguities in first-order optic flow that have been used in the studies cited. (a) An example of an optic flow field
that presents a number of ambiguities: all configurations shown in this figure lead to this flow. (b) The two configurations,
which differ by simultaneous reversals of relative depth and 3-D motion, both yield the optic flow shown in (a). This ambiguity
is called depth reversal. (c) Depth reversals can also occur for moving observers. The two configurations have the same relative
motion between object and observer as in (b), and therefore yield the same optic flow. However, one solution is stationary in
an allocentric or observer-independent reference frame, while the other solution undergoes a rotation in this frame, twice as
fast as the observer’s motion. (d) The same ambiguity when the observer tracks a moving surface with the eyes. One solution
undergoes a translation only, while the other undergoes the same translation but also a rotation. (e) Ambiguity between
slant and rotation speed: a larger slant coupled with a slower rotation speed may give the same optic flow as a lower slant
together with a faster rotation.

generate approximately the same optic flow. They have
been studied in detail by six sets of psychophysics exper-
iments previously reported. We show that the Bayesian
model compares to human performance in various con-
ditions of motion of the plane, voluntary motion of the
observer, and size of field of view.

3.1 Depth reversal

Depth reversal is a well-known effect in monocular vi-
sion: many depth cues are ambiguous about the sign of
relative depth (cf. the Necker cube). In sfm the simplest
instance of this ambiguity is the observation of a rotat-
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Condition Experiment Model
Small field 48.8% 44.6%
Large field 3.1% 3.3%

Table 3: Influence of the size of field of view on reversal rate.
Both the experiments (Cornilleau-Pérès et al. 2002) and the
Bayesian model exhibit less reversal percept in a large field
of view.

ing plane through a small opening. In this case, there
is an ambiguity on the tilt and direction of rotation, as
illustrated in figure 1(b). The extrinsic orientation of a
plane in 3-D space is often parametrized by two angles;
slant and tilt. Slant is the angle, in 3-D space, between
the plane’s normal vector and the normal of the fronto-
parallel plane. Tilt is the angle, in the fronto-parallel
plane, of the projection of the plane’s normal. In this
case, a depth reversal is characterized by the perception
of tilt and rotation of the plane in the opposite direction
at the same time (see figure 1(b)). However it has been
shown that this ambiguity does not hold for a large field
of view (Dijkstra et al. 1995). We will investigate this
simple effect as the first example of our model.

The experiment we use as a reference has been de-
scribed by Cornilleau-Pérès et al. (2002). In this ex-
periment, the stationary participant observes a planar
patch in rotation about a fronto-parallel axis (the plane
is painted with a uniform random dot texture). After
the presentation of the stimulus, the observer is asked to
estimate the orientation of the planar patch by aligning
a probe to it. Two field-of-view sizes were compared: a
large field with a 60◦ aperture angle and a small field
with an 8◦ aperture angle.

Cornilleau-Pérès et al. (2002) report the results in
terms of the rate of tilt reversals. A tilt reversal is de-
fined to occur when absolute error in the estimation of
the tilt angle is greater than 90◦. The reversal rate can
be considered a measure of the ambiguity, as illustrated
in figure 1(b). The middle column of table 3 presents the
results of the experiment, and we observe that the rever-
sal rate drops from close to its maximal value (50%) in
small field of view to below 5% in large field of view.

Our Bayesian model computes the probability dis-
tribution over the orientation Θ of the plane, given the
optic flow, the field of view and the observer’s move-
ment (example in figure 2). Ambiguity in the optic flow
interpretation, such as illustrated in figure 1, results in
a multimodal probability distribution. To compare the
reversal rate reported by Cornilleau-Pérès et al. (2002)
with model output, we computed the sum of probabil-
ities corresponding to tilt errors greater than 90◦ (see
table 3).

This result is accounted for by the rigidity hypothesis.
In our model, this hypothesis is expressed by a proba-
bility distribution over the optic flow (see Methods for
details). The tilt ambiguity is a consequence of the invari-
ance of the first-order components of the optic flow (Φ1)

Fig. 2: Examples of probability distributions on the orienta-
tion of a plane. The polar angle is the tilt of the plane, the
radius is the tangent of the slant angle, and the color stands
for the probability. A darker color represents a higher prob-
ability. The peaks represent the most likely percepts, with
the integral of the probability around a peak corresponding
to the probability of the associated percept. The top panel
shows a result with a high rate of depth reversals and the
lower panel displays a low reversal rate.

with respect to tilt reversal; therefore only the second-
order components can disambiguate the stimulus.

In the Bayesian model, the standard deviation over
the second-order optic flow is smaller in a large field than
in a small field of view. Therefore the influence of second-
order optic flow is greater in a large field of view than in
a small field.
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Qualitatively, insofar as this uncertainty is greater
in a small field, the probability of reversal will always
be higher in a small field than in a large field. Figure 3
shows the quantitative evolution of the reversal rate in
the model as a function of this parameter.
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Fig. 3: Influence of the uncertainty of second-order optic flow
on the prediction of reversal rate in the Bayesian model. A
small field of view leads to a greater uncertainty, and hence
to more reversals.

3.2 Depth reversals in moving and immobile observers

Self-motion has been shown to modify depth perception
from optic flow. This can be seen most clearly in studies
that find differences in sfm performance in moving and
immobile observers, while keeping optic flow the same in
the two self-motion conditions. Thus, actively generated
optic flow can lead to a different perception of 3-D shape
than the same optic flow viewed passively by an immobile
observer.

One of the ways in which self-motion modifies sfm

is by diminishing the ambiguity that leads to depth re-
versals (Rogers and Rogers 1992; Dijkstra et al. 1995;
Wexler et al. 2001a,b). An optic flow field such as the
one shown in figure 1a leads, in the immobile observer,
to total ambiguity between the solutions shown in fig-
ure 1b, and therefore a depth reversal rate of up to 50%
for a small field of view. In the moving observer (figure
1c), on the other hand, the ambiguity is lifted in favor
of the solution that is most stationary in an observer-
independent reference frame (the left solution in figure
1c).

The experimental data used as a reference is taken
from van Boxtel et al. (2003), in which the perception of
the same optic flow is compared in active and immobile
conditions (figure 4), in a small field of view. The exper-
imental results clearly reveal a bimodal distribution of
tilt perception when the subject is immobile. There are
two preferred responses around 0◦, corresponding to the
simulated plane, and 180◦, corresponding to the depth-
reversed plane. In the active condition, the same optic
flow is produced by the subject’s displacement in front
of an immobile plane. In this case, the depth-reversed

plane is rarely reported, leading to a dominant peak in
the distribution around 0◦.

Fig. 4: Distributions of error in tilt angle for both active
(top) and immobile (bottom) conditions, by van Boxtel et al.
(2003). The results show depth reversals in the immobile con-
dition and its almost complete disappearance in the active
condition.
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Fig. 5: Probability distributions of tilt errors in active and
immobile conditions. As in the experimental results shown
in figure 4, the ambiguity drastically diminishes in the active
condition.

Figure 5 shows the results of our model in the same
two conditions. They were computed in a similar way
than in the previous experiment: we applied a variable
change to the posterior distribution on structure com-
puted by our model in order to compute the posterior
probability distribution over tilt errors. We notice that
the bimodality in the immobile condition is similar to the
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experimental results, and the decrease of reversals in the
active condition. In the Bayesian model, the bimodal-
ity shown above is derived from the symmetry of the
first-order optic flow mentioned above. Furthermore, the
difference between active and immobile conditions can
be accounted for only by the conditional distribution on
motion in an observer-independent reference frame. This
distribution is the expression of the stationarity hypoth-
esis in our model. In the immobile condition, the sim-
ulated and depth-reversed planes have the same speed,
as depicted in figure 1(b); only the direction of motion
changes. In the active condition, however, the simulated
plane is stationary in an observer-independent reference
frame, whereas the depth-reversed plane has high veloc-
ity 1(c). Therefore, the stationarity hypothesis, as imple-
mented in the model, insures that the reversed plane is
less probable, because it corresponds to a higher velocity
in an observer-independent reference frame.

3.3 Ambiguity between slant and speed

The slant of a plane (the angle between the normal of
the surface and the direction of gaze) is difficult to ex-
tract from optic flow. Indeed, the rotation around an axis
lying in the fronto-parallel plane is entangled with sur-
face slant. Starting from a given slant and motion config-
uration, simultaneously increasing slant and decreasing
motion leads to approximately the same optic flow.

The experimental data we consider are taken from
Domini and Caudek (1999). The experimental conditions
involve a static monocular observer in a small field of
view. The stimulus consists of a plane rotating along
a fronto-parallel axis. The observer is asked to make a
judgement about the slant of the plane. The planes can
have two different slants and two different angular veloc-
ities. The relationship between the chosen slants is such
that the tangent of the second slant is twice that of the
first. The same holds for velocity, where the second is
twice that of the first.

The experimental results, by Domini and Caudek
(1999), are shown in table 4. The columns on the left
show the evolution of the perception of the tangent of the
slant angle while changing the values of angular speed or
the simulated slant. These data show that the slant of
the plane is hardly recovered as an independent vari-
able, arguing against a veridical (Euclidean, review by
Domini and Caudek (2003)) analysis of optic flow by hu-
man observers. Moreover, the perceived slant for small
simulated slant and high angular speed is very close to
the one perceived in the case of large simulated slant and
low speed. Finally, this experiment shows that increas-
ing the simulated slant or increasing the angular speed
yields the same increase in perceived slant (around 23%
each time).

The right columns of table 4 show the predictions
of our model in the same experimental conditions. As

before, these were computed by a variable change on
the posterior distribution of the model to compute the
posterior distribution on the tangent of the slant angle.
Then we computed the mean of this new distribution,
like in the experimental results. Our model shows the
slant/speed ambiguity found in the experimental results.
In particular, the perceived slant for small slant with
high angular speed is very close to the perceived slant
for large slant with low angular speed. These results also
show an increase in slant perception with increasing slant
or speed. As in the experimental data, this increase is
roughly the same (50 to 60%) in both conditions, al-
though greater than in the experimental data.

The perceived slant comes from a trade-off between
our prior over the orientation (tilt and slant) of the plane
and the distribution over the relative motion from the
stationarity hypothesis (see Methods for details).

It is noted that the values of perceived slant for the
model are smaller than those of the experimental data,
especially for a small simulated slant. We have chosen
to provide the results of our model with a unique set of
parameters for all the experiments of this section. These
parameters are therefore a trade-off between the best
parameters fitting each experiment.3

Experiment Model
Angular speed 0.25 0.5 0.25 0.5

Small slant (1.5) 1.13 1.29 0.66 1.00
Large slant (3) 1.28 1.71 1.00 1.64

Table 4: Mean perceived tangent of slant as a function of sim-
ulated slant tangent and angular speed for the experimental
data (Domini and Caudek 1999) and the Bayesian model.
Note the growth of perceived slant with increasing angular
speed, and very similar perceived slant for large simulated
slant/slow rotation and small simulated slant/fast rotation.

The slant/speed ambiguity results from ambiguities
in first-order optic flow. Indeed, in both situations (small
slant, high speed compared to large slant, low speed) the
optic flow is the same up to the order one as shown in
figure 1(e), and only the second-order optic flow could
disambiguate the stimulus. These results confirm the low
weighing of the second-order components of optic flow
in a small field of view. This low weighing is due to the
uncertainty attached to the distribution over the second-
order optic flow.

First-order optic flow can be partially described by
a parameter called def, the product of the tangent
of the slant and angular speed (Domini and Caudek
2003).4 Therefore slant and speed cannot be recov-
ered individually from first-order optic flow. Domini and

3 One possible influence for this difference is the size of the
field of view, which is larger in this experiment than for the
others.

4 Projected on vertical and transversal axes, def is χωy,
υωy, χωx, υωx in the equations shown in the appendix.
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Caudek (2003) propose a maximum-likelihood model to
account for their psychophysical results. With a small
size of field, in the absence of self-motion and transla-
tion, and disregarding second-order optic flow, the like-
lihood of our Bayesian model reduces to the Gaussian
P (Φ1 | Ω Θ). The norm of first-order optic flow in this

case is
√

ω2
X + ω2

Y

√
χ2 + υ2 = |Ω| tan σ. Their model is

thus a special case of our Bayesian model.

3.4 Ambiguity of translation in depth

Another symmetry or ambiguity of first-order optic flow
is shown in figure 6. A rotation in depth generates the
same (first-order) optic flow as a translation in depth to-
gether with a different rotation in depth, around an axis
that differs by 90◦ from the original rotation. It has been
found (Wexler et al. 2001a; Wexler 2003) that the two so-
lutions are perceived with different frequencies, depend-
ing on the observer’s movement and the origin of depth
translation, that is, if the observer moves toward the sur-
face, or if the surface moves toward the observer (see fig-
ure 6). These results can be summarized by stating that
there is a strong bias toward perceiving the solution that
minimizes motion in an observer-independent reference
frame. Thus, these results provide further support for the
stationarity hypothesis. However, the observer’s percepts
are also, by and large, in agreement with the rigidity hy-
pothesis. Therefore, they provide a useful testing ground
for our model, which incorporates both the stationarity
and rigidity hypotheses.

In the psychophysical studies, two conditions are tes-
ted: in the active condition, the observer moves his head
in depth; in the immobile condition, the observer remains
still but experiences the same optic flow as in a previous
active trial (Wexler et al. 2001a; Wexler 2003).5 In the
active condition, the optic flow is generated by a plane
rotating in depth, where the distance to the observer is
fixed (the plane’s center therefore undergoes depth trans-
lation as well). Therefore, in the active condition 6(d),
the rigidity hypothesis favours the simulated plane, while
the stationarity hypothesis favours the alternative solu-
tion.6 In the immobile condition, on the other hand, both
the rigidity and stationarity hypotheses favour the sim-
ulated plane.

5 Other conditions, involving conflict between the ob-
server’s motor command and self-motion, were also tested
(Wexler 2003), and found to lead to different response distri-
butions. More precisely, when there is a mismatch between
motor command and self-motion, the performance of the ob-
servers are similar to unvoluntary motion and significantly
different from voluntary motion accurately performed. The
model would need an additional variable to tackle this mis-
match condition.

6 The reason why the rigidity hypothesis favours the sim-
ulated plane rather than the alternative solution is that the
symmetry of figure 6 only holds for first-order optic flow. The
second-order terms break the symmetry, and lead to non-
rigidity of the alternative solution.

Both experimental results and model results are pre-
sented figure 7. Recall that optic flow is the same in
the active and immobile conditions; only the observers’
motion differs. Providing that only first-order optic flow
components are available, the rigidity hypothesis alone
would predict equally low rates for the alternative so-
lution in the two conditions, whereas stationarity alone
would result in a rate close to 100% in the active condi-
tion and a low rate in the immobile condition. Second-
order optic flow components, if available, would decrease
the rate for the alternative nonrigid solution.

As explained above, the discrepancy between the ac-
tual values of the experimental results and the model are
due to the unique parameter set used for all six exper-
iments. More precisely, different groups of participants
already exhibit differences in their results. Compare, for
instance, the top left histogram in figure 7 with the bot-
tom left histogram in figure 9. Both correspond to the
same conditions but the results are numerically different.
Priors in our model can be adjusted to better fit some
results at the expense of other experiments.
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Fig. 7: Distributions of the absolute value of the difference
between perceived orientation and rigid solution. The left col-
umn shows the experimental results by Wexler (2003) and the
right column shows the results from our model, computed by
variable change on the posterior distribution. The top row
shows results for immobile observers and the bottom row
shows results for active observers. These results show that
both for the experimental results and the model, perception
for an immobile observer will favors rigid and stationary so-
lutions (left bars). In active conditions both results show a
higher probability of perception of non-rigid and stationary
solutions (right bars). Note that the preference for station-
arity of the model is more intense than in the experimental
results. This is due to the trade-offs in the choice of a common
parameter set for all the experiments.

Because our model implements both the rigidity and
stationarity hypotheses, they are in competition when
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(a)

= +

(b) (b′)

(c) (c′) (c′′)

(d) (d′) (d′′)

Fig. 6: Illustration of the effect of head motion on the perception of 3-D structures (Wexler et al. 2001a; Wexler 2003). (a) An
ambiguous 2D optic flow field that can have different 3-D interpretations, discovered by J. Droulez (cf fig. 1(a)). The arrows
represent the motion of projections of points in 3-D space on the retina. It is fairly easy to see that the 3-D configuration
shown in (c) will generate this flow. However, the configuration shown in (c′) can also generate the flow in (a), and the
reason for this is shown in (b) and (b′): if the amplitudes of the translation and rotation in (c′) are adjusted correctly, the
rotation can exactly cancel the expansion flow from the depth translation in one of two dimensions. The planes in (c) and
(c′) have the same slant and angular speed, but different tilts and they rotate about different axes. (d), (d′) Because optic
flow depends only on the relative motion between object and observer, the same ambiguity holds for an observer moving
forward and experiencing the optic flow in (a). If the observer’s speed is equal-and-opposite to the translation in (c′), the
stationarity of the solutions is reversed with respect to (c) and (c′): it is now the center of (d′) that is stationary in space,
while (d) translates at the same speed as the observer. (c′′), (d′′) Data by Wexler (2003) show respectively the frequencies of
the absolute value of the difference between perceived orientation and orientation of solution (c) and (d) for stationary (c′′)
and moving (d′′) observers. The bars on the left correspond respectively to solutions (c) and (d), and the bars on the right
to solutions (c′) and (d′). Although optic flow is the same in the two cases, perceptions of 3-D structure are very different,
showing the effect of the observer’s action.

the most rigid and most stationary objects do not match.
In this experiment, such a mismatch happens in the ac-
tive condition. Wexler et al. (2001a) define a rigidity
measure and use its symmetry to account for non rigid re-
sponses. This model only relies on a sensible rigidity mea-
sure which can be the probability as in the present paper.

In our model, we can additionally deal with this kind of
contradiction in a way that is similar to Bayesian fusion
(Lebeltel et al. 2004). Other instances of Bayesian fu-
sion are exemplified in the literature (Landy et al. 1995;
Ernst and Banks 2002). The uncertainty, as quantified
by the probability distributions, will ensure the balance
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Fig. 8: Illustration of shear in optic flow. Shear can be
parametrized by the shear angle, defined as 90◦ minus the
absolute value of the difference between tilt and axis angles.
Configurations corresponding to two values of shear angle are
shown; 0◦ (minimum shear) and 90◦ (maximum). The bottom
row shows the optic flow resulting from each configuration.

between the rigidity and stationarity hypotheses. More
precisely, both rigidity and stationarity hypotheses are
simultaneously maximized by the maximization of the
product of the probability distributions reflecting each
of those hypotheses, that is P (Φ | Θ X Λ) for rigidity
and P (X | M) for stationarity.

3.5 The effect of shear on sfm

Another point we tested with the Bayesian model is the
effect of the shear component of optic flow on sfm per-
formance. The shear angle is the absolute difference be-
tween the tilt angle and the direction of the frontal trans-
lation. It is called “winding angle” by Cornilleau-Pérès
et al. (2002). Psychophysical studies have found that
sfm performance in immobile human observers (namely,
judgement of tilt) deteriorates drastically as shear in-
creases (Cornilleau-Pérès et al. 2002), but that this de-
terioration is much less drastic in active observers gen-
erating optic flow through their own head movements
(van Boxtel et al. 2003). Examples of minimal and max-
imal shear in optic flow are shown in figure 8. Shear can
be parametrized by the shear angle (which takes values
between 0◦, corresponding to no shear, and 90◦, corre-
sponding to maximal shear).

We compared model results to experimental findings
by van Boxtel et al. (2003). The experiment involves a
monocular observer who is either immobile, or moving in
a direction perpendicular to direction gaze (active con-
dition). In the two conditions, the observer receives the
same optic flow. In the active condition, the simulated
plane is stationary in an observer-independent reference
frame. In the immobile condition, the plane rotates about
an axis in the fronto-parallel plane. The observer’s task
is to report the plane’s orientation by aligning a probe
so that it appears parallel to the plane.

Figure 9 shows the distribution of absolute tilt er-
rors from the experimental results (van Boxtel et al.
2003), in both active and immobile conditions, for mini-
mal and maximal shear. We can see that mean errors in-
crease with increasing shear. However, this effect is much
stronger in the immobile condition (where response is al-
most at chance level for highest shear) than in the active
condition.

Fig. 9: Tilt error for both active and immobile conditions and
shear 0◦ and 90◦, by van Boxtel et al. (2003). Tilt reversals
(much more common in the immobile condition, see figure
4) were corrected by using the opposite tilt from the one re-
ported in calculating errors, when an reversal occurred; thus,
absolute tilt error runs between 0◦ and 90◦.

Figure 10 shows the distribution of absolute tilt er-
rors for the same conditions as given by the model. As
usual, these were computed with a variable change from
the posterior distribution computed by our model to the
distributions on absolute tilt errors shown. The variation
of the precision between low and high shear is similar to
the experimental results.

In the model, the main factor inducing the shear ef-
fect is the relative strength of the rotation prior and the
translation prior. Indeed, for a small shear, the absolute
motion that satisfies the first-order optic flow equations
for a large tilt error is composed of a rotation and a
translation. For a high shear, a large error corresponds
to an absolute motion composed of two rotations with
the same velocity. The stationarity hypothesis states that
both the translation and the rotation components of the
absolute motion are probably small. Therefore solutions
corresponding to large error will have their probability
reduced by the probability of the object enduring a given
rotation and translation, or two rotations for respectively
a small or a large shear. If the strength (or, more pre-
cisely, the inverse variance of the Gaussian distribution)
of the constraint on the translation components is higher
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Fig. 10: The effect of shear and observer motion on tilt error,
as predicted by the Bayesian model. As in the experimental
results (figure 9), the mean tilt error is greater for a 90◦ shear
than for 0◦ and this effect is greater for an immobile observer
than an active one.

than on the rotation components, the probability of a ex-
periencing large errors on tilt will be smaller for a small
shear than for a large shear. That is the condition, in the
model, to reproduce the shear effect. The strength of this
effect depends on the relative strength of the constraints
on translation and rotation components: the larger the
difference between variance on rotation and on transla-
tion, the clearer the effect of the shear on the dispersion
of tilt angle perception.

3.6 Influence of eye movements on 3-D vision

Using a sinusoidally curved surface that underwent lat-
eral translation while being pursued with the eyes by
the subject, Naji and Freeman (2004) found few depth
reversals. However, when the same optic flow was pre-
sented without pursuit (i.e., with the translation sub-
stracted), depth reversals were prevalent. We simulated
a very similar experiment, with the only difference be-
ing that we used a planar rather than a curved surface.
Because planes can undergo depth reversals in the same
way as curved surfaces, the main effect found by Naji
and Freeman, or something very close it, can be simu-
lated within the framework of our model.

As can be seen in figure 1d (analogous to condition C
by Naji and Freeman (2004)), depth reversals can take
place in the pursuit condition. Both solutions undergo
the same translation, and one of the solutions addition-
ally undergoes a rotation. In the fixation condition (anal-
ogous to condition B by Naji and Freeman (2004)), the

same optic flow leads to two solutions undergoing equal-
and-opposite rotations, as shown in figure 1b. Finally,
Naji and Freeman (2004) have a third condition (A)
where the object translates as in condition C, but in
which the observers were required to fixate on a station-
ary point rather than pursue the object.

The rate of depth reversals is calculated from sub-
jects’ responses in a depth-order task. Figure 11 shows
the experimental results of these three conditions. The
graphs show the breakdown of the estimation of the
phase of the sinusoidal shape (either ‘top-far’ or ‘top-
near’) with respect to the amplitude of the stimulus.
The phase is the analog of the orientation of the plane
in figures 1(d) and (b), whereas the amplitude stands for
the slant of the plane (negative slant being a reversal).
We notice that translation (A and C) allows for the dis-
ambiguation of the stimulus, whereas rotation exhibits
a symmetric behavior. We notice that the perception is
more precise in the pursuit condition (C) than the im-
mobile condition (A).

Fig. 11: Rate of ‘top-far’ perception with respect to the
strength of the stimulus (Naji and Freeman 2004). Condition
A corresponds to a translating object without eye pursuit;
condition B to a rotating object and condition C to a trans-
lating object with pursuit. Conditions A and B show that
translation allows for a disambiguation, contrary to passive
rotation. Furthermore, the comparison of conditions A and C
shows that pursuit of the object leads to better perception.

In comparison, figure 12 shows the results of the
Bayesian model in the transposed conditions. We can
see the major properties are reproduced, in particular
the broader uncertainty in condition A compared to con-
dition C, as well as the ambiguity in condition B.
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Fig. 12: Results from the model. As for the experimental re-
sults, conditions A and C allow for disambiguation of the
stimulus, and condition C is less uncertain than condition A.
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Until now for the model, subjectives responses were
evaluations of the values of plane orientation which can
be computed directly from the posterior distribution on
structure. For this experiment, an additional element has
to be included in the model in order to account for the
‘top-far’ responses. This was done as a post-processing
of the posterior distribution using a simple Bayesian pro-
gram. As can be seen in conditions A and C in figure 11,
the observers exhibited some preference toward a ‘top-
far’ perception. This preference is included as a prior in
the Bayesian post-processing. However, it is to be noted
that observers seem to have a preference for a ‘top-near’
perception in condition B.

The results in condition B are the same as those in
the immobile condition above. The small asymmetry of
both top and bottom curves comes from the second-order
optic flow that induces a reversal rate strictly less than
50%.

The difference between the model results in condi-
tions A and C comes from the stationarity of the reverse
percepts. In condition C, the reverse percept undergoes
a greater rotation than in condition A. Therefore, the
stationarity hypothesis assigns it a smaller probability,
hence yielding a smaller reversal rate.

4 Discussion

4.1 Probabilistic expression of assumptions

A Bayesian model infers the logical consequences of a
given set of assumptions with some observations. The
inference can occur as soon as a joint probability distri-
bution is defined. Therefore, the modeler has to express
the assumptions in a Bayesian way.

The expression of the assumptions of a Bayesian
model can occur at multiple levels, corresponding to the
steps of specification of the joint probability distribution.
The first level is the choice of the variables and their do-
main. Variables ruled out at this step cannot have any
influence in the model. One step further, the joint prob-
ability distribution over the chosen variables is decom-
posed into a product of factors by the way of conditional
independencies. These express a lack of relationship be-
tween variables and therefore reduce the complexity of
the inference. The final level of expression of assump-
tions is in the choice of each distribution involved in the
decomposition, along with their eventual parameters.

Each choice is a reduction in the degrees of freedom of
the joint distribution. The more drastic restrictions are
in the choice of the variables and their domain while the
less important are in the choice of the parameters of the
distribution. Any reduction can be postponed to a later
stage but the earlier it is done, the more the inference
can take advantage of it to simplify the computations.

4.2 Choices in our Bayesian model

Designing a Bayesian model is therefore choosing the
level of specification to express each of the assumptions.

The first main hypothesis is that of rigidity, which
states that the optic flow more likely to be observed is
generated by a plane in relative motion. The parametric
space of the optic flow is derived from this hypothesis.
The optic flow is defined by eight parameters. While suf-
ficient in the case of a plane, the optic flow is, in general,
more complicated. This means that other eventual com-
ponents are not relevant variables in our model, and are
therefore ignored. It could be interesting to investigate
an eventual effect of these components in the human per-
ception of a plane. As far as the model is concerned, such
investigation can be studied with additional components
in the optic flow variable. Rigidity is also involved in
the decomposition with the independancy between op-
tic flow and self-motion conditionally to the knowledge
of the structure of the object and the relative motion of
the object. Finally, rigidity is preeminent in the choice
of the parametric form of the probability distribution
over optic flow, given relative motion, position of the
plane, and the conditions of observation. We fixed this
as a Gaussian distribution. However, it would be possi-
ble to evaluate this choice of distribution by measuring
evolution of performance with respect to some additional
noise in the stimulus and comparing it to the predicted
evolution of the model.

The other main hypothesis of our model is that of
stationarity, which states that the motion of the plane is
more likely to be small. The variables chosen to describe
the optic flow are restricted to instantaneous measure-
ments of displacement of the dots and those for the mo-
tion of the object are the translation and rotation com-
ponents along the three axes, according to the experi-
ments chosen as references. This is restrictive in the sense
that it does not take into account eventual accelerations
and even more complex trajectory. Most reported stud-
ies deal with uniform motion, however, investigation of
the influence of accelerations in the perception of struc-
ture could benefit from the model. The model can be
adapted to handle series of observations and more com-
plex motion, allowing to looking into the results of dif-
ferent hypotheses that can be compared to experimental
results.

The parameters are the last elements of choice in the
model. We obtained the results presented above with a
single set of parameters. Each experimental result gives
information on the exact effect highlighted by the experi-
ment on some parameters. However, the optimal parame-
ters for each experiment are different; therefore, the final
set of parameters chosen results from a trade-off between
all the experiments.
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4.3 Model results

The results of the model display some discrepancies with
the results of the experiments. For example, for the first
experiment described, the reversal rate of the model in a
small field is 44.6% compared with 48.8% in the experi-
ment (Cornilleau-Pérès et al. 2002). There are two main
reasons for this difference. First, the Bayesian model is a
model of an observer. It is not specifically designed to re-
produce mean results across observers. Nevertheless, the
results of our model are less than the variability reported
between observers (in this case, the minimum reversal
rate reported by Cornilleau-Pérès et al. (2002) is around
38%). As explained above, the set of parameters is the
same across all the results of our model. However, there
are variations in the precise experimental conditions be-
tween the different teams responsible for the measured
results. For instance, the rate of reversal measured in a
small field of view for an immobile observer by van Boxtel
et al. (2003) is 35%, compared with 48.8% measured by
Cornilleau-Pérès et al. (2002). This can be explained by
differences in the protocol that are not taken into account
as relevant variables in the Bayesian model. Therefore, as
a general rule, the parameters we chose for the Bayesian
model are a trade-off between all the results. This way,
the results of the model cannot precisely match those of
the experimental results.

The Bayesian model not only accounts for previously
reported results but can also be used to make predic-
tions and eventually propose new experiments. For ex-
ample, we propose the investigation of the relative influ-
ence of stationarity and rigidity in large fields of view.
In this case, in an experimental setup similar to that of
Wexler (2003), our model predicts that rigidity will be
of greater importance in the perception of second-order
optic flow through a diminution of standard deviation on
these components.

Another prediction of the Bayesian model involves
the shear effect. In our model, this effect is accounted
for by relative weight between rotation and translation
components in a small field of view. Our model predicts
a reduced shear effect in large fields of view, and this has
been found in human observers (Cornilleau-Pérès et al.
2002).

4.4 Conclusion

In this article, we have presented a generic Bayesian
model to integrate both stationarity and rigidity hy-
potheses for the perception of 3-D surfaces from optic
flow. We have detailed the instantiation of such a model
to tackle the exemplary case of the perception of the
perception of a plane. We presented the results of our
model compared with six experimental results from the
literature.

The rigidity and stationarity hypotheses are imple-
mented by conditional independencies and probability

distributions. In this way, the resulting model could ac-
count for many aspects of the perception of an planar
object from optic flow. In a more general manner, we
think that Bayesian modelling can prove useful to han-
dle the inherent uncertainties of perception.
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ropean Project BIBA IST-2001-32115.

A Optic flow equations

Let P be the object plane, θ = (χ, υ) its depth gradients,

Ã with coordinates (x̃, ỹ, z̃) a point of this plane in the 3-D
reference frame, and A with coordinates (x, y) its projection
in the image plane. The equation of the plane is:

x̃χ + ỹυ − z̃ = 0. (9)

We have the slant of the plane σ = arctan
√

χ2 + υ2 and the
tilt τ = arctan υ

χ
.

Let Π be the projection of a 3-D point in the image:

Π :

(
x̃
ỹ
z̃

)
7→

(
x = x̃

1−z̃

y = ỹ

1−z̃

)
. (10)

Let t = (tx, ty, tz) and ω = (ωx, ωy, ωz) respectively
be the relative translation and rotation vector of the object
plane. We have X = (t, ω).

Considering the points as functions of time, we can write:

A(t) = Π ◦ Ã(t). (11)

Optic flow is the displacement of the points in the image:

φ =
dA

dt
(12)

φ =
dΠ

dÃ
(Ã) ×

dÃ

dt
. (13)

dΠ

dÃ
is the Jacobian of Π:

dΠ

dÃ
(Ã) =

(
∂x
∂x̃

∂x
∂ỹ

∂x
∂z̃

∂y

∂x̃

∂y

∂ỹ

∂y

∂z̃

)

dΠ

dÃ
(Ã) =

( 1
1−z̃

0 x̃

(1−z̃)2

0 1
1−z̃

ỹ

(1−z̃)2

)
(14)

The plane P undergoes translation t and rotation ω.

Therefore the motion dÃ
dt

of Ã is:

dÃ

dt
= t + ω ∧ Ã

=

(
tx

ty

tz

)
+

(
ωx

ωy

ωz

)
∧

(
x̃
ỹ

χx̃ + υỹ

)

dÃ

dt
=

(
tx + χωyx̃ + (υωy − ωz)ỹ
ty + (ωz − χωx)x̃ − υωxỹ

tz + ωxỹ − ωyx̃

)
(15)

Substituting 14 and 15 in equation 13, we get:

φ =
dΠ

dÃ
(Ã) ×

dÃ

dt
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=

( 1
1−z̃

0 x̃

(1−z̃)2

0 1
1−z̃

ỹ

(1−z̃)2

)
×

(
tx + χωyx̃ + (υωy − ωz)ỹ
ty + (ωz − χωx)x̃ − υωxỹ

tz + ωxỹ − ωyx̃

)

φ =

(
tx+χωy x̃+(υωy−ωz)ỹ

1−z̃
+ x̃

1−z̃
×

tz+ωxỹ−ωy x̃

1−z̃
ty+(ωz−χωx)x̃−υωxỹ

1−z̃
+ ỹ

1−z̃
×

tz+ωxỹ−ωy x̃

1−z̃

)
(16)

By definition of Π (equation 10), x̃
1−z̃

= x, ỹ

1−z̃
= y and

1
1−z̃

= 1+ χx+ υy. We can finally rewrite the equation 16 to
get the equations 17 of the optic flow of a plane:

φ =

(
tx+χωy x̃+(υωy−ωz)ỹ

1−z̃
+ x̃

1−z̃
×

tz+ωxỹ−ωy x̃

1−z̃
ty+(ωz−χωx)x̃−υωxỹ

1−z̃
+ ỹ

1−z̃
×

tz+ωxỹ−ωy x̃

1−z̃

)

φ =




tx + x [tz + χ (tx + ωy)] + y [−ωz + υ (tx + ωy)]
+x2 (χtz − ωy) + xy (υtz + ωx)

ty + x [ωz + χ (ty − ωx)] + y [tz + υ (ty − ωx)]
+xy (χtz − ωy) + y2 (υtz + ωx)




φ = φ
0 + φ

1
.
t(x, y) +t (x, y).tφ2

.
t(x, y) (17)

with:

φ
0 =

(
tx

ty

)

φ
1 =

(
tz + χ (tx + ωy) −ωz + υ (tx + ωy)
ωz + χ (ty − ωx) tz + υ (ty − ωx)

)

φ
2 =

(
χtz − ωy

υtz + ωx

)
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